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SUMMARY

Many applications of seismology require the calculation of wavespeed and attenua-

tion in rocks saturated with multiple fluids. Squirt-flow is known to be an important

e↵ect in fully saturated rocks but the extension to the multi-fluid case is unclear.

Neglecting capillary e↵ects, we generalise previous work on squirt-flow to the case

where two fluids are present. We derive expressions for the e↵ective fluid properties,

but the results depend on the spatial distributions, and not only volume fractions,

of the two fluids. Our results demonstrate that such multi-fluid squirt-flow may be

responsible for hysteresis e↵ects in elastic properties during imbibition and drainage.

1 INTRODUCTION

Determining the quantitative relationship between fluid saturation and seismic characteristics

such as wave velocity and attenuation, is a challenging problem in geophysics. It has various

applications ranging from accurate determination of gas/oil saturation in seismic surveys, to

estimating mobility of CO
2

in carbon capture and storage or enhanced recovery projects. The

challenge lies in that it is not entirely understood how the spatial distribution of fluids a↵ects

elastic wave propagation.

In a popular approach to the problem of partial fluid saturation, it is assumed that the fluid
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forms pockets or patches. Current work by Pham et al. (2002) and more recently Qi et al.

(2014a), Qi et al. (2014b) addresses such issues. At the same time, experimental data for

partially saturated, anisotropic synthetic rocks show that the di↵usion mechanism attributed

to squirt-flow is significant as pointed out by Amalokwu et al. (2014).

Wave-induced fluid flow or squirt flow as introduced in Dvorkin et al. (1995) predicts

significant dispersion in seismic waves but these theories are confined to full saturation. It is

largely accepted that it is a phenomenon due to pressure gradients between elements of the

pore space of di↵erent compliances and is triggered by passing seismic waves.

In one modelling approach of the squirt flow e↵ect introduced by Chapman et al. (2002), a

pore network of compliant microcracks and sti↵er pores is used to model the porous medium.

The di↵usion mechanism at full saturation is then described by a Darcy fluid flow between

neighbouring members of this network (selected at random to be microcracks or pores). Within

this theory, it is not clear how to approach variable saturations.

In this paper, we present an extension of the micro-structural approach to accomodate

the case of partially saturated pores. Rather than assume discrete patches our assumption is

that the two immiscible fluids exist within each crack and pore. We also assume that pressure

equalisation occurs within each inclusion and we show the result depends on an e↵ective

viscosity tied to the relative permeability of each fluid.

Our results demonstrate that the elastic properties depend not only on the volume fraction

of each fluid but also on how the fluids are distributed between cracks and pores. We intro-

duce simple conceptual models for imbibition and drainage and find that our model predicts

significant hysteresis in the bulk modulus–saturation relationship.

2 THEORY

It was shown in Chapman et al. (2002) that a pore network model can be constructed where

fluid exchange between inclusions of di↵erent compliance gives rise to a squirt-flow mechanism.

Average masses of the saturating fluid represented as m ,m�, denote the fluid content of two

pore types in the pore network: ellipsoidal microcracks and spherical micropores. We index

symbols referring to each inclusion, respectively by  and �. Local flow is then described as

a Darcy flow between di↵erent types of pores:

@tm
 =

⇢
0

k⇣

⌘
(P� � P ) = �@tm

� (1)

where ⌧�1 = ⇢0k⇣
⌘ is the di↵usivity constant depending on the fluid density ⇢

0

, matrix perme-

ability k, grain size ⇣ and fluid viscosity ⌘.
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Figure 1. E↵ective bulk modulus as a function of angular frequency and fluid saturation for our

baseline model.

Mass exchange between neighbouring cracks and pores is therefore understood to be driven

by their pore pressure di↵erence where each pressure is indicated as P�, P according to our

notation. With a suitable description m(P ) relating the mass content to the pressure in each

inclusion, the above can be solved in the frequency domain and a frequency dependent expres-

sion for each pressure can be calculated. These expressions can be used in conjunction with

the inclusion theory of Eshelby (1957) to provide an e↵ective elastic tensor. This framework

is studied and understood also for cases where inclusions have di↵erent relative sizes and a

preferred orientation in Chapman (2003). The most general single fluid case was studied by

Jakobsen & Chapman (2009)

In the general multi-fluid case, we would have to consider spatial variations in each fluid

pressure within each crack and pore. To simplify the problem, we neglect capillary pressure ef-

fects and assume a constant fluid pressure in each fluid within each inclusion. This allows us to

model grain-scale pressure gradients between inclusions while assuming pressure equilibration

with each inclusion.

@tm
 
1

=
⇢
1(0)

k
1

⇣

⌘
1

(P� � P ) = �@tm
�
1

@tm
 
2

=
⇢
2(0)

k
2

⇣

⌘
2

(P� � P ) = �@tm
�
2

.

(2)

The expressions relating the density of each fluid to its pressure come straight from the

definition of the fluid bulk modulus i.e.:

⇢ ' ⇢
0

✓
1 +

Pf

K

◆
(3)

and can be applied to each fluid and inclusion pressure. The above would have to be combined

with an expression for the volume of each inclusion in terms of stress balance between fluid
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Figure 2. Attenuation of the baseline model as a function of frequency and fluid saturation.

and external stress �ij :

� =� 
0

✓
1� �n

�c
+

P 

�c

◆

�� =��
0

✓
1� 3

4µ

(1� ⌫)

(1 + ⌫)
�ll +

3

4µ
P�

◆
.

(4)

Here, the modulus �c depends on the aspect ratio r of the ellipsoid inclusions:

�c =
⇡µr

2(1� ⌫)
(5)

and, for a su�ciently large collection of inclusions in the representative volume, we can assume

the normal stress �n is a third of �ll. The parameter µ denotes the shear modulus of the grains

and ⌫ their Poisson’s ratio.

The above information su�ces to solve (2) assuming a harmonic excitation �n(t) =

1

3

�ll(t) = � ei!t. However, we also need to assume that the fluids are at constant – or at least

constant within the modelled time and length scale – relative volume fractions S
1

= 1 � S
2

.

Now we can explicitly calclate the mass content of each fluid which is

m 
1

=S
1

⇢ 
1

� m�
1

=S
1

⇢�
1

��

m 
2

=S
2

⇢ 
2

� m�
2

=S
2

⇢�
2

��.
(6)

and it can be seen from (2) that this is equivalent to a single e↵ective fluid theory with

parameters

em =m 
1

+m 
2

em� =m�
1

+m�
2

1
eK

=
S
1

K
1

+
S
2

K
2

ek
e⌘ =

k
1

⌘
1

+
k
2

⌘
2

.
(7)

So in this case, the static component of the theory has an e↵ective fluid modulus given by

the Gassmann-Wood average of Domenico (1974). The di↵usivity constant still requires the
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Table 1. Parameters used in the baseline model.

total porosity: �0 = .30

crack density: ✏ = 0.05

aspect ratio: r = 10�4

permeability: k = 4⇥ 10�14 m2

grain size: ⇣ = 12⇥ 10�5 m

gas properties: ⌘1 = 2⇥ 10�5 Pa s K1 = 2.5⇥ 107 Pa

water properties: ⌘2 = 10�3 Pa s K2 = 2.25⇥ 109 Pa

definition of a relative permeability model, so for simplicity, we will assume that k
1

= S
1

k

and k
2

= S
2

k.

With these concessions in mind, we will refer to the above as our baseline model henceforth.

This model has a dispersive bulk modulus K
e↵

(!) since each of the fluid pressures calculated

in (2) is complex-valued and depends on the harmonic forcing of the external stress field �(!)

in a linear way. This bulk modulus is calculated as an Eshelby expansion where its zeroth order

in ! is the dry modulus Kd and higher order corrections are given as a sum over inclusion

types (see Chapman, 2003, eq. 114):

K
e↵

(!) = Kd +

� 
0

✓
Km

�c
+ 1

◆
P (!)

�(!)
+ ��

0

✓
3Km

4µ
+ 1

◆
P�(!)

�(!)
.

(8)

The predicted dependence on fluid saturation and frequency can be seen explicitly in Figures

1, 2 depicting respectively its real part and attenuation, calculated as Im(Ke↵(!))
Re(Ke↵(!))

. The rock

physics parameters for the model are the ones given in Mavko et al. (1998) for a sandstone.

The parameters particular to the model are chosen as per Table 1, where the saturating fluids

are chosen to match the elasticity of water and gas respectively.

3 MODELLING RESULTS

The above admits a generalisation that is particularly relevant to an inclusion model. Namely,

there is no requirement that the partial saturation fractions in the pores and in the microcracks

be the same. We will explore this idea further and assume that there are three distinct satu-

ration fractions within the representative volume.

The underlying saturation S
1

is the fluid volume fraction an experimentalist would mea-

sure for a sample using information about its porosity and weight. In the case of immiscible

fluids, capillary phenomena could be responsible for a di↵erent fluid spatial distribution along

the narrower microcracks S 
1

from that in the pores S�
1

.
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The consistency condition these three saturations need to satisfy is that they conserve the

underlying fluid volume, thus:

�
0

S
1

= � 
0

S 
1

+ ��
0

S�
1

, (9)

where �
0

= � 
0

+ ��
0

and S�
2

= 1� S�
1

, S 
2

= 1� S 
1

. Note that in mathematical terms, we

are merely changing the implied initial condition for each mass in the di↵erential equations

of (2) hence amending the fluid contents in (6).

Now the saturation fractions in (6) become inclusion-dependent which impacts on the

e↵ective fluid modulus. By explicitly carrying out the calculation we can show that there is a

di↵erent e↵ective fluid modulus for each inclusion type that depends on the specific saturation

in each inclusion:

1
eK 
f

=
S 
1

K
1

+
S 
2

K
2

1
eK�
f

=
S�
1

K
1

+
S�
2

K
2

.

(10)

This way the e↵ective fluid moduli become decoupled between pores and cracks and the

bulk modulus of equation (8) takes the explicit form:

K
e↵

(!) = Kd �

� 
0

✓
Km

�c
+ 1

◆
↵B

1

(�A
2

+ 1) + �B
2

1 � (↵A
1

+ 1) (�A
2

+ 1)
�

��
0

✓
3Km

4µ
+ 1

◆
�B

2

(↵A
1

+ 1) + ↵B
1

1 � (↵A
1

+ 1) (A
2

� + 1)
,

(11)

with the following definitions:

↵(!) = i
� 
0

!

�c ⇣

e⌘
ek

�(!) = i
3��

0

!

4µ ⇣

e⌘
ek

A
1

= 1 +
�c
eK 
f

A
2

= 1 +
4µ

3 eK�
f

B
1

= Km B
2

= 3Km
1� ⌫

1 + ⌫

(12)

In a real experiment, the spatial distribution of fluids between cracks and pores will be

di↵erent during imbibition and drainage. Our model will therefore predict hysteresis e↵ects.

To demonstrate this we need to model the saturations in cracks and pores consistently.

We define the crack fraction cf as introduced in Endres & Knight (1997):

cf =
� 
0

� 
0

+ ��
0

=
4

3

⇡✏r
4

3

⇡✏r + ��
0

, (13)

where in the second equality we have expressed it in terms of the crack density ✏ and aspect

ratio r as given in Chapman et al. (2002).
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Figure 3. Saturation of cracks versus overall saturation for imbibition (solid) and drainage (dashed).

The cracks are saturated and drained before the pores in this example corresponding to a water-wet

pore network where saturation is driven by capillary forces.

Now (9), can be re-formulated to the following:

S
1

= cfS
 
1

+ (1� cf )S
�
1

. (14)

Let us assume that at a critical underlying saturation Sc, there is maximal di↵erence in

saturation between cracks and pores |S 
1

� S�
1

|. We can write for the respective saturations

at S
1

= Sc :

S 
1

(Sc) = ↵Sc,

S�
1

(Sc) =
1� ↵cf
1� cf

Sc

(15)

for some coe�cient ↵ with 0 < ↵ < 1/Sc. By letting the variation in crack/pore saturation be

linear, using (14) the coe�cient ↵ determines whether the cracks are imbibed (resp. drained)

before or after the pores. Modelling hysteresis amounts to taking a di↵erent value of Sc and

↵ in imbibition and drainage.

We will use S(imb.)
c = 10% and ↵ = 10 to denote that during imbibition, the cracks become

fully saturated when an underlying saturation of 10% is reached. For drainage, we will use

S(dr.)
c = 90% and ↵ = 0 which means the cracks are drained completely when the matrix is

drained to an underlying saturation of 90%. Note that Sc is itself constrained to lie between

cf < Sc < 1� cf .

Using the same lithology and fluids as before, we can now model hysteresis with the above

saturation curves for the two processess. The choices of S(imb.)
c , S(dr.)

c can be assumed to have

an ideal shape where cracks saturate first under imbibition and drain first during drainage as

illustrated in Figure 3. For the values of crack density and aspect ratio in Table 1, the pore

saturation is practically indistinguishable from the underlying saturation.

The dispersive mechanism attenuates the seismic waves di↵erently during imbibition and
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(�
�)

��� ω = �

Figure 4. Bulk modulus-water saturation relationship for imbibition and drainage modelled based on

the curve of Figure 3.

drainage which is depicted in Figures 4 - 5. By construction, this model matches that of

Chapman et al. (2002) for a fully saturated matrix.

4 DISCUSSION

It is widely accepted that the Biot-Gassmann theory underestimates the amount of dispersion

exhibited in waves propagating through sedimentary rocks. The likely cause of this excess

dispersion is non-uniformity of fluid pressure across the pore space. This may be due to the

non-uniformity of the pore space itself (e.g. O’Connell & Budiansky, 1977) or the existence

of two saturating fluids (e.g. White, 1975).

The model of Murphy et al. (1986) considers both variations in pore-space geometry and

partial gas saturation. His work produces intuitively appealing relationships between attenua-

tion and partial saturation and appears to match experimental data. In a parallel development,

Mavko & Jizba (1991) and Dvorkin et al. (1995) show how variations of pore-space geometry

give rise to significant dispersion in fully saturated rocks. A consistent description of such

e↵ects using inclusion models was given by Chapman et al. (2002) and Jakobsen & Chapman

(2009).

Many of the most successful models for partial saturation underestimate dispersion when

a single fluid is present. White (1975) contains no dispersion mechanism in the absence of gas

while Gurevich et al. (2010) developed an analogue of the model by Murphy et al. (1986) for

full saturation which predicts reasonable dispersion.

This paper presents a multi-fluid model which reduces to the local flow model of Chapman

et al. (2002) in the full saturation limit. Our results are similar in outline to those in Mur-

phy et al. (1986) and White (1975) but the dependence on the geometry of the saturation is
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Figure 5. Attenuation-water saturation relationship for imbibition and drainage modelled based on

the curve of Figure 3.

di↵erent. This dependence on fluid distribution at the pore scale cannot be captured entirely

by either the “uniform” or “patchy” saturation concepts.

5 CONCLUSIONS

We have presented a simple extension of the model of Chapman et al. (2002) to the case

of multiple fluid saturation. In this study we ignore capillary pressure e↵ects but allow for

pore-pressure gradients on the grain scale. Our results indicate that the behaviour is sensitive

to the spatial distribution of fluids between cracks and pores so that, e.g., seismic velocity

cannot be considered to be a function of water saturation alone.

We calculate the bulk modulus and attenuation as functions of water saturation for ide-

alised models of imbibition and drainage and conclude that multi-fluid squirt flow e↵ects give

rise to significant hysteresis e↵ects.
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