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a b s t r a c t

We demonstrate that a computational fluid dynamics (CFD) model enhanced with molecular-level infor-
mation can accurately predict unsteady nano-scale flows in non-trivial geometries, while being efficient
enough to be used for design optimisation. We first consider a converging–diverging nano-scale channel
driven by a time-varying body force. The time-dependent mass flow rate predicted by our enhanced CFD
agrees well with a full molecular dynamics (MD) simulation of the same configuration, and is achieved at
a fraction of the computational cost. Conventional CFD predictions of the same case are wholly inade-
quate. We then demonstrate the application of enhanced CFD as a design optimisation tool on a bifurcat-
ing two-dimensional channel, with the target of maximising mass flow rate for a fixed total volume and
applied pressure. At macro scales the optimised geometry agrees well with Murray’s Law for optimal
branching of vascular networks; however, at nanoscales, the optimum result deviates from Murray’s
Law, and a corrected equation is presented.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Many emerging applications of nanofluidic technology take
advantage of different physical effects that dominate at small
scales; examples can be found in air and water purification [1,2],
and in micro chemical reactors [3,4]. The design of these technolo-
gies would be greatly facilitated by being able to perform numeri-
cal simulations that predict mass flow rates and heat transfer.
Computational fluid dynamics (CFD) is regularly used to model
and create optimal every-day engineering designs efficiently.
However, the assumptions used to derive the continuum fluid
equations become invalid in highly-confined systems, making the
equations inaccurate. On the other hand, molecular dynamics
(MD) can be used to perform highly detailed simulations of
nano-scale systems; it has been successfully used to study the
behaviour of protein folding [5], crystal formation [6] and chemical
reactions [7]. The drawback is that MD is extremely computation-
ally intensive, especially when used to model systems comprising
hundreds of thousands of molecules that would be required for
engineering applications.

The continuum fluid assumptions become inaccurate for gas
flows as the smallest characteristic scale of the geometry (e.g.
channel height) approaches the mean distance between molecular
collisions (i.e. the mean free path) [8]. When modelling dense liq-
uids (as we do in this paper) there is not a well-defined condition
for when the fluid assumptions become inaccurate. However, it
appears that they fail when water is confined in channels of width
�1–2 nm (see [9] and references therein), and MD simulations
have been used to show that Lennard-Jones fluids confined in
geometries of �2–3 nm still show continuum behaviour [10–12].
At the nano-scale the fluid molecules form layers parallel to an
interface, which causes the strain rate to vary rapidly within sev-
eral molecular diameters [13]. These large variations mean the
stress no longer has local linear behaviour [14,15].

Despite the complexities of fluid behaviour at the nano-scale, it
has recently been shown that useful predictions from CFD can be
obtained for some simple geometries, if appropriate fluid state
models, viscosity relationships, and slip models are extracted from
an MD pre-simulation [16]. In [17], a similar approach is used to
obtain CFD predictions of flow through a nanotube; with results
agreeing well with full MD simulations.

However, what remains to be tested is the robustness of nano-
scale CFD when applied to more complex engineering calculations.
In this paper, we test if our enhanced CFD model is robust enough
to predict flow behaviour in a non-trivial geometry (a converging–
diverging channel), while using various forms of applied forcing to
generate unsteadiness within it. As a demonstration of its

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2015.03.023&domain=pdf
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efficiency, we go on to apply the enhanced CFD to the design opti-
misation of a small fluidic network.

The paper is structured as follows. In the next section we sum-
marise the MD pre-simulation procedure and the CFD model used.
We then use these models to perform unsteady simulations of a
converging–diverging channel, where the width of the channel is
close to the continuum limit. Our model is then applied to simulate
an industrially-relevant problem of flow through a bifurcating
channel. We show that to optimally design the channels the slip
velocity at walls must be taken into account. The paper then ends
with a summary.
2. Methodology

2.1. The MD pre-simulations

As in [16], we employ preliminary molecular dynamics (MD)
simulations to obtain fluid properties and boundary conditions
that enable the effective use of a Navier–Stokes fluid solver for
nano-scale applications. This approach can be classed as a ‘‘sequen-
tial molecular-continuum hybrid method’’ (see [18] for a review of
hybrid methods), where ‘sequential’ refers to the fact that the MD
is performed in advance of, and so independent of, the continuum-
fluid solver.

Fig. 1 (far left) shows a schematic of the MD pre-simulation
domain; it is symmetrical about its centrelines and uses periodic
boundary conditions in the streamwise direction (in the x-direc-
tion) and into the page (in the z-direction). The domain has bulk,
shear and interface zones (as labelled) for measuring state, con-
stitutive and boundary properties, respectively. Pressure and den-
sity are measured in the bulk zone. In addition to this, in the bulk
zone an artificial streamwise body force ðFxÞ is applied (Fig. 1, cen-
tre left), which creates a velocity profile in the domain similar to
that illustrated (Fig. 1, centre right). We assume that the equation
MD pre-simulation
domain

Applied 
body force 
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Interface Zone 

Shear Zone 

Bulk Zone 

Shear Zone 

Interface Zone 

Fig. 1. Schematic of molecular dynamics pre-simulation for extracting fluid dynamic p
of state in the bulk zone is unaffected by the magnitude of strain
rate generated. In the shear zone the fluid is, therefore, subject to
a constant shear stress, sxy, directly resulting from the bulk-zone
forcing. A linear flow velocity profile is developed in the shear
zone, and this is least-squares fitted to obtain a strain rate and
shear viscosity coefficient, l.

Any significant density oscillations associated with molecular
layering are confined to the interface zone. In this zone we calcu-
late what we term the ‘CFD surface displacement’, d, which is the
distance that a CFD wall/surface needs to be displaced from the
centres of surface atoms in order to accurately represent the
boundary of the fluid (as opposed to the boundary of the solid);
see d in Fig. 1. We take this displacement to be the distance from
the centre of the surface wall atoms to where the fluid density
becomes at least 10% of the bulk, i.e. q P aqbulk, where a ¼ 0:1.
Note, the surface displacement is quite insensitive to the percent-
age of the bulk density chosen as the threshold, since the density
increases from zero to well above the bulk density over a very
short distance. For example, had we chosen the threshold to be
at 20% of the bulk density, the surface displacement would have
only been 1–2% larger, for a typical case.

The linear velocity profile obtained in the shear zone is extrapo-
lated into the interface zone to find the apparent slip length, n, as
defined from the CFD surface (see Fig. 1, centre right).

The molecular dynamics pre-simulations, and the full-scale MD
simulations used for benchmarking, are performed using the
mdFoam solver [19–22] that is implemented within the
OpenFOAM libraries [23]. For the test cases considered in this
paper we have adopted a simple Lennard-Jones (LJ) fluid model
(at 292.8 K), where the solid LJ wall atoms are fixed/frozen [24].
However, the methodology is general to any given molecular
model. For full details of the molecular pre-simulation domain
and the molecular dynamics parameters used, the reader is
referred to [16].
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roperties that are essential inputs to an enhanced CFD solver for nano-scale flows.
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Fig. 3. Surface displacement d varying with fluid density q, measured from each
MD pre-simulation.
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Fig. 2(a) shows MD pre-simulation measurements of pressure,
obtained from the standard Irving–Kirkwood expression [25], vary-
ing with the mass density. The MD pre-simulation results are least-
squares-fitted to a 2nd order polynomial. This then serves as an
equation of state within the enhanced CFD solver to connect the
mass continuity equation to the momentum equation. In this case
the polynomial is p ¼ 0:001559q2 � 3:387qþ 2020:6.

The strain-rate is extracted from the MD shear zone by a least-
squares linear fit to the relaxed and time-averaged velocity profile.
The applied shear stress is measured using the Irving–Kirkwood
equation, from which we obtain a dynamic shear viscosity coeffi-
cient for the LJ fluid at a given bulk density. The viscosity coeffi-
cients measured from our MD pre-simulations of Lennard-Jones
argon are shown in Fig. 2(b). A least-squares polynomial fit of
2nd order in density is also plotted: l ¼ 7:96� 10�10

q2 � 1:774� 10�6qþ 0:001106. This is then used in our enhanced
CFD simulations to close the momentum equation. Note, due to the
breakdown of the continuum assumption and the existence of non-
local stress, this state-dependent viscosity becomes only approxi-
mate when applied to a nano-confined fluid.

The surface displacement d defines the location of the CFD
boundaries relative to the atomic (actual) walls. If d varies substan-
tially with density (or any other fluid property), the geometry of
the enhanced CFD domain becomes dependent on the CFD solution
itself. However, for the fluid/solid combination considered in this
paper, over the density ranges considered, d is effectively constant,
as seen in Fig. 3.

In certain cases the value of d will itself be dependent on the
geometry, particularly for high curvatures, such as around sharp
corners and obstructions. It is beyond the scope of the current
work to attempt to accommodate these influences, while noting
that, later, we obtain good agreement with full MD simulations
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Fig. 2. Data for the Lennard-Jones fluid properties: (a) pressure variation with
density, and (b) viscosity variation with density. MD data points from pre-
simulation (circles), fitted polynomial (solid lines) and NIST data [26] (dashed
lines).
without doing so. To tackle geometry-dependent flow properties
(including surface displacement) would dramatically increase the
parameter space that the pre-simulations would be required to
supply information for; in fact, for such problems a ‘concurrent’
hybrid approach is likely to be more efficient.

As the spatial-scale of the geometry increases, the relative sig-
nificance of the surface displacement reduces. We can develop a
simple gauge of its impact by considering the percentage that it
modifies the mass flow rate in a simple channel in two limiting
cases: assuming no-slip at the walls (i.e. n ¼ 0); and for very high
slip (i.e. n� h, where h is the channel width). In the no-slip case,
for Poiseuille flow, the mass flow rate is proportional to the cube
of the channel width; the percentage difference of using the sur-
face displacement is then

� ¼ 1� ðh� 2dÞ3

h3

 !
� 100%: ð1Þ

For the cases in Section 3, where the channel width varies, � is �28–
44%. For high-slip cases, where the velocity profile becomes plug-
like, the mass flow rate becomes proportional to the square of the
channel width, giving a percentage difference:

� ¼ 1� ðh� 2dÞ2

h2

 !
� 100%: ð2Þ

Considering again the cases in Section 3, � would be �20–32%; i.e.
the impact of the surface displacement is likely to be very signifi-
cant regardless of the degree of velocity slip. Based on the estimates
of Eqs. (1) and (2), the impact of a surface displacement d � 0:2 nm
will only be less than 1% (i.e. negligible) for channels greater than
75–100 nm.

Liquid slip velocity at surfaces is calculated using the Navier slip
condition:

uslip ¼ n _c; ð3Þ

where n is the slip-length and _c is the shear-rate at the bounding
surface. The least-squares-fitted linear velocity profile is used to
calculate the slip-length (as defined from the CFD surface). Based
on the strain-rate/slip-length relationship proposed in [24], and
assuming a linear dependence on density, a least-squares fit is per-
formed to the following equation:

n ¼ ðc1qþ c2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _c= _cc

p ; ð4Þ

where q is the density, _cc is the critical shear rate (see [24]), and
c1; c2 and _c are parameters of the fit to our MD pre-simulations,
which are �1:205� 10�12 kg�1 m4, 3:747� 10�9 m and
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1:543� 1011 s�1, respectively. Fig. 4 shows our MD pre-simulation
data and the least-squares fit of Eq. (4); data are shown for three
different values of density. The slip model approximated by Eqs.
(3) and (4) is directly introduced as a Robin boundary condition
in the enhanced CFD solver.
2.2. The enhanced CFD model

We use the laminar, compressible flow solver sonicLiquidFoam,
which we have modified to (a) accommodate a nonlinear equation
of state, (b) allow a density-dependent viscosity, and (c) incorpo-
rate slip boundary conditions of the form given in Eq. (4). A com-
pressible solver is used despite the very low Mach numbers,
since significant compressibility can occur in micro and nano
geometries due to very high viscous pressure losses [27,28].
3. Unsteady simulations

We now simulate the unsteady flow behaviour of a Lennard-
Jones fluid along a converging–diverging channel; a case chosen
to demonstrate the robustness of the enhanced CFD model when
applied to non-trivial flow problems.

Owing to the lack of detailed and reliable experimental flow
measurements at the nano-scale, in this section we compare our
enhanced CFD predictions with full-scale MD simulation results.
This comparison is intended to test whether enhanced CFD can
produce flow field solutions of comparable accuracy to full MD in
complex nano-scale geometries, without the need for ad hoc cor-
rections, and at only a fraction of the cost of full MD.
Fig. 5. The converging–diverging channel used in the unsteady flow
3.1. Cases

We consider a two-dimensional geometry: a converging–
diverging channel with a smoothly varying height in the stream-
wise direction. A gravity-type force is applied to the fluid to gener-
ate an unsteady/transient flow. As test cases, we choose flows that
exhibit non-continuum behaviour (e.g. slip at surfaces), and do not
contain a significant bulk flow region, i.e., the width of the channel
is at the 2–3 nm continuum-fluid limit for a Lennard-Jones fluid.

The converging–diverging channel is shown in Fig. 5 and has a
length l ¼ 68 nm in the streamwise direction x, a depth of 5.44 nm,
and heights of 3.4 nm and 2.04 nm at the inlet and throat sections,
respectively. The channel is periodic in both the streamwise and
spanwise direction. The height between top and bottom walls
hðxÞ varies in the streamwise direction according to a sinusoidal
function,

hðxÞ ¼ 2a cos
2px

l

� �
� 1

� �
þ hinlet; ð5Þ

where 4a ¼ 1:36 nm is the change of height from inlet to throat, and
hinlet is the height of the channel at the inlet.

The full MD domain is divided into 200 bins in the x-direction of
bin-width dx ¼ 0:34 nm, and the instantaneous mass flow rate and
density are measured in each bin. In the enhanced CFD domain, we
define a plane across the channel at equivalent positions, and sum
the mass fluxes from each cell the plane crosses, at each time-step,
to get the instantaneous data. Dependency studies on the mesh
resolution and on the time step showed that 50,000 cells and a
time step of 21.6 fs were more than sufficient to obtain converged
CFD solutions.

All the flows start from rest, then a time-varying gravity force
FgðtÞ is applied. We consider four different forces applied to the
fluid:

1. Startup flow: a steady gravity force of Fg ¼ 0:487 pN.
2. Short oscillations: an unsteady, oscillating gravity force with

amplitude 0.487 pN and period of T ¼ 0:22 ns, i.e.
FgðtÞ ¼ 0:487� 10�12 sin
2pt

0:22� 10�9

� �
; ð6Þ

where t is the simulation time;
3. Long oscillations: an unsteady oscillating gravity force of the

same amplitude, but with a larger period T ¼ 10:8 ns, i.e.
FgðtÞ ¼ 0:487� 10�12 sin
2pt

10:8� 10�9

� �
; ð7Þ

where t is the simulation time;
4. Varying oscillations: an unsteady oscillating gravity force with

the same amplitude but with increasing period of 0:2! 10:8 ns
as shown in Fig. 6(d), where the dashed line indicates how the
period of the oscillation changes.
cases. Top is the MD domain, and bottom is the CFD domain.
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Fig. 6. The applied gravity forces varying with time for the four different cases: (a) step force, (b) oscillating gravity force with period T ¼ 0:22 ns, (c) oscillating gravity force
with period T ¼ 10:8 ns, and (d) oscillating gravity force with increasing period T ¼ 0:22 ns! 10:8 ns, where the dashed line shows how the period of oscillation changes.
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Graphical representations of how the forces vary are shown in
Fig. 6.
3.2. Results for the four cases

To test the reliability of our CFD predictions that have MD pre-
simulation input, we compare results with full-domain molecular
dynamics calculations (referred to as ‘full MD’). To test whether
our enhanced CFD model is an improvement over conventional
CFD, we also compare results with predictions from compressible
CFD with no-slip at the wall and without incorporating a CFD sur-
face offset (referred to as ‘no-slip CFD’). We also compare with
incompressible CFD with slip incorporated but no surface displace-
ment (referred to below as ‘incomp. slip CFD’).

In Fig. 7 we plot the mass flow rate variation with time in a sin-
gle bin near the inlet of the channel for each case. We see that in all
cases the enhanced CFD model is able to accurately predict how
the mass flow rate changes in time. Fig. 7(a), in which a constant
force is applied throughout the channel, shows that the CFD
reaches steady state at the same time as the MD simulation, and
that a similar final mass flow rate is reached. There are, however,
substantial differences between the enhanced CFD, the no-slip
CFD, and the incomp. slip CFD results. The oscillations that are
observed at the early times in Fig. 7(a) in the enhanced CFD results
and also the MD data are due to an acoustic response of the nano
channel to impulse forcing. A first estimate of the natural acoustic
period is obtained by T ¼ l=c ¼ 0:07 ns (where c is the speed of
sound). This corresponds reasonably closely with the observed
kinks in the mass flow rate.

Fig. 7(b) shows the results when an oscillating force with period
0.22 ns is applied. The mass flow rate in the enhanced CFD oscil-
lates with the right frequency, the correct amplitude, and is also
in phase with the full MD results. The no-slip CFD, on the other
hand, appears to have the correct frequency but the amplitude is
incorrect and it is oscillating out of phase, while the incomp. slip
CFD is in phase but overpredicts the amplitude.

In Fig. 7(c) we have an oscillating force with period 10.8 ns. The
mass flux in the enhanced CFD oscillates with the right frequency,
correct amplitude, and is in phase, whereas the no-slip CFD
appears to have the correct frequency, and is oscillating in phase,
but the amplitude is incorrect. In Fig. 7(d) the period of the oscil-
lating force increases from 0.22 ns to 10.8 ns; even in this more
elaborate case, the enhanced CFD prediction is accurate.

Table 1 provides an indication of the computational cost for the
full-domain MD simulations. The longest simulations presented in
this paper ran in parallel (on 24 CPUs) for 48 days. The enhanced
CFD itself has negligible computational cost by comparison,
although the MD pre-simulations require the computational
resources indicated in the last row of Table 1. However, these
pre-simulations need only be performed once for a particular
fluid/solid combination, and then can be used for any number of
flow geometries thereafter.
4. Design optimisation

We now demonstrate how the enhanced CFD model can be used
in design optimisation problems at the nanoscale. The example we
choose is the optimal design of a bifurcating nano-channel net-
work (see Fig. 8); such a design exploration would not be feasible
using full MD simulations. The problem is to find the optimal
widths of the channels in a bifurcating channel (i.e. those that give
greatest mass flow rate), for a constant pressure difference Dp
between the inlet and the outlets, and a constant volume V. At
the macro scale the solution to this problem is given by Murray’s
Law [29,30], which was first derived using the Hagen–Poiseuille
Law to minimise the power required to sustain the flow of blood
through vessels. It has also since been shown to describe the water
transport though biological vessels in plants [31], and at the micro
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Fig. 7. The mass flow rate near the inlet of the channel varying with time, for each case. The solid lines are the full MD results, the dashed lines are the enhanced CFD results,
the dotted lines are the incomp. slip CFD results and the dot dashed lines are the no-slip CFD results. (a) step force, (b) oscillating gravity force with period T ¼ 0:22 ns, (c)
oscillating gravity force with period T ¼ 10:8 ns, and (d) oscillating gravity force with increasing period T ¼ 0:22! 10:8 ns. Note the statistical noise in the full MD results.

Table 1
Computational costs: the first four rows are for the full MD simulations, while the last row is the MD pre-simulation that is used to collect the data for the enhanced CFD.

CPUs Liquid molecules Wall molecules Time per MD time-step (s) Total computational time

Startup flow 24 69,264 19,677 0.68 16 h
Short oscillations 24 69,264 19,677 0.68 30 h
Long oscillations 24 69,264 19,677 0.68 48 days
Varying oscillations 24 69,264 19,677 0.68 48 days
MD pre-simulations 24 5073–6668 4160 0.14 4 days per liquid/solid combination

Fig. 8. The bifurcating channel domain used for the design optimisation. The width of the parent channel is h0; the width of the two daughter channels are h1.
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scale it has been used to optimally design MEMS devices with
rectangular or trapezoidal cross sections [32].

For a 2D two-level network, like the geometry in Fig. 8, Murray’s
Law is

h2
0 ¼

XN

j¼1

h2
N; ð8Þ
where h0 is the width of the inlet parent channel, and h1 to hN are
the widths of the outlet daughter channels. For a symmetric bifur-
cating channel with N ¼ 2 and h1 ¼ h2, the optimum ratio of chan-
nel widths is then given by

h2
0

2h2
1

¼ 1: ð9Þ
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The optimisation we perform, with the given constraints of constant
volume and fixed pressure difference, is a linear search on channel
width (equal increments) to find the maximum mass flow rate. We
choose a volume of 1100 nm3, a pressure difference of 10 MPa,
channel lengths l0 ¼ l1 ¼ 75 nm, a junction length lj ¼ 20 nm and
junction width, hj ¼ 4 nm. The volume V can be calculated as:

V ¼ h0l0 þ hjlj þ 2h1l1: ð10Þ

If this geometry was optimised using MD, each simulation would
take approximately 30 days, whereas each enhanced CFD sim-
ulation takes approximately 500 s to perform. Fig. 9 shows the
results from this optimisation with our enhanced CFD model used
on a micro-scale channel and on a nano-scale channel. We see that
for a micro scale channel, the optimum width occurs when

h2
0=2h2

1 ¼ 1: this is the expected result according to Murray’s Law.
At the nano-scale, however, we observe a significant deviation from
the standard Murray’s Law, which is now discussed.

A deviation from the standard Murray’s Law has been noted for
rarefied gases [33] but has not so far been demonstrated for a liq-
uid. To uncover the origin of this deviation we derive Murray’s Law
using Poiseuille’s equations with Navier slip at the walls, i.e.
uðhÞ ¼ uð�hÞ ¼ n du

dy where n is the slip length, and the velocity is

at a maximum at y ¼ 0 i.e. du
dy jy¼0 ¼ 0. The mass flow rate is then

_m ¼ 2q
3l

Dp
l

h3 1þ 3n
h

� �
; ð11Þ

where _m is the mass flow rate, q is the density, l is the dynamic vis-
cosity and Dp is the pressure difference between the inlet of the
parent channel and the outlet of the daughter channel. Murray’s
Law is found by minimising the power P required to maintain flow,
which for flow through a channel is

P ¼ _mDpþ 2bhl; ð12Þ

where b is a constant of proportionality. By eliminating Dp with Eq.
(11) in this equation and differentiating, we find that when the
power is minimised the mass flow rate is

_m ¼ kh2 ð1þ 3n=hÞ
ð1þ 2n=hÞ1=2 ; ð13Þ

where k ¼ 2=3
ffiffiffiffiffiffiffiffiffiffiffiffi
qb=l

p
. For a symmetric bifurcating channel, the

mass flow rate through the parent channel must equal the total
mass flow rate through the daughter channels, i.e. _m0 ¼ 2 _m1, there-
fore, the optimal ratio of channel widths becomes

h2
0

2h2
1

¼ ð1þ 3n=h1Þ
ð1þ 3n=h0Þ

ð1þ 2n=h0Þ1=2

ð1þ 2n=h1Þ1=2 : ð14Þ
0 0.5 1 1.5 2
0.96
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1
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1/2h2
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ṁ
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ṁ
o
p
t
)
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Murray’s
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Fig. 9. The normalised mass flow rate for different ratios of mother/daughter
channels widths for micro-scale channels (squares) where the dash-dotted line is
the expected optimum, and for nano-scale channels (circles) where the dashed line
is the expected optimum.
It is clear that when h0;h1 � n this becomes Eq. (9), as expected. It
can also be noted that when the flow becomes plug-like, i.e.

h0; h1 � n, this ratio becomes h2
0=2h2

1 ¼ 21=3.
We can now use Eqs. (10) and (14) to calculate the expected

value of h2
0=2h2

1. When comparing this to the optimum found by
the enhanced CFD we get excellent agreement, as highlighted in
Fig. 9. This shows that the slip at the walls is the important factor
in the deviation from the expected optimum. A CFD model that
includes an accurate model of the wall–fluid interaction is, there-
fore, potentially very important in the design of nano-scale devices.
5. Summary

We have shown that a CFD model enhanced with data from MD
pre-simulations is capable of making accurate predictions of
unsteady liquid flow along a converging–diverging channel that
has a width close to the expected continuum-fluid limit. This
enhanced CFD approach is far more accurate than conventional
CFD calculations, and significantly more computationally efficient
than full MD simulations.

We have also demonstrated the enhanced CFD approach
applied to a design optimisation problem: that of a bifurcating
nanofluidic network. The widths of channels in the network should
be optimised to maximise the mass flow rate through the network,
for a fixed pressure drop and network volume. We have shown that
slip at the nano-scale can have a very significant effect on the opti-
mum channel dimensions, and we have derived an analytical equa-
tion which corrects the well-known Murray’s Law. This is one of
many possible cases where nano-scale flow effects modify the
optimal design of nanofluidic systems when compared with their
macroscopic counterparts.
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