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Gene expression is an inherently stochastic process that depends on the structure of the biochemical regulatory
network in which the gene is embedded. Here we study the dynamical consequences of the interplay between
stochastic gene switching and the widespread negative feedback regulatory loop in a simple model of a
biochemical regulatory network. Using a simplified hybrid simulation approach, in which only the gene activation
is modeled stochastically, we find that stochasticity in gene switching by itself can induce pulses in the system,
providing also analytical insights into their origin. Furthermore, we find that this simple network is able to
reproduce both exponential and peaked distributions of gene active and inactive times similar to those that have
been observed experimentally. This simplified hybrid simulation approach also allows us to link these patterns
to the dynamics of the system for each gene state.
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I. INTRODUCTION

Cells need to provide an adapted response to external
stimuli, which requires the production of adequate proteins
following different temporal patterns. This is achieved through
biochemical networks in which a stimulus triggers a cascade of
reactions that eventually lead to the activation of transcription
factors, proteins that activate or repress the expression of
specific gene sets. Thus, the temporal regulation of gene
activity will be determined by the structure of the network
in which the gene is embedded [1]. A common regulatory
structure is the negative feedback loop, in which a transcription
factor activates the production of a protein that contributes to its
own inhibition. This motif regulates the activity of important
transcription factors such as NF-κB [2] and p53 [3] and has
been shown to give rise to pulses in the concentration of
the proteins of the network (see, e.g., [4,5]) as predicted by
mathematical models [6]. The role of this pulsed dynamics is
not fully understood though suggestions include stability and
reliability in protein production [7] and a role in determining
the cell fate [8].

Gene expression is an intrinsically noisy process [9] and
a simple model in which the gene state switches randomly
between active and inactive states has been proposed [10].
Such a model is able to fit experimental data of steady-state
distributions of gene expression levels in single cells [11].

*zambrano.samuel@hsr.it
†nacho.molina@ed.ac.uk

For the gene activity dynamics, this simple model predicts
exponential distributions of the gene active and inactive times.
However, recent experiments in vivo suggest that some genes
show instead peaked distributions [12–14]. These observations
can be reproduced using multistate gene models mirroring the
multiple steps of gene activation [15], but these distributions
could also arise from the interplay between the stochastic
gene activity and the structure of the regulatory network in
which the gene is embedded. Important analytical insights have
been gained into how such interplay shapes the steady-state
distribution of gene expression levels under quite general
contexts [16,17], but less is known about the role of this
interplay in the dynamics. Several insights have been gained
recently by showing the emergence of oscillations when a gene
is an autorepressor [18] and of noise-enhanced persistence
of biochemical species [19] and how stochasticity dephases
genetic oscillators [20]. A major obstacle in this context is the
difficulty of treating analytically the dynamics of the nonlinear
stochastic systems involved (often involving species with very
low copy numbers). For this reason, we are far from having a
complete picture of the type of regulation that emerges from
such interaction.

In this paper we provide further insights into this interplay
by describing the dynamics emerging in a simple network
with a stochastic gene switching and the common negative
feedback loop. In particular, we describe the dynamics and
the gene activity patterns that this kind of network produces
by using a simplified hybrid simulation approach, in which
only the gene switching is simulated as a stochastic process
while the remaining variables of the network are modeled
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through ordinary differential equations. Our simplified hybrid
simulation approach shows that stochastic gene switching is
responsible for most of the dynamical variability of the system
and that it leads to the emergence of pulses in the network,
although the deterministic simulation predicts a steady state.
Moreover, we show that even for our simple biochemical
network, distinct dynamical patterns of gene activity can arise,
reminiscent of those observed in a number of experiments
and how the simplified hybrid simulation approach allows us
to gain analytical insight into their origin. We discuss the
implications of our results in Sec. VI.

II. SIMPLE GENE CIRCUIT WITH NEGATIVE FEEDBACK

The model considered here is shown in Fig. 1(a). This model
adds a layer of regulation to the one proposed in Ref. [7] and
is a simplified version of the biochemical network of NF-
κB [21]. With this simple model we do not intend to provide a
detailed description of NF-κB oscillations, but instead gain an
understanding of the role of the interaction between stochastic
gene switching and the presence of negative feedback.

Our model consists of a gene that can be active G or inactive
Ḡ and an activator A that, similarly to NF-κB [21], can activate
the gene:

Ḡ + A
kon→ G + A. (1)

When the gene is active, the inhibitor protein I is produced
and we summarize transcription and translation as

G
kI→ G + I. (2)

As in the NF-κB biochemical network [21], this inhibitor
provides the negative feedback by both contributing to the
gene’s inactivation

G + I
koff→ Ḡ + I (3)

and forming a complex with A, A:I , that cannot activate
the gene any longer, a complex that can also dissociate
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FIG. 1. (Color online) Dynamics of a network with stochastic
gene switching and a negative feedback loop. (a) Model diagram
showing the activator A, the inhibitor I , and the gene that can be
active G or inactive Ḡ. (b) Stochastic simulation of a trajectory of
the system showing the free activator fraction A/Atot [blue (gray)],
the gene state G (step gray line), and the relative amount of inhibitor
I/Atot [orange (light gray)] displaying pulses. For the gene state, an
active time ton and an inactive time toff are displayed. Simulations were
performed with the parameters dC = 1.5 × 10−4 s−1, ka = 5.1 ×
10−6 s−1, kd = 1.4 × 10−3 s−1, dI = 2.8 × 10−4 s−1, kI = 11.2 s−1,
koff = 1.4 × 10−7 s−1, and kon = 5.8 × 10−7 s−1.

spontaneously. Thus,

A:I
ka�
kd

A + I. (4)

Finally we impose that the inhibitor undergoes degradation
both in the free form

I
dI→ ∅ (5)

and when it forms a complex with the activator, so

A:I
dC→ A. (6)

In what follows we use the same letters both for the names
of the biochemical species and for their copy numbers. For
the sake of simplicity we consider that we have only one copy
of the gene, so G + Ḡ = 1, and that the total amount of A

(free and bound to I ) is constant and equal to Atot, as for
NF-κB [21].

In Fig. 1(b) we show a stochastic trajectory of the system
obtained using the Gillespie algorithm [22]. It exhibits pulses
of the free activator A and the rest of variables, as observed
in different networks with negative feedback [6]. Due to the
simplifications behind the present model, it is not possible to
provide an estimation to some parameters (e.g., parameter kI

summarizes the many steps of the transcription and translation
process). Thus, the parameters used were obtained from the
slightly more complex deterministic model of Ref. [21] and
adjusted to obtain O(104) copies of each protein and inhibitor
half-life and activator intrapeak timing of the order of 1
h, the typical time scale of these biological oscillators [6].
Pulses are spiky as in certain models of oscillations of
NF-κB [6], but it will soon become clear that this is due
to the simplicity of our network. Furthermore, as we will
show in the following sections, the dynamics of the network
are qualitatively analogous independently of the parameters
considered, while distinct gene activity patterns arise when
varying the parameters up to two orders of magnitude.

III. SIMPLIFIED HYBRID SIMULATION

Stochastic simulations for large models containing non-
linearities can be computationally expensive. Under certain
assumptions of a high number of molecules and low noise
(see the Appendix), a Langevin equation [23], a more tractable
approach, can be used to approximate the stochastic dynamics,
although exact analytic results can only be obtained for linear
biochemical networks [24]. In the limit of a very large number
of molecules, when fluctuations can be neglected, ordinary
differential equations derived from mass-action kinetics are
traditionally used to describe the deterministic dynamics of
the system.

Both approaches are inadequate when species with low
copy numbers are present (in our case, G). To overcome this
problem, the so-called hybrid simulations, in which part of the
reactions are modeled by a Langevin equation [25] while the
rest are modeled as discrete stochastic processes, have been
proposed [26]. The exact criteria to decide which modeling
approach is appropriate for each reaction are provided in the
Appendix. Essentially, a biochemical reaction can only be
modeled using the Langevin equation if it is likely to occur
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in short time intervals [Eq. (A1)] and if it involves relatively
small changes in the copy numbers of the biochemical species
involved [Eq. (A2)]; in short, only if the considered species
can be approximated by continuous variables. The resulting
hybrid simulations (combining Langevin equations and dis-
crete stochastic processes) faithfully mimic the fully stochastic
simulations while significantly reducing the computation time.

In this context, a simplified hybrid simulation approach has
been becoming increasingly popular in order to simulate com-
plex models of cell signaling and gene expression [27–30]. In
practice, this simplified scheme essentially models as ordinary
differential equations the processes that should be modeled
as Langevin equations using a hybrid scheme (see [26] and
our Appendix) and the rest as discrete stochastic processes.
However, very little attention has been paid to the accuracy
of this kind of simulation. For this reason, we study here
the simple network proposed in Sec. II using this simplified
hybrid simulation approach, primarily to assess its validity.
More importantly, in this scheme only the gene activity is
simulated as a discrete stochastic process, so this approach
will allow us to to isolate and identify in a precise way the
role of stochastic gene activity in the dynamics. Furthermore,
using this approach we will be able to use ideas from dynamical
systems to gain insight into the dynamics of the system.

Hence, considering the reactions described in Sec. II, the
only variables whose evolution could be approximated by a
continuous Langevin equation in the hybrid scheme are A and
I (those with high copy number). Hence using a simplified
hybrid simulation approach, we describe their evolution using
the equations

dA

dt
= − kaAI + (kd + dC)(Atot − A), (7)

dI

dt
= − kaAI + kd (Atot − A) − dI I + kIG. (8)

This nonlinear dynamical system is driven by the stochastic
process of gene switching, which cannot be approximated
faithfully by a continuous variable, and given by reactions (1)
and (3), which we can summarize now as

Ḡ
konA(t)
�

koffI (t)
G, (9)

so the switching rates will depend on time through the
continuous variables A(t) and I (t). As we will see below,
the point of view provided by this scheme can help us gain an
understanding of the system’s dynamics.

For the gene state G we can write down the chemical master
equation

dP (G)

dt
= konAP (Ḡ) − koffIP (G). (10)

A simplified hybrid numerical simulation is performed using
a deterministic integrator for Eqs. (7) and (8) and switching
the value of G between G = 0 and 1 following the Gillespie
algorithm, as prescribed in Ref. [30]. For a fully deterministic
simulation of the model using mass-action kinetics it is enough
to add to Eqs. (7) and (8) the equation

dG

dt
= konAḠ − koffIG, (11)

which in the equilibrium ( dG
dt

≈ 0) leads to a Michaelis-
Menten-like equation for G [1]. In what follows we show how
the simplified hybrid simulation provides an insightful point
of view to characterize the dynamics arising in our simple
biochemical network.

IV. ROLE OF STOCHASTIC GENE ACTIVITY
IN THE DYNAMICS

In order to understand to what extent the simplified hybrid
simulation approach is able to capture the dynamics of the
network, in Fig. 2(a) we show the evolution in time of the free
activator A obtained for fully stochastic, simplified hybrid,
and deterministic simulations. We can observe that the pulses
obtained for the fully stochastic simulations and the simplified
hybrid simulations are very similar. Interestingly, we observe
that the deterministic simulations obtained by integrating
Eqs. (7), (8), and (11) lead to the convergence of the system
to a steady state. From this we conclude that stochastic gene
switching by itself can induce pulses in the network. Of course,
this does not imply that pulsed dynamics are always due to the
stochasticity in gene activation. However, our simple model
highlights the importance of such stochasticity in the global
dynamics arising in these systems. This is another example of
how stochasticity can induce pulses in contexts where deter-
ministic models predict steady states, as observed in models of
population dynamics [31] and excitable systems [32]. Contrary
to those examples, here we are not dealing with a Langevin
equation in which white noise can induce oscillations: It is
precisely the fact that gene switching cannot be approximated
as a reaction in a Langevin equations that makes pulses arise.

Our simulations also show that stochastic gene activity is re-
sponsible for most of the variability of the system. In Figs. 2(b)
and 2(c) we show the distributions of A and I , represented
by their probability density ρ, for stochastic and simplified
hybrid simulations, which are nearly indistinguishable. On the
other hand, by using a simple peak detection algorithm we can
detect the timing between two consecutive peaks T and their
amplitude Apeak. For these calculations we consider only peaks
of at least 10% of Atot, the order of magnitude that can be de-
tected in experiments of activator dynamics such as NF-κB [5].
The distributions of these magnitudes are shown in Figs. 2(d)
and 2(e), respectively, and are again nearly indistinguishable:
This confirms the crucial role of stochastic gene activity in the
dynamic variability of the system and the ability of simplified
hybrid simulation to mimic the fully stochastic simulations (in
drastically shorter computation times).

To obtain a wider perspective on how accurately the
simplified hybrid simulations can mimic the fully stochastic
simulations generated by the Gillespie algorithm, we per-
formed simplified hybrid and stochastic simulations of the
dynamics of our simple model, varying the parameters one
order of magnitude above and below the parameters used
above, and compared the difference in the distributions of
A, I , Apeak, and T . To do this, we binned each magnitude
to obtain discretized probability distributions from simplified
hybrid and stochastic simulated traces of 2000 h [PH (i) and
PS(i)], adding a pseoudocount α = 10−6 to avoid zeros in the
discrete probabilities. Finally, we used the Kullback-Leibler
divergence DKL [33] to quantify how much information is lost
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FIG. 2. (Color online) Stochastic gene switching is responsible
for most of the dynamic variability in the network. (a) Evolution in
time of the free activator A using fully stochastic [orange (light gray)]
and simplified hybrid [blue (gray)] simulations. Both display similar
pulses while the fully deterministic simulation (dashed line) remains
at a stable fixed point. Distribution of the values of (b) A and (c) I for
both the simplified hybrid [blue (gray)] and fully stochastic [orange
(light gray)] simulations of the biochemical network. Distribution of
(d) the amplitudes and (e) the periods of the pulses for the simplified
hybrid [blue (gray)] and fully stochastic [orange (light gray)]
models. The distribution of the activator and the pulse parameters
are very similar for the simplified hybrid and the fully stochastic
systems. The chosen parameter values are shown in the caption of
Fig. 1. (f) Box plot showing the Kullback-Leibler divergence DKL

between the distributions of the magnitudes considered obtained
from simplified hybrid simulations and fully stochastic simulations
for 1000 combinations of random parameters; the box represents the
25th, 50th, and 75th percentiles while the lines above and below
the box represent the 1st and 99th. Dots represent the DKL values
obtained for the parameter combination used in (a)–(e) and the 1000
additional parameter combinations were obtained by varying them
randomly up to one order of magnitude above and below those values.
The maximum DKL value is displayed as a horizontal dashed line.
Overall, for most parameter combinations DKL values are low.

when the simplified hybrid distribution is used to approximate
the stochastic distribution

DKL =
∑

i

PS(i) ln
PS(i)

PH (i)
.

The results in Fig. 2(f) show that for the majority of
the parameter combinations the DKL values obtained are
well below the maximum possible value [we found that it

0
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0 2000 4000 6000 8000 10000

I
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(A∗
0, I
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0 )

(A∗
1, I

∗
1 )

FIG. 3. (Color online) The three nullclines that can be associated
with the simplified hybrid model: the nullcline for dA

dt
= 0 (dashed

line) and the nullclines for dI

dt
= 0 with G = 1 (black line above)

and G = 0 (black line below). A trajectory of the simplified
hybrid model is also depicted [orange (light gray)]. There are two
intersections between these three curves (black diamonds); a simple
graphical analysis shows that these points are stable. Trajectories
of the simplified hybrid model jump between these two fixed
points. The chosen parameter values are shown in the caption of
Fig. 1.

is approximately ln(1/α), displayed in Fig. 2(f)] and for
the parameters giving the results shown in Figs. 2(a)–2(d)
the simplified hybrid simulations give a particularly good
approximation to the stochastic simulations. Overall then, we
have that simplified hybrid simulations faithfully reproduce
the dynamics of the system for a wide parameter range.

Although the dynamics of the network might depend
strongly on the parameters considered, it is possible to make
use of the point of view that our simplified hybrid simulation
provides to show that the dynamics will follow qualitatively
similar dynamics independently of the parameters considered.
In particular, it is possible to understand the pulsed dynamics
of our network in terms of the nullclines of the system given by
Eqs. (7) and (8). Contrary to what we would have for a simple
two-dimensional flow, here there are three of such nullclines:
the one that we obtain by setting dA

dt
= 0, I = fA(A), and the

two nullclines that we obtain by setting dI
dt

= 0 for G = 0 and
1, denoted by I = fI,0(A) and I = fI,1(A), respectively. The
nullclines and a trajectory for our simplified hybrid model are
depicted in Fig. 3. It is easy to see that, irrespectively of the
parameter values, I = fA(A) intersects at exactly one point
(A∗

0,I
∗
0 ) with I = fI,0(A) and at exactly one point (A∗

1,I
∗
1 )

with I = fI,1(A) (see Fig. 3). Furthermore, an analysis of the
direction of the flow determined for each gene state shows
that these two fixed points are necessarily stable. From this
simple analysis we infer that the pulses can be understood as
a series of jumps between the fixed points obtained for G = 0
and 1, as shown in Fig. 3, that will take place irrespectively
of the parameters used in our network. However, as we will
show in the following section, the parameters of the system
have a far less trivial influence on the switching between
these two fixed points, giving rise to different patterns of gene
activation.
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V. GENE ACTIVITY TIME DISTRIBUTIONS

In this section we focus on the patterns of gene activity
arising from our simple model. Different experimental studies
in which gene expression can be monitored in real time (either
directly or by monitoring the expression of a short-lived
protein or mRNA in time) have shown that gene active and
inactive times can have different distributions. In particular,
it has been observed that the gene active and inactive times
can either be exponentially distributed or be described by
peaked distributions [12–14]. These distributions are important
signatures of the underlying stochastic process that drives gene
activity. For instance, peaked distributions cannot be obtained
from a simple stochastic switching process. To recapitulate the
experimental observation, gene cycle models with multiple
gene states have been proposed [12–14]. However, negative
regulatory feedback loops could be an alternative mechanistic
explanation to account for the observed gene dynamics.

To explore the gene active and inactive time distributions
that our simple model can generate, we studied the dynamics
of the system in parameter space by varying randomly each
of the parameters one order of magnitude above and below
the values used previously, given in the caption of Fig. 1.
For each parameter combination, we simulated the dynamics
and obtained the histograms of the active and inactive times
ton and toff [see Fig. 1(b)]. We grouped them in ten clusters
according to their coefficient of variation (CV), i.e., the
standard deviation divided by the mean. We found that ton

and toff can be distributed following quite distinct patterns:
We observed distributions with shapes that range from an
exponential-like shape, with a global maximum at zero and
high CV, to a peaked �-like shape, with a global maximum
close to the mean and low CV [see Figs. 4(a) and 4(b)].
Note that the Kullback-Leibler divergence between the gene
activity distributions obtained from simplified hybrid and fully
stochastic simulations is very low for the majority of the
parameters combinations as shown in Fig. 2(f), indicating
that our simplified hybrid approach approximates well the
gene dynamics. Most importantly our simple system is able to
recapitulate the experimentally observed distributions showing
that negative feedback can give rise to peaked distributions
and thus can be an alternative to the multistep process
models proposed to explain the distributions observed in
experiments [12,14].

To gain further insight into how the parameters shape the
gene activity patterns, we examined the distributions of param-
eter values that produce exponential vs peaked distributions.
Figure 4(c) shows that the parameters that discriminate best the
two regimes are the association and dissociation rates ka and
kd , the transcription rate kI , and the gene switching rates kon

and koff . Interestingly, the peaked distributions emerged when
the formation of the complex is favored (ka,exp < ka,peaked and
kd,exp > kd,peaked), in other words, when the negative feedback
is stronger. On the other hand, the switching dynamics of
the gene is slower (kon,exp > kon,peaked and koff,exp > koff,peaked)
for peaked distributions, indicating the importance of the
interaction of the time scales at which the promoter and the
negative feedback act in the gene activity patterns. Finally,
peaked distributions emerge when the transcription of the
inhibitor is more bursty, i.e., the number of molecules that
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FIG. 4. (Color online) Distinct gene activity patterns are repro-
duced with different model parameters. Distributions of (a) the gene
active times ton and (b) the inactive times toff with the highest and
the lowest CVs [average in blue (gray) and orange (light gray),
respectively] obtained by varying randomly the parameters given
in the caption of Fig. 1 one order of magnitude above or below their
value. (c) Box plot showing the distributions of the ratio between the
parameter values and the reference values shown in the caption of
Fig. 1, producing exponential distributions [blue (gray)] and peaked
distributions [orange (light gray)]; the box represents the 25th, 50th,
and 75th percentiles while the lines above and below the box represent
the 1st and 99th. Distributions of the eigenvalues with larger absolute
value λfast of (d) the fixed point (A∗

0,I
∗
0 ) (obtained when the gene is

inactive) and (e) the fixed point (A∗
1,I

∗
1 ) (obtained when the gene is

active), producing exponential distributions [blue (gray)] and peaked
distributions [orange (light gray)].

are produced during the active periods is larger (kI,exp <

kI,peaked) and the inactive periods are longer with respect to the
degradation rate of the inhibitor (kon,exp > kon,peaked) making
the transcription process more noisy and discontinuous.

Due to the high dimension of the parameter space, it is
not feasible to predict the regions for which the different
gene activity patterns are produced. However, our simplified
hybrid approach also enable us to investigate the origin of these
patterns using tools from dynamical systems. For the sake of
simplicity we focus on the distribution of the active times ton.
For our system, if at time t = 0 the system is in state G, the
probability of remaining in state G can be expressed in terms of
the conditional probability PG(t |V0) given the initial condition
V0 = (A0,I0) and the probability PḠ→G(V0) of finding the
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system at V0 at the initial gene transition Ḡ → G as

PG(t) =
∫

dV0PG(t |V0)PḠ→G(V0), (12)

where the conditional probability is

PG(t |V0) = koffI (t,V0) exp

(
−

∫ t

0
koffI (τ,V0)dτ

)
. (13)

Notice that if the overall switching rate is constant ( dkoffI (t,V0)
dt

=
0), as in the random switching model [11], an exponential prob-
ability distribution for the gene inactive time will be recovered.
Instead, we find that in some cases the probability distribution
is nonexponential. In this situation we would expect that the
conditional distributions PG(t |V0) that contribute the most
to the integral in Eq. (12) should have a relative maximum
at tmax �= 0. Using Eq. (13), we can see that such a relative
maximum would satisfy

dI (t,V0)

dt

∣∣∣∣
tmax

= koff[I (tmax,V0)]2. (14)

Solving this equation requires the explicit form of I (t,V0).
However, we know that I (t,V0) → I ∗

1 and dI (t,V0)
dt

→ 0 as
t → ∞. Hence, Eq. (14) is the equation of the intersection of
a monotonically decreasing function dI (t,V0)

dt
[trajectories are

always below the nullcline I = fI,1(A) and dI (t,V0)
dt

> 0; see
Fig. 3] and a monotonically increasing function koff[I (t,V0)]2

(because the amount of inhibitor grows when G = 1; see again
Fig. 3) at the point t = tmax.

It is possible to identify conditions allowing the fulfillment
of Eq. (14) without knowing the explicit form I (t,V0). Our
previous nullcline analysis shows that (A∗

1,I
∗
1 ) is a stable fixed

point with negative eigenvalues with absolute values λfast >

λslow. Considering all this, we can roughly approximate

I (t,V0) ≈ I ∗
1 + (I0 − I ∗

1 )(cfaste
−λfastt + cslowe−λslowt ),

where cfast > 0, cslow > 0, and cfast + cslow = 1. For short times
(compared with 1/λslow) the derivative dI (t,V0)

dt
scales with λfast.

Hence the crossing determined by Eq. (14), which is needed
to have a peaked distribution, will only be possible if λfast is
sufficiently big (and koff is sufficiently small). It is easy to
show that the same argument leads to an equivalent result for
the distribution of the inactive times toff, where λfast is the
corresponding fast eigenvalue at the fixed point with G = 0.

We provide a numerical confirmation of the validity of
this argument in Figs. 4(c) and 4(d), where we show that the
values of λfast for the corresponding fixed points (for G = 0
and 1) are able to discriminate between the two different gene
activity patterns, since the larger the eigenvalue is, the more
likely that toff and ton are exponentially distributed. Note also
that, according to Eq. (14) and our reasoning above, peaked
distributions are more likely to occur for low koff values,
as confirmed numerically in Fig. 4(c). Thus, the perspective
provided by our simplified hybrid simulations, by which all
the reactions of the network can be approximated to evolve
in a deterministic way while the gene switches stochastically,
proves also to be a valuable tool to gain insight into the origin
of the patterns of gene activity observed.

VI. CONCLUSION

It is becoming evident that pulsed dynamics is widespread
in genetic circuits [34]. Our simple model shows that the
interplay of negative feedback and stochastic gene switching
gives rise to pulsed dynamics even if the fully deterministic
simulations predict convergence to a steady state. In particular,
the use of a simplified hybrid simulation scheme has allowed
us to show that the stochasticity of gene activity has a drastic
influence on the dynamics arising in this simple biochemical
network and it can be responsible for most of the dynamical
variability of the system. We believe that some of the ideas
put forth in this paper based on simplified hybrid simulations,
which allow one to combine notions of stochastic processes
with those of dynamical systems, can help to gain insight into
the dynamics of more complex genetic circuits. Furthermore,
we have found that, in spite of the simplicity of the dynamics
arising, our network can display different gene activity pat-
terns. The negative feedback plays a key role in this fine tempo-
ral control: Without it, the dynamics of gene activation would
be purely random. Our results imply that in experiments in
which the gene activity patterns are found to be peaked [12–14]
a negative feedback loop might be at work. We think that the
increasing availability of experimental data will allow us to
delineate the contribution to the gene activity dynamics by both
the multistep sequential stochastic process of gene activation
and the constraints imposed by the structure of the regulatory
biochemical network. As in our work, the use of simplified hy-
brid simulations can help to provide further analytical insight.
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APPENDIX: HYBRID SIMULATIONS

To perform hybrid simulations of a system of biochemical
reactions one essentially has to decide which processes can be
approximated by the Langevin equation (and hence the number
of copies can be well approximated by a continuous variable)
and which have to be simulated as a discrete stochastic process
(of species whose number can only be approximated by dis-
crete variables) using the Gillespie algorithm [22]. The criteria
can be summarized as follows [26]. Consider a system of N

biochemical species with copy numbers {X1,X2, . . . ,XN } that
interact through M biochemical reactions with probabilistic
rates aj , so the probability of the j th reaction taking place in
dt is ajdt . Let νji be the change in species i due to the j th bio-
chemical reaction. Then the reactions that can be numerically
simulated as a Langevin equation with an integration step 	t

should satisfy the following conditions [26]:

aj (t)	t > α � 1 (A1)
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and

Xi(t) > β|νji |. (A2)

The parameters α and β define how fine grained the vari-
ables have to be to appear as continuous valued; in the limit in
which they tend to infinity, the approximation to the Langevin
equation becomes exact. Condition (A1) means that approxi-
mation works well for reactions that take place many times in
	t , while condition (A2) means that the change in the reactants
of the reaction considered should be relatively small if Xi has
to be considered a continuous variable. Approximations to the
Langevin equation work reasonably well for values of α and β

close to 100 [26]. It is clear that for our simple genetic circuit

and for any circuit involving a gene with just two possible
states, the switching reactions can never satisfy Eq. (A2) for a
β close to 100, so the approximation to the Langevin equation
has to be excluded and gene switchings always have to be
described by a master equation and numerically simulated
using the Gillespie algorithm [25]. The remaining processes
might then be modeled using Langevin equations. In the
simplified hybrid approach that we exploit in this paper and has
been used in a number of works [27–30] those processes are
simply modeled using ordinary differential equations, ignoring
then the fluctuations. We find that for our simple model this
simplified hybrid approach provides a good approximation
of the dynamics of the fully stochastic simulations obtained
using the Gillespie algorithm [25] in a wide parameter
range.
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