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ABSTRACT 23 

We have determined experimentally the hydrous phase relations and trace element 24 

partitioning behaviour of ocean floor basalt protoliths at pressures and temperatures (3 GPa, 25 

750-1000°C) relevant to melting in subduction zones. To avoid potential complexities 26 

associated with trace element doping of starting materials we have used natural, pristine 27 

mid-ocean ridge basalt (MORB from Kolbeinsey Ridge) and altered oceanic crust (AOC 28 

from DSDP leg 46, ~20°N Atlantic). Approximately 15 wt % water was added to starting 29 

materials to simulate fluid fluxing from dehydrating serpentinite underlying the oceanic 30 

crust. The vapour-saturated solidus is sensitive to basalt K2O content, decreasing from 31 

825±25°C in MORB (~0.04 wt % K2O) to ≈750°C in AOC (~0.25 wt % K2O). Textural 32 

evidence indicates that near-solidus fluids are sub-critical in nature. The residual solid 33 

assemblage in both MORB and AOC experiments is dominated by garnet and 34 

clinopyroxene, with accessory kyanite, epidote, Fe-Ti oxide and rutile (plus quartz/coesite 35 

and apatite below the solidus). Trace element analyses of quenched silica-rich melts show a 36 

strong temperature dependence of key trace elements. In contrast to the trace element-doped 37 

starting materials of previous studies, we do not observe residual allanite. Instead abundant 38 

residual epidote provides the host for thorium and light rare earth elements (LREE), 39 

preventing LREE from being released (ΣLREE<3 ppm at 750-900°C). Elevated Ba/Th 40 

ratios, characteristic of many arc basalts, are found to be generated within a narrow 41 

temperature field above the breakdown temperature of phengite, but below exhaustion of 42 

epidote. Melts with Ba/Th >1500 and La/SmPUM (PUM=primitive upper mantle) ~1, most 43 

closely matching the geochemical signal of arc lavas worldwide, were generated from AOC 44 

at 800-850°C. 45 

46 
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INTRODUCTION 47 

Volcanic arc basalts are widely considered to form from a mantle wedge source region 48 

comprising a ternary mixture of hydrous melt from subducted sediment, hydrous fluid (or 49 

melt) from (altered) mafic oceanic crust and depleted mantle peridotite (e.g. Elliott, 2003). 50 

The distinct trace element chemistry of basalts from different arcs can be ascribed to 51 

differing proportions of these three components, reflecting a variation both in inputs to the 52 

subduction system and in its thermal structure. Consequently the phase relations of the 53 

different subducted components are important to determining under what conditions fluids 54 

and melts are generated beneath arcs. If the pressure-temperature dependence of the stability 55 

of key residual phases in subducted lithologies can be quantified then potentially the trace 56 

element chemistry of arc basalts can be used to infer slab-top temperatures beneath volcanic 57 

arcs (e.g. Cooper et al., 2012; Hermann & Spandler, 2008; Klimm et al., 2008; Plank et al., 58 

2009). The primary objective of this study is to explore the trace element chemistry of 59 

hydrous partial melts associated with ocean floor basalts under subduction zone conditions. 60 

Subducted slabs contain H2O in the form of hydrous minerals, such as amphibole, 61 

epidote, micas and serpentine. The breakdown of these minerals during subduction zone 62 

metamorphism leads to progressive dehydration of the slab, releasing hydrous fluids into the 63 

overlying mantle wedge (e.g. Schmidt & Poli, 1998). If slab temperatures are high enough, 64 

as suggested by recent models (e.g. Syracuse et al., 2010; van Keken et al., 2002), 65 

dehydration melting of the slab will occur, giving rise to hydrous, silica-rich melts that may 66 

similarly ascend into the wedge. Thus both fluid and melt may be extracted from the slab 67 

depending on the subduction zone geotherm. If each slab lithology behaves as a closed 68 

system during subduction zone metamorphism, the only H2O available in subducted basalt is 69 
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that structurally bound in hydrous minerals in the basalt itself. Dehydration melting of such 70 

basalt occurs at relatively high temperatures that may only be achieved where the subducted 71 

crust is young and therefore hot. Consequently, there is a long-standing debate as to whether 72 

sub-solidus fluids or supra-solidus hydrous melts are the primary agent of slab-wedge 73 

chemical transfer in subduction zones. Such a simple dichotomy is complicated by the fact 74 

that at sufficiently high pressures silicate melts and hydrous fluids are completely miscible 75 

(above the so-called second critical endpoint) rendering moot any distinction between fluid 76 

and melt. Moreover, the dehydration of serpentine in ultramafic portions of the slab (Ulmer 77 

& Trommsdorff, 1995) may flux overlying basaltic and sedimentary portions with H2O, such 78 

that dehydration melting of subducted basalt may not be the only melt-producing 79 

mechanism. More in-depth summaries of subduction zone processes can be found in the 80 

recent reviews of Spandler & Pirard (2013) and Schmidt & Poli (2014). Our experiments 81 

were designed explicitly to test this flux-melting mechanism by using starting materials to 82 

which H2O contents exceeded those that could be contained within hydrous minerals alone. 83 

In that sense our experiments build upon those of Kessel et al. (2005a, 2005b), Klimm et al. 84 

(2008), Prouteau et al. (1999, 2001), and Ryabchikov et al. (1996).  85 

In order to replicate experimentally the phase relations of hydrous ocean floor basalts 86 

it is important to take account of the chemical effects of alteration that occur on the sea floor. 87 

Subducted basalts range in composition from pristine mid-ocean ridge basalts (hereafter 88 

“MORB”), unmodified since eruption, to hydrothermally modified, altered oceanic crust 89 

(hereafter “AOC”) that characterises the upper pillow lavas and sheeted dykes (e.g. Alt et al., 90 

1989). The nature of sea-floor alteration depends on the temperature of hydrothermal 91 

interaction (e.g. Humphris & Thompson, 1978; Mottl, 1983; Thompson, 1983) and, although 92 
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its chemical signature is spatially variable, both laterally and vertically (e.g. Kelley et al., 93 

2003), the key chemical changes relative to MORB are an overall rise in alkalis and the 94 

volatile components sulphur, water and carbon dioxide, and to a lesser extent uranium (e.g. 95 

Bach et al., 2003; Gillis & Robinson, 1988; Kelley et al., 2003; Melson, 1968; Mottl, 1983; 96 

Seyfried et al., 1988; Staudigel & Plank, 1996; Staudigel et al., 1981a, 1981b). Previous 97 

experimental studies have attempted to capture this chemical variability by using either 98 

synthetic MORB (e.g. K-free MORB: Kessel et al., 2005a, 2005b; KCMASH: Hermann & 99 

Green, 2001; anhydrous MORB: Yasuda et al., 1994; altered MORB: Klimm et al., 2008; 100 

Ryabchikov et al., 1996) or metamorphosed material (e.g. amphibolite: Kogiso et al., 1997; 101 

Rapp & Watson, 1995; synthetic eclogite: Klemme et al., 2002; Pertermann & Hirschmann, 102 

2003). In several cases the starting materials were doped with trace elements to facilitate 103 

trace element analysis of experimental run products and enhance the stability of accessory 104 

phases (e.g. Klimm et al., 2008). The first aim of our study was to remove the uncertainties 105 

inherent in the use of synthetic and/or trace element-doped starting samples by using natural 106 

ocean floor basalts. The second aim was to explore changes in phase petrology and trace 107 

element partitioning that arises from chemical differences between MORB and AOC.  108 

 109 

METHODS  110 

Starting Materials 111 

Sample materials used for this study were splits of rock powder that were used for other 112 

geochemical studies. The first sample (“MORB”) is a pristine MORB tholeiite (37DS-1) 113 

from the Kolbeinsey Ridge, retrieved from 67.08°N, 18.75°W between the Tjörnes and Spar 114 

Fracture Zones, at a depth of 170 m (Devey et al., 1994). This sample is extremely fresh and 115 
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unaltered, though slightly lower in TiO2 and more depleted compared to average MORB 116 

given in Hofmann (1988, Table 1). Dredged basalts from this site are described as being 117 

mostly glassy with less than 10% (modal) phenocrysts (olivine and minor plagioclase and 118 

spinel for 37DS-1). The fO2 of MORB is generally around the QFM buffer, amounting to an 119 

average Fe
3+

/Fe
tot

 ≈ 0.16 (e.g. Cottrell & Kelley, 2011). 120 

The second sample (“AOC”) is an altered basalt (15-3, A3, 83-94 cm) from DSDP 121 

leg 46 Hole 396B near the Mid-Atlantic Ridge at a latitude of 23°N and a depth of ~240 m. 122 

This particular horizon is not described in the ODP report, but comes from a massive lava 123 

stream of subunit A3. Other samples from this subunit are described as porphyritic basalts 124 

(approx. 15-25% phenocrysts in leg 46 basalts), containing olivine and plagioclase 125 

phenocrysts with Ca-rich clinopyroxene in the groundmass and spinel. The massive lava is 126 

similar to overlying pillow basalts which can show secondary palagonite, Fe-Mn oxide, 127 

smectite, mica, zeolite and carbonate (e.g. Dungan et al., 1979; Sato et al., 1979). The 128 

seafloor-metasomatised parts of the lava unit exhibit elevated concentrations of H2O (≈ 2 wt 129 

%), K2O (≈ 0.3 wt %), Fe2O3 (Fe
3+

/Fe
tot

 ≈ 0.3-0.5; fO2 > QFM), as well as some other 130 

elements (e.g. S, Rb) (e.g. Dungan et al., 1979). Although carbon is also commonly enriched 131 

in basalts during sea floor alteration, we do not find evidence for significant amounts of CO2 132 

in our selected samples (a carbonate phase would be expected at least in the sub-solidus 133 

experiment, e.g. Molina & Poli, 2000). 134 

In Table 1, we compare the major and trace element composition of our starting 135 

materials to average MORB (Hofmann, 1988) and AOC (Kelley et al., 2003), as well as to 136 

some other experimental starting materials to which we later compare our results. A 137 

significant contrast between both starting material compositions is the low K2O content of 138 
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MORB (roughly comparable to Kessel et al. 2005b) versus the order of magnitude higher 139 

K2O content of AOC (roughly comparable to that reported by Green & Adam, 2003 and 140 

Klimm et al., 2008). Other differences are marked by elevated Na2O and TiO2, as well as 141 

reduced MgO contents in the AOC sample.   142 

 143 

Experimental Techniques 144 

Both starting materials were repeatedly ground with a mortar and pestle and then dried to 145 

produce a homogeneous powder. Distilled water (approx. 1.8 µl) was injected into acid-146 

cleaned and annealed Au (T<1000°C) or Au80Pd20 (T≥1000°C) capsules using a Hamilton 147 

microsyringe (5 µl). Inaccuracies in injecting small quantities of water are compensated by 148 

adjusting the amount of rock powder that is added afterwards such that final H2O contents 149 

were around 15 wt %. The capsules were welded shut using a PUK microwelder. The 150 

negligible heating of the welder ensures that H2O is retained in the capsules, as verified by 151 

weighing the water-bearing capsules before and after welding. The experimental cell 152 

consisted of inner spacers of crushable alumina, a graphite furnace, outer sleeve of salt and 153 

Pyrex, and a W95/Re5-W75/Re25 (Type “D”), alumina-sheathed axial thermocouple. The 154 

friction coefficient for this assembly is 3% (McDade et al., 2002). No account was taken of 155 

any pressure effect on thermocouple e.m.f.. Experiments were run in ½-inch, end-loaded 156 

piston-cylinder apparatus at the University of Bristol using the ‘hot-piston-in’ method. 157 

Experiments were conducted at a pressure (P) of 3 GPa; experimental temperatures (T) 158 

ranged between 750-1000
°
C. The pressure was selected to lie close to the average depth of 159 

the Wadati-Benioff zone worldwide (≈105 km, Syracuse & Abers, 2006). Temperatures 160 

were selected to bracket the solidus and are in rough agreement with recent thermal models 161 
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of slab-top temperatures beneath arcs (e.g. Cooper et al., 2012; Syracuse et al., 2010; van 162 

Keken et al., 2002). Run durations were 2 to 7 days, in inverse proportion to temperature. 163 

Supra-liquidus runs were carried out at 1.5 GPa and ≥1325°C to glass both starting materials 164 

for analysis. Runs were quenched by turning off the power.  165 

One experiment was repeated at ETH Zürich after the original showed signs of 166 

disequilibrium (AOC 750°C run, lack of garnet). The same method and furnace assembly 167 

were used, but with a different thermocouple to Bristol (Pt94/Rh6-Pt70/Rh30; Type “B”). Most 168 

importantly, this run was seeded with 2 wt % of gem quality garnet (composition ≈ 169 

Py56Alm37Gross1Spess1Andr5; < 7 µm fraction).  170 

No attempt was made to control or monitor fO2. Different pressure-cell assemblies 171 

can lead to variable fO2 conditions in experiments  (e.g., Truckenbrodt et al., 1997), despite 172 

the use of a graphite furnace. For our assembly, in-house estimates of the fO2 in Bristol lie in 173 

the range NNO+2(±1) for comparable P-T-time conditions. Conversely, if negligible water is 174 

lost to the assembly, and no iron is lost to the noble metal capsule, the fO2 is simply a 175 

function of the initial Fe
3+

/Fe
tot

 (e.g. Kagi et al., 2005). In general, we find that the calculated 176 

ferric iron components in MORB and AOC runs are systematically different, which suggests 177 

that the fO2 is at least partly controlled by initially different Fe
2+

/Fe
3+

. Since we cannot 178 

exclude that the initial fO2 was modified during the experimental runs, we consider the initial 179 

bulk Fe
3+

/Fe
tot

 defines a lower fO2 limit (~QFM for MORB, >QFM for AOC, discussed 180 

above), and NNO+2(±1) an upper limit. 181 

 182 

Analytical Techniques 183 
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Carbon-coated, polished run products were imaged using a Hitachi S-3500N SEM. Major 184 

element electron microprobe analysis (EMPA) was performed in Bristol on a five-185 

spectrometer Cameca SX100, with 15 kV acceleration voltage and 15 nA sample current. 186 

The 750°C repeat experiment was measured at ETH on a five-spectrometer JEOL 8200 187 

Superprobe, using similar conditions. A focused electron beam was used for minerals; for 188 

glasses, a defocused beam, and reduced sample current (4 nA) were used in order to reduce 189 

Na loss, with Na being counted first for 5 seconds only. Due to size issues, a focussed beam 190 

was applied for the quantification of “fish egg” textured spherules (see below), which are 191 

also glassy in nature. These analyses thus likely suffer from loss of volatile elements such as 192 

Na2O, and concomitant passive enrichment in other major elements.  193 

 SIMS analysis of trace elements in experimental glasses was performed at the NERC 194 

facility at the University of Edinburgh using a Cameca IMS-4f ion microprobe. The 195 

following settings were applied: primary beam of 14.5 kV O
-
 ions; 5 nA beam current: ~15 196 

µm diameter beam. NIST SRM 610 glass (Pearce et al. 1997) was used to calibrate relative 197 

ion yields; all data were ratioed to Si as determined by EMPA. A 75±20 V energy filter was 198 

applied to positive secondary ions accelerated at 4.5 keV to reduce transmission of molecular 199 

ions. Subsurface inclusions were monitored in a count-rate versus time diagram and 200 

excluded from the averaging procedure. Molecular interferences were removed by 201 

conventional peak-stripping using in-house ION6 software. Matrix-dependent ion-yield 202 

differences between the calibrant (SRM 610) and natural glasses were evaluated by 203 

measuring different standards (MPI DING glasses: STHS, T1, ATHO; USGS glasses: GSD, 204 

BCR, BIR; standard values are taken from GeoRem: http://georem.mpch-mainz.gwdg.de) 205 

three times each over 4 days. Calculated Pearson correlation coefficients of calibration 206 
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curves obtained from these standards are 0.97 or better (see Supplementary Data file 1), 207 

despite the slope of the correlation being offset from unity, similar to what was found by 208 

Skora & Bundy (2012). The corrected bulk-rock data measured on the supra-solidus glasses 209 

agree well with trace element data given in Devey et al. (1994) for the MORB sample, and 210 

average Leg46, 396B-#3A basalts for the AOC sample (Bougault & Cambon, 1979; Dungan 211 

et al., 1979; Emmermann & Puchelt, 1979) (Table 1).  212 

Trace elements in glasses from the repeat experiment (AOC 750°C) were measured 213 

by laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) at ETH 214 

Zürich, using a Resonetics excimer laser (193 nm) coupled to a Thermo Element 2 ICP-MS. 215 

The following settings were applied: spot size = 30 µm; frequency = 5 Hz; fluency = 3.5 216 

J/cm
2
; acquisition time = 30 s (blank) & 40 s (peak); standards were NIST SRM 612 217 

(external), Ca (internal), GSD-1G (secondary). Data were reduced using the Sills software 218 

(Guillong et al., 2008), and mineral inclusions were excluded from the glass data via 219 

inspection of a count-rate versus time diagram.  220 

To verify the consistency of the SIMS and LA-ICP-MS method we re-analysed all 221 

AOC experiments by LA-ICP-MS. There is general agreement between both datasets to 222 

mostly better than ±20% except for elements with low overall abundances (<0.1 ppm). A 223 

comparison of SIMS and LA-ICP-MS analyses for the supra-liquidus runs is given in 224 

Supplementary Data file 1. In 800-900°C runs where melt segregation was incomplete the 225 

LA-ICP-MS technique encountered problems with numerous sub-surface inclusions. We 226 

therefore prefer to report SIMS data wherever possible. Careful inspection of SIMS and LA-227 

ICP-MS data further suggested a minor surface contamination of Ba from sample 228 

preparation. Due to the vesicular nature of the glasses, surface contamination can penetrate 229 
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into the uppermost few µm, which is beyond the sputtering depth of SIMS. For this reason 230 

we report LA-ICP-MS Ba concentrations instead, given that the latter method integrates the 231 

signal from a much greater depth (~20 µm).    232 

 233 

RESULTS 234 

Phase Relations 235 

All experiments but one (Bristol AOC run at 750°C, no garnet) produced an eclogitic 236 

residual assemblage (garnet, omphacitic clinopyroxene) along with some minor and 237 

accessory phases (e.g. kyanite, epidote, rutile, Fe-Ti oxide). Due to the water-rich nature of 238 

these experiments, all run products contain abundant glass (quenched, supra-solidus melt) 239 

that often exhibit evidence for the presence of a co-existing vapour phase in the form of large 240 

vapour bubbles. These are sometimes decorated with “fish egg” textured spherules, thought 241 

to represent the quenched silicate fraction of a vapour phase rich in dissolved silicates (c.f. 242 

Adam et al., 1997, discussed below in more detail). Melt/fluid segregation towards the top of 243 

the capsule occurred in most runs. All phase proportions (Fig. 1 and Table 2) were 244 

determined by least squares regression for average compositions of major phases only, 245 

recalculated on an anhydrous basis. Water is re-integrated into the mass balance at a later 246 

stage (e.g. Klimm et al., 2008). Note that due to the presence of two immiscible fluids 247 

(hydrous melt and siliceous vapour), we cannot calculate the H2O content of the melt phase, 248 

because the fraction of the vapour phase is unconstrained. Thus the calculated liquid fraction 249 

in Table 2 represents the bulk liquid (melt+vapour), and not just the melt fraction.  250 

Mineral textures and phase petrology vary slightly between MORB and AOC run 251 

products. Selected SEM images are given in Fig. 2. In general, MORB experiments at 800-252 

Page 11 of 60

http://www.petrology.oupjournals.org/

Manuscript submitted to Journal of Petrology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

900°C contain phases that tend to be relatively fine-grained (5-20 µm diameter). Garnets are 253 

inclusion-poor and chemically homogenous when compared to many other experimental 254 

studies. At 1000°C, in contrast, garnets are relatively coarse grained (20-40 µm), inclusion-255 

rich and zoned.  256 

The sub-solidus MORB experiment (800°C) contains garnet, clinopyroxene, kyanite, 257 

epidote, quartz/coesite, rutile, and abundant vapour (no melt). Neither apatite nor phengite 258 

was observed due to low bulk K2O and P2O5 respectively (Table 1). Glass and additional 259 

garnet replace quartz/coesite, kyanite and some clinoyproxene in the 850°C experiment. 260 

Iron-Ti oxide also appears above the solidus. Importantly, epidote remains present above the 261 

solidus and does not change in composition to allanite (REE-rich epidote-group mineral) as 262 

observed in the doped experiments of Klimm et al. (2008). Glasses at 850-900°C exhibit two 263 

distinct types of vesicles: microvesicles (~sub- to 1 µm) and large (~10-100 µm), irregular 264 

vesicles that may or may not contain “fish eggs.” Microvesicles are common in quenched 265 

glasses in water-rich experiments (e.g. Klimm et al., 2008) and are typically ascribed to the 266 

fact that the maximum amount of water that can be quenched into room temperature glasses 267 

is only 8-10 wt.% (e.g. McMillan & Holloway, 1987), whereas the solubility of water in 268 

melts at run conditions is significantly higher (>35 wt % at P ≥ 4 GPa, e.g. Kessel et al., 269 

2005b). The second, larger set of vesicles is thought to represent a siliceous vapour phase 270 

that co-existed with melt at run conditions, exsolving the silicate fraction upon quench to 271 

form “fish eggs.” At 1000°C epidote and rutile melted out, but a variety of quench crystals 272 

(phengite and other, unidentified, very small phases) are present. In addition, there is no 273 

textural evidence for an additional vapour phase at 1000°C.   274 
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Major phases in AOC run products at 800-1000°C are typically much coarser-grained 275 

(20-80 µm). Minor phases (e.g. rutile, etc.) are fine-grained (5-20 µm). The coarse-grained 276 

garnets are often inclusion-rich, and exhibit typical growth zoning. In contrast, the AOC 277 

750°C repeat experiment exhibits many small garnets due to the presence of garnet seeds in 278 

this run (Fig. 2). In clinopyroxenes, we find that omphacitic rims often overgrow smaller, 279 

Na-poor cores, which are likely magmatic relicts, given that their compositions are similar to 280 

those in the ODP report of Sato et al. (1979). Igneous clinopyroxenes apparently provided 281 

nuclei for high-pressure experimental clinopyroxenes. Fortunately, relict clinopyroxene 282 

cores in AOC experiments are of minor volumetric abundance compared to their omphacitic 283 

rims.  284 

One AOC experiment (Bristol, 750°C) contains clinopyroxene, staurolite, phengite 285 

epidote, quartz/coesite, rutile, Fe-Ti oxide, apatite and vapour with abundant “fish eggs”. 286 

Garnet and clear evidence for melt are lacking. Repeating this experiment at ETH with 287 

garnet seeds produced abundant garnet, as growth rims (Fig. 2), clinopyroxene, glass and 288 

rutile, as well as fine-grained epidote-clinozoisite; we interpret this repeat run as a more 289 

close approach to equilibrium (see detailed discussion below). Changes in phase 290 

assemblages and proportions are fairly consistent with increasing temperature. Glass, garnet, 291 

clinopyroxene and some trace phases (rutile, Fe-Ti oxide, epidote, kyanite) remain present 292 

up to 900°C. Apatite is either melted out above the solidus or too small to observe. Similar to 293 

MORB experiments, a vesicular glass coexists with an additional fluid phase (large vesicles 294 

with or without fish-eggs) at 750-850°C. The 900°C run product visually differs from the 295 

850°C run product by having a slightly increased glass fraction and no clear evidence for the 296 
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second fluid phase. At 1000°C glass, with quench crystals, is abundant (>40%), and epidote, 297 

rutile and kyanite are melted-out.  298 

 299 

Approach to equilibrium 300 

It is straightforward to show that near-equilibrium conditions were reached with our MORB 301 

starting material, which was a glassy basalt with less than 10% olivine and minor plagioclase 302 

and spinel. All igneous phases were fully replaced by an eclogitic assemblage (garnet, 303 

clinopyroxene, other minor and accessory phases, as well as melt above the solidus), which 304 

is relatively homogeneous and comparable to other studies (Supplementary Data (SD) file 305 

2). The AOC run products exhibit broadly similar phase assemblages, as well as melt and 306 

mineral compositions that are comparable to MORB run products (SD file 2). This suggests 307 

that near-equilibrium conditions were reached in all but a single Bristol AOC run at 750°C, 308 

which lacked garnet. The failure of garnet to nucleate can be explained by its sluggish 309 

nucleation kinetics in high-pressure experiments. This conclusion is consistent with the 310 

presence of garnet overgrowth rims in the garnet-seeded, repeat experiment at ETH Zürich, 311 

indicating that garnet belongs to the high-pressure sub-solidus assemblage at 3 GPa, 750°C. 312 

Other AOC run products also exhibit some features indicative of local disequilibrium, 313 

including growth zoning in garnet as well as small relict igneous clinopyroxenes that are 314 

surrounded by omphacite. Mass balance and all interpretations below are based on 315 

volumetrically dominant garnet and clinoyroxene rim compositions, because they will be in 316 

equilibrium with the co-existing phases. 317 

 318 

Phase chemistry - major elements 319 
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Experimental glasses and silicate minerals are relatively homogenous: in most cases major 320 

elements have 1σ of <10% relative; minor elements have 1σ =10-50% relative (Table 3). 321 

Notable exceptions are glasses in the MORB 850°C experiment, hampered because the small 322 

melt pools are not well interconnected, as well as both 1000°C experiments due to the 323 

development of abundant quench crystals. In the latter cases, however, the average of a large 324 

number of analyses should approximate the equilibrium composition, despite large standard 325 

errors. Glasses are generally rich in SiO2, Al2O3, CaO and alkalis, and poor in MgO and 326 

FeO. Low EMPA totals as well as the microvesicular nature of quenched glasses imply that 327 

they contain significant H2O. “Fish egg” textured spherules also appear glassy in nature and 328 

are broadly granitic in composition (see Table 4).   329 

The MORB partial melts are peraluminous and tonalitic in composition (according to 330 

the classification scheme of Barker, 1979) just above the solidus, trending towards a more 331 

metaluminous composition at higher temperatures (Fig. 3). The AOC partial melts are also 332 

peraluminous, but trondhjemitic. Like MORB melts, they become metaluminous at higher 333 

temperatures, and further change their composition at T≥900°C to become tonalitic (Fig. 3). 334 

Magnesium oxide and FeO contents of all glasses are uniformly low, although both elements 335 

increase slightly at higher temperatures (Fig. 4). The Mg# decreases slightly between 750 336 

and 1000°C from around 0.5-0.6 to around 0.4-0.5 in both experimental sequences (Table 3). 337 

Such compositions are fully consistent with other published studies on partial melts of a 338 

basaltic composition with excess water (range: 5-25 wt.%) at broadly similar P-T (Pressure-339 

Temperature) conditions (e.g. Ryabchikov et al., 1996 (E3 composition); Prouteau et al., 340 

2001 (3 GPa subset); Kessel et al., 2005b (4 GPa, 900-1000°C subset); Klimm et al., 2008; 341 

Prouteau & Scaillet, 2013) (SD file 2). Remaining small discrepancies between all these 342 
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studies can be related to differences in bulk composition, fO2, pressure (range: 2.5-4 GPa) 343 

and the degree of melting as a consequence of different starting H2O contents. 344 

Major element compositions of minerals are given in SD file 3. The method of Droop 345 

(1987) was used to estimate Fe
3+

 contents for garnet and clinopyroxene and stoichiometric 346 

considerations are used for all other minerals. Garnets in MORB and AOC run products are 347 

compositionally similar at similar temperatures, being rich in almandine (25-40%), pyrope 348 

(30-44%) and grossular (23-30%), but poor in spessartine (<1%) and andradite (1-6%). 349 

Where zoning occurs, garnets display increasing pyrope and decreasing almandine from core 350 

to rim. A small but noticeable difference between the experimental sequences lies in the 351 

calculated andradite component, which tends to be lower at lower temperatures (800-900°C) 352 

in MORB (1-2.7%) than in AOC (1.7-6.5%), in keeping with higher initial Fe
3+

/Fe
tot

 in 353 

AOC. In contrast, calculated andradite components are consistently higher (5.2-7.5%) at 354 

1000°C. With increasing temperature, the pyrope component increases mostly at the expense 355 

of almandine, gradually changing the Mg# from around 0.4 to around 0.6. Garnet Mg# hence 356 

mirrors the behaviour of melts, which become more iron-rich at higher temperatures. Other 357 

minor elements observed in garnet include TiO2, which increases slightly with increasing 358 

temperature in the presence of rutile. Experimental garnet compositions and chemical trends 359 

with temperature are fully consistent with other experimental studies (see SD file 2).   360 

Clinopyroxenes are all omphacites, and are less chemically variable than garnet. A 361 

comparison to other studies is given in SD file 2. They exhibit a significant ‘quadrilateral’ 362 

(QUAD) Ca-Mg-Fe component (74-76% in MORB, 62-66% in AOC), a jadeite component 363 

(18-24% in MORB, 23-31% in AOC), and a small, but significant, calculated acmite 364 

component (2-8% in MORB, 3-11% in AOC). The acmite component is likely a maximum 365 
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estimate due to the possible presence of a small Ca-eskolaite component (e.g. Konzett et al., 366 

2007). The relict igneous cores in AOC (750-900°C) are ~90% QUAD in composition, with 367 

a relatively high acmite component (4.5-7.5%), and significantly higher Ti compared to 368 

high-pressure, omphacite rims.  369 

Minor phases that were observed include kyanite, which is relatively pure Al2SiO5, 370 

although a small quantity of iron (likely Fe2O3) is detectable (~3 wt % in MORB; ~4 wt % in 371 

AOC). Epidotes are epidote-clinozoisite solid solutions, containing approximately 8-10 wt % 372 

total iron, which should be mostly Fe2O3. The SiO2 phase that occurs in sub-solidus runs 373 

should be coesite, although this is hard to distinguish from quartz in our run products, based 374 

on textural criteria alone. Iron–Ti oxides of the ilmenite–hematite solid solution series are 375 

present in almost all runs, displaying a significant hematite component (~55-75 mol%), and 376 

a small Al2O3 component (~1-4 mol%). Rutile, which contains some ferric iron (~2-7 377 

mol%), is present in all runs below 1000°C. Apatite was found in a single run only (750°C; 378 

AOC without melt and garnet), suggesting that this is the main phase that carries P2O5 down 379 

to sub-arc depth in phosphate-rich basalts, until it is melted out above the solidus. 380 

 381 

Glass chemistry - trace elements 382 

With increasing temperature several systematic variations in glass chemistry are observed. 383 

Concentrations are given in Table 5 and plotted (normalised to Primitive Upper Mantle 384 

[PUM]) in Fig. 5 and against temperature in Fig. 6. The AOC experiments provide the most 385 

complete dataset in terms of temperature evolution (750-1000°C), but some insights can also 386 

be derived from the MORB data at 900 and 1000°C. In general, fluid-mobile elements such 387 

as Cs, Rb, Ba, Sr and Li are always enriched in the partial melts. Other elements such as U, 388 
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Zr, Hf, and V are also moderately enriched. Elements such as Nb, Ta, LREE and Th are 389 

relatively depleted at T ≤ 900°C. Heavy REE, Y and Sc are relatively depleted at all 390 

temperatures. Different element groups behave differently with increasing temperature, e.g. 391 

HREE, Y and Sc concentrations increase with increasing temperature, in contrast to most 392 

fluid-mobile elements. The different trace element patterns are explained in more detail 393 

below.  394 

 395 

DISCUSSION 396 

Location of the Solidus  397 

Our experiments place constraints on the 3 GPa, H2O-saturated solidus of ocean floor basalt, 398 

which is shown to be sensitive to bulk K2O content. Our AOC experiments (~0.25 wt.% 399 

K2O) produced glass (+ garnet, clinopyroxene, minor phases) at 750°C only in the 400 

experiment that contained garnet seeds. The other experiment at 750°C contained “fish eggs” 401 

instead of melt, together with clinopyroxene, staurolite (for reasons detailed in Skora & 402 

Blundy (2010) staurolite is likely metastable relative to garnet and kyanite), phengite, 403 

quartz/coesite and minor phases. It is tempting to conclude that the lack of melt in the latter 404 

750°C experiment is due to garnet nucleation problems and related overall disequilibrium. 405 

However, the most widely proposed H2O-saturated melting reaction for K-bearing MORB 406 

and sediment is quartz/coesite + phengite + clinopyroxene + H2O = melt + garnet (e.g. 407 

Hermann & Green, 2001; Hermann & Spandler, 2008; Schmidt, 1996; Skora & Blundy, 408 

2010). As garnet is a product of melting, it is unlikely that the lack of garnet should inhibit 409 

melting. Alternatively, melting in K-bearing AOC may start at temperatures that are very 410 

close to 750°C, and small calibration-related P-T discrepancies between Bristol and ETH 411 
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Zürich (e.g. due to different thermocouple types) may be responsible. For basalt with 0.14 412 

wt.% K2O and excess water, Lambert & Wyllie (1972) determined a 3 GPa solidus 413 

temperature of ~750°C, whereas Schmidt & Poli (1998) located their solidus at ~730°C for 414 

MORB with 0.49 wt % K2O. Thus, regardless of whether the lack of melt in one 750°C 415 

experiment is due to P-T uncertainties or due to disequilibrium, we conclude that melting in 416 

K-rich AOC starts at T ≈ 750°C, in keeping with previous studies.  417 

Quenched silicate melt formed only above 800°C in the MORB experiments, placing 418 

the 3 GPa solidus for a starting material with only 0.04 wt.% K2O between 800 and 850°C 419 

(T=825±25°C). In theory, no phase other than phengite is capable of hosting appreciable 420 

potassium in an eclogitic assemblage at around 3 GPa, a fact confirmed by analyses of 421 

silicate minerals in this run (SD file 3). Sub-solidus phengite, however, was not observed. 422 

Possibly phengites were never found because 0.04 wt % initial K2O equates to just ~0.4 423 

vol% phengite. Alternatively appreciable potassium was dissolved in the siliceous fluid 424 

(quenched as “fish eggs”) at near-solidus conditions (Table 4), effectively stripping out all 425 

the potassium from the solid assemblage. We note that the K-free, water-rich experiments of 426 

Kessel et al. (2005b) determined a 4 GPa solidus temperature of 875±12°C. Assuming a 427 

constant offset between K-bearing and K-free MORB at 3 and 4 GPa, the solidus estimates 428 

of Kessel et al. (2005b) and Lambert & Wyllie (1972) can be extrapolated to a 3 GPa, K-free 429 

MORB solidus temperature of around 850°C, consistent with our experimental results. The 430 

melting reaction, however, differs slightly from that given in Kessel et al. (2005b). We find 431 

that glass and garnet replace quartz/coesite, kyanite and some clinoyproxene in the 850°C 432 

experiment, suggesting an initially incongruent melting reaction of the form: quartz/coesite + 433 

kyanite + clinopyroxene + H2O = melt + garnet. Kessel et al. (2005b) propose instead a 434 

Page 19 of 60

http://www.petrology.oupjournals.org/

Manuscript submitted to Journal of Petrology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

congruent melting reaction of the form: clinopyroxene + garnet = melt. To what extent the 435 

discrepancies relate to differences in pressure or bulk-rock composition remains uncertain at 436 

this stage, but it is evident that both reactions would occur at somewhat similar temperatures 437 

in subduction zones.    438 

The question persists as to whether AOC and MORB can melt at Wadati-Benioff 439 

zone depths (approx. 75-135 km, average ≈ 105 km, Syracuse et al., 2010), provided that 440 

sufficient H2O can be added via the breakdown of hydrous minerals such as serpentine or 441 

chlorite in deeper portions of the slab. Recent results in thermal modelling (e.g. Syracuse et 442 

al., 2010; van Keken et al., 2011) predict slab-top temperatures of around 750-850°C in 443 

most subduction zones at 2.5-4.5 GPa (e.g. Lesser Antilles), with some offset towards higher 444 

temperatures (850-950°C, e.g. Nicaragua; Guatemala). These temperatures drop off in the 445 

lower parts of the subducted column, and are approx. 100-300°C lower than slab-top 446 

temperatures at the bottom of a 7 km thick basaltic crust (e.g. van Keken et al., 2011). 447 

Combined with our experimentally-derived, H2O-saturated solidus temperatures, these 448 

results suggest that only the top part of the basaltic crust can melt, if present as altered 449 

oceanic crust with elevated K2O contents. K-poor MORB is less likely to melt except in the 450 

hottest subduction zones. Melt fractions of oceanic basalts will be significantly lower 451 

compared to those of overlying, K-rich marine sediments (e.g. Schmidt et al., 2004).  452 

 453 
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Nature of experimental fluids   454 

The second critical end-point (SCEP) is defined in P-T space by the intersection of the melt-455 

vapour critical curve and the H2O-saturated solidus (see e.g. Hermann et al., 2006; Manning, 456 

2004). The conventional designation of solidus, melt and vapour is lost at pressures 457 

exceeding the SCEP because melt and H2O are fully miscible supercritical fluids. 458 

Experimental studies have come to different conclusions concerning the position of the 459 

SCEP in the system basalt-H2O (or more correctly the system basalt-derived partial melt-460 

H2O). Kessel et al. (2005b) used topological criteria to estimate the SCEP in K-free basalt to 461 

lie between 5 and 6 GPa. This is close to the position of the SCEP in K-MORB as estimated 462 

by Schmidt et al. (2004) using textural evidence. On the basis of extrapolation from the 463 

haplogranite critical curve to the H2O-saturated basalt solidus, Klimm et al. (2008) proposed 464 

that the SCEP lies at ~2.5 GPa in K-MORB. This discrepancy raises the question as to 465 

whether MORB/AOC-derived fluids beneath arcs are supercritical in nature, or not. 466 

In our experimental charges, MORB glasses at 850-900°C and AOC glasses at 800-467 

850°C clearly exhibit two distinct types of vesicles: (a) microvesicles that are evident in all 468 

glass pools and (b) large, irregular vesicles that are also present in glass pools and that may 469 

or may not contain “fish eggs.” Microvesicles in glasses (a) are commonly interpreted to 470 

represent vapour-exsolution upon quench (e.g. Klimm et al., 2008). Larger vesicles (b) are 471 

interpreted to represent an additional vapour phase that co-existed with hydrous melt 472 

(=quenched glasses) at run conditions. The “fish eggs” are suggested to represent the 473 

siliceous fraction that was dissolved in the vapour phase at run conditions. Our textural 474 

evidence argues for two fluid phases at near-solidus conditions, hydrous melt + siliceous 475 

vapour (Fig. 7). Our experimental data thus suggest sub-critical conditions and place the 476 
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SCEP at pressures greater than 3 GPa in both MORB- and AOC-derived fluids, consistent 477 

with Kessel et al. (2005b) and Schmidt et al. (2004). Above 900°C (MORB) and 850°C 478 

(AOC), clear evidence for an additional vapour phase (± “fish egg” textured spherules) 479 

disappears, suggesting that complete fluid-melt miscibility (supercritical behaviour) may 480 

occur in response to increasing temperature and changing melt composition. We further offer 481 

a possible explanation for the discrepant result of Klimm et al. (2008) in SD file 4.  482 

 483 

Trace elements in fluid and melt 484 

It is well known that the behaviour of trace and minor elements in the glass with increasing 485 

temperature is a direct consequence of the residual mineralogy, specifically the phases that 486 

control the budget of those elements (e.g. rutile: Klemme et al., 2002). For elements that 487 

lack a residual host phase the concentration in the glass will decrease with temperature, 488 

whereas for elements with a ubiquitous host phase, element concentrations will increase with 489 

temperature. For elements whose host phase becomes exhausted over the melting interval the 490 

concentration in the glass will attain a maximum at the point of phase exhaustion. Naturally 491 

all trace element contents attain those of the bulk starting material at the liquidus 492 

temperature. A complexity arises for those elements that strongly partition into a separate 493 

vapour phase, i.e. for sub-critical conditions. In that case the exhaustion of the vapour phase 494 

upon attainment of criticality will lead to a maximum in glass concentration in much the 495 

same way as exhaustion of a solid residual phase. 496 

Titanium, Nb and Ta show a continuous increase in concentration with temperature, 497 

with the same trends observed for MORB and AOC, consistent with the persistence of 498 

residual rutile up to 900°C and Fe-Ti-oxide thereafter (Fig. 6). Note that Fe-Ti oxides are 499 
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unlikely to host significant quantities of Nb and Ta because of the significant hematite 500 

component (c.f. Skora & Blundy, 2010). In AOC glasses Zr (and Hf) shows a marked peak 501 

in concentration at around 900°C (Fig. 6). We lack the resolution in MORB glasses to 502 

establish if there is a maximum or not. The tendency of Zr and Hf to attain maxima at 503 

intermediate temperatures in AOC suggests the exhaustion of zircon at ~900°C during 504 

melting, although zircon was never positively identified in our experiments due to low bulk 505 

Zr. Scandium, V, Y and HREE also show an overall increase in the glass from 750-1000°C 506 

due to the persistence of garnet and, to a lesser extent, omphacite across the melting interval 507 

(Fig. 6). The slightly complex behaviour of Sc and V may reflect competition between 508 

garnet and omphacite and their changing proportion in the residue with increasing 509 

temperature. Light REE abundances are extremely low (<1-3 ppm total LREE) in all glass-510 

bearing experiments on MORB and AOC, except at the highest temperature when their 511 

concentrations increase sharply (Fig. 6). This behaviour is a consequence of residual epidote, 512 

which is known to host these elements (e.g. Frei et al., 2004) and approaches exhaustion at 513 

the highest run temperatures. The 800°C AOC run has higher LREE than either of the 514 

adjacent runs. This behaviour is suggestive of less epidote in this run, which may be a result 515 

of a small inter-run variability in fO2, which influences epidote stability and proportion 516 

through control of Fe
3+

. Uranium and Th concentrations are also very low (<0.3 ppm) in all 517 

experimental glasses, and consequently subject to high analytical uncertainty, making trends 518 

hard to discern. Nonetheless Th clearly increases with temperature until T = 900°C, similar 519 

to Ce (Fig. 6). Again, epidote appears responsible for this behaviour.  520 

The LILE K, Ba, Cs, Rb, Sr and Li in glasses show variable behaviour (Fig. 6). 521 

Caesium decreases steadily with temperature in the AOC and MORB experiments, 522 
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indicative of behaviour as an incompatible element with no residual host phase. Potassium 523 

and Rb show broad maxima at around 800-850°C in AOC, and 900°C (K only) in MORB. 524 

Barium in AOC shows a maximum at 850°C, whereas Li shows a broad maximum at 850-525 

900°C. Strontium shows a maximum between 900 and 1000°C in both sets of experiments. 526 

Finally, Na shows a maximum in MORB at 900°C, but rather irregular behaviour in AOC. 527 

With the possible exceptions of Sr in epidote (SD file 5) and Na and Li in omphacite (e.g. 528 

Hermann 2002a), none of LILE have a residual host phase; phengite, a potential host for K 529 

and Ba is exhausted above the solidus of MORB and AOC. Thus the maxima that the LILE 530 

display cannot be ascribed to exhaustion of a solid phase. However, it is striking that the 531 

various maxima displayed by LILE roughly correspond to the transition from sub-critical to 532 

super-critical behaviour (850-900°C in AOC, 900-1000°C in MORB), as evidenced 533 

texturally, suggesting a role for fluids in LILE transport. In much the same way as 534 

exhaustion of a solid phase produces maxima for other trace elements so the exhaustion of 535 

the fluid phase on crossing the solvus into super-critical behaviour can lead to maxima in the 536 

concentrations of elements that possibly partition into the fluid. In detail the temperature at 537 

which the maximum occurs over the transition to supercritical behaviour will reflect the 538 

strength of partitioning into the fluid. Thus our data suggest that fluid-melt partitioning 539 

increases in the order Cs<Rb<K<Ba in AOC. The behaviour of Na in this sequence is 540 

unclear. This is an interesting insight into LILE fluid partitioning, but dedicated experiments 541 

would be required to quantify it. 542 

 543 
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Allanite versus epidote and the behaviour of light rare earth elements 544 

The behaviour of LREE+Th in our experimental glasses is controlled by the presence of 545 

residual epidote. Light REE abundances are extremely low (<1-3 ppm total LREE, Fig. 8) in 546 

all glass-bearing experiments on MORB and AOC, except at the highest temperature when 547 

epidote is exhausted. Epidote forms a solid solution with allanite, indicating a demonstrable 548 

ability to accommodate LREE in its structure (e.g. Frei et al., 2003). Analyses of epidote in 549 

our run products show elevated LREE, in one case readily analysable by EMPA (SD file 5). 550 

For example in a run on AOC at 900°C epidote contains 1000±300 ppm Ce, 400±100 ppm 551 

La, and 900±300 ppm Nd. The corresponding epidote-melt partition coefficients are: 552 

DLa≈1500±600, DCe≈1200±400, DNd≈700±300 (SD file 6). The observed concentrations of 553 

ΣLREE (La-Sm) are much lower than those required for allanite solubility (Fig. 8), 554 

confirming that this mineral was absent from our experiments in contrast to those of 555 

Hermann (2002a) and Klimm et al. (2008). We attribute this key difference to the relatively 556 

high doping levels of LREE used in those studies. In fact the LREE partition coefficients 557 

between epidote and melt given above are higher than those for allanite at 900°C and 2.5 558 

GPa (Klimm et al., 2008) by a factor of ~2. 559 

It is logical to conclude that doping with LREE in the experiments of Hermann 560 

(2002b), Kessel et al. (2005a) and Klimm et al. (2008), where allanite was found to be the 561 

principal carrier for LREE+Th, simply pushed the composition of the allanite-epidote solid 562 

solution to the high LREE end-member, thereby increasing the overall level of LREE+Th in 563 

the glasses in the doped experiments. Additional evidence for the stability of allanite versus 564 

epidote can be drawn from field examples. Although allanites are found in some (ultra) high-565 

pressure ((U)HP) terrains, they are typically restricted to REE-enriched rocks with alkaline 566 
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affinities (as opposed to N-MORB), or Fe-gabbros (e.g. Hermann, 2002b; Spandler et al., 567 

2003; Tribuzio et al., 1996). These rock types are not representative of average oceanic 568 

basaltic crust and indeed, epidote/zoisite is much more common in exhumed (U)HP terrains 569 

(Enami et al., 2004). Note in that context that UHP terrains most often represent the un-570 

molten, sub-solidus protolith of subducted crust, and allanite only forms above the solidus 571 

according to Klimm et al. (2008) (reaction: epidote = allanite + melt). Our experimental 572 

study suggests however that epidote would not change its composition appreciably above the 573 

solidus.   574 

We conclude that the control on LREE contents of subduction zone melts of basalt is 575 

still an epidote-group mineral, but one much poorer in LREE than allanite. A simple test of 576 

this proposal is to use the solubility model of Klimm et al. (2008), but with the epidote 577 

compositions determined in our experiments (Fig. 7). These have considerably lower mole 578 

fractions of allanite (Xall), which leads to much lower levels of LREE in the melt according 579 

to equation (9) in Klimm et al. (2008). We use the epidote from the AOC 900°C run with the 580 

LREE contents given in SD file 5. In this run Xall≈0.008, assuming ideal mixing this would 581 

equate to a LREE content in melts 125 times lower than if pure allanite were present in the 582 

residue. Inspection of Fig. 8 shows that this is indeed the case for this run: at 900°C Klimm 583 

et al. (2008) find Xall≈0.4 and ΣLREE (La-Sm) in the melt is 168 ppm, whereas we have 584 

Xall=0.008 and ΣLREE=2.7 ppm, i.e. Xall is 53 times lower and ΣLREE 62 times lower in 585 

our experiment as compared to Klimm et al. (2008). The close correspondence between the 586 

observed Xall and melt LREE content in our experiments and those of Klimm et al. (2008) 587 

lends strong support to the notion that epidote-group minerals limit the flux of LREE from 588 

subducted basalt to the mantle wedge at temperatures below 900°C. 589 
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In order to employ the allanite solubility approach to better understand basalt-derived 590 

fluxes of LREE+Th (e.g. Plank et al., 2009), we need a thermodynamic model of the 591 

allanite-epidote solid solution. In addition, we need to constrain the bulk-rock and fO2 592 

control on epidote-zoisite solid solutions and their respective stability fields. For example, 593 

the stability field of the zoisite end-member in MORB does not extend much beyond 2.5 594 

GPa / 800°C or 3 GPa / 700°C (e.g. Poli et al., 2009; Schmidt & Poli, 1998). Our 595 

experiments reveal that Fe
3+

-bearing epidote may well be stable at much higher temperatures 596 

at 3 GPa. Hence Xall in epidote has the potential to vary significantly. It is also known that 597 

partition coefficients of LREE+Th, and possibly U, vary as a function of the epidote-zoisite 598 

solid solution (see e.g. Frei et al., 2003, 2004; Martin et al., 2011). In the absence of any 599 

such data our experiments provide useful first constraints, demonstrating that negligible 600 

basalt-derived LREE+Th concentrations enter the arc basalt source region. Unless slab-top 601 

temperatures are much higher than existing models would suggest, LREE+Th enrichment in 602 

arc magmas must therefore originate from the sedimentary veneer. 603 

 604 

Implications for arc basalt trace element geochemistry 605 

Our experiments have a number of implications for the chemistry of the basalt-derived 606 

component added to the mantle wedge source of arc basalts. Although the tripartite model of 607 

the arc magma source reviewed by Elliott (2003) (Fig. 9) advocates an aqueous fluid as the 608 

key-transporting agent of trace elements from the basaltic portion of the slab to the wedge, it 609 

is instructive to evaluate the potential for basalt-derived melts to affect the required chemical 610 

signal. Note that although at super-critical or near super-critical conditions the distinction 611 

between fluid and melt disappears, there is still a relationship between total solutes in the 612 

Page 27 of 60

http://www.petrology.oupjournals.org/

Manuscript submitted to Journal of Petrology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

fluid phase and temperature. At low temperatures, the composition and physical properties 613 

of the fluid phase will resemble an aqueous fluid, whereas at high temperatures it will 614 

resemble a hydrous melt (e.g. Fig. 11 of Hermann & Rubatto, 2014). Thus, our data are 615 

principally also relevant for supercritical fluids that have the physical properties of a hydrous 616 

melt. Our basalt-derived melts approximate the composition of the total subduction 617 

component only in the case of sediment-starved arcs; sediment-derived melts will have quite 618 

different trace element chemistries because of their different bulk compositions, leading to 619 

different residual assemblages at high pressure, and initial trace element inventories. For this 620 

reason we compare directly the trace element composition of our experimental melts to 621 

basaltic arc lavas whose subduction component is thought to be dominated by material from 622 

the mafic crust (e.g. Tonga, Izu-Bonin, some Mariana islands; Elliott, 2003). Since our 623 

experimental starting materials were undoped, it is possible, for the first time, to make direct 624 

inferences about the melt flux from subducted basalt as a function of temperature based on 625 

analyses of trace elements in quenched experimental glasses.  626 

 627 

Trace element contribution   628 

Primitive upper mantle-normalised trace element patterns for melts derived from MORB and 629 

AOC exhibit several striking features (Fig. 5). First, the overall concentrations of trace 630 

elements, relative to PUM, increase with increasing temperature, although fractionation 631 

between adjacent elements decreases with increasing temperature. Thus the most “spiky” 632 

trace element patterns are observed at the lowest temperatures. Second, the only elements 633 

with concentrations significantly higher (factor >3) than PUM at all temperatures, and 634 

therefore able to significantly modify the trace element chemistry of the mantle wedge, are 635 
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the fluid mobile elements (e.g. Cs, Rb, K, Ba, Sr, and U). This is consistent with their 636 

enrichment even in sediment-starved arcs (e.g. Tonga, Izu-Bonin, some Mariana islands). 637 

Zirconium, Hf and Li are also surprisingly enriched in our partial melts (see below). 638 

Titanium, Nb and Ta enrichments only exceed a factor of 3 at the highest temperatures 639 

studied (>900°C). REE are lower than 3×PUM except at 1000°C.   640 

Sediment-starved arcs typically have low concentrations of many incompatible 641 

elements when compared to sediment-rich arcs, and exhibit low La/Sm, high Ba/Th, as well 642 

as Sr isotope ratios consistent with contributions from an altered MORB source. Elliott 643 

(2003) showed that the Ba/Th ratio of the basalt-derived component is in excess of 1000 644 

with a (La/Sm)PUM of around 1 (Fig. 5). This special characteristic of the arc geochemical 645 

signature has been traditionally ascribed to a “fluid” phase from subducted mafic oceanic 646 

crust. However, similar characteristics are observed in our melts at 800-850°C from an AOC 647 

source in which residual epidote is present (retaining Th) but phengite (retaining Ba) is 648 

absent. The same is likely to be true for the 750°C AOC experiment, but exact Ba/Th and 649 

(La/Sm)PUM could not be determined because Th, La and Sm were below detection. At 650 

higher temperatures the increased Th content, enabled by the progressive breakdown of 651 

epidote, as well as increased melt fractions, reduce Ba/Th significantly (Fig. 5). At lower 652 

(sub-solidus) temperatures, the presence of residual phengite will retain Ba and reduce 653 

Ba/Th in the fluid. This is readily apparent from the 650°C, 3 GPa sub-solidus fluid analyses 654 

of Green & Adam (2003). At 700°C the Ba/Th of sub-solidus fluids approaches those 655 

measured in our supra-solidus experiments, likely because the solubility of phengite and 656 

other silicates is enhanced in near-solidus fluids (e.g. Manning et al., 2010). (Note in that 657 

context that Green & Adam (2003) used a doped starting material. Whether the absolute 658 
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Ba/Th values given in Green & Adam (2003) truly approximate nature requires undoped 659 

experiments).  660 

Our results suggest that the Ba/Th and (La/Sm)PUM characteristics of the “fluid” 661 

component can be delivered by a wet melt of basalt (Fig. 9). Further complexity in Ba is 662 

introduced across the transition from sub- to super-critical behavior, as noted above. 663 

However, by far the greatest influence on Ba/Th ratios of melts is the presence or absence of 664 

phengite and epidote. Epidote stability is complex, as discussed above. Phengite stability, in 665 

turn, is primarily a function of bulk K2O and H2O, given that there is a strong relationship 666 

between Xphengite (the only host of K2O at sub-arc conditions), H2O and the degree of melting 667 

(e.g. Schmidt et al., 2004; Skora & Blundy, 2010). In our water-rich experiments, the Ba/Th 668 

ratio of melts supplied by the slab basalt end-member is controlled primarily by temperature, 669 

with the highest ratios being generated in the narrow window between exhaustion of 670 

phengite (at the solidus) and exhaustion of epidote (melted out above the solidus, at approx. 671 

900°C). This window lies between 750-800 and 850°C (Fig. 9).  672 

It is also worth noting that our sub-solidus, K-poor MORB run product contains 673 

epidote but no phengite, likely because the very low initial potassium content is fully 674 

dissolved in the fluid phase (discussed above). If this is generally the case, then Ba lacks a 675 

host in the sub-solidus mineral assemblage of subducted MORB at these conditions and may 676 

also be concentrated in the fluid phase. In contrast, Th will be retained by residual epidote 677 

and so fluids equilibrated with K-poor MORB at sub-solidus conditions may also have high 678 

Ba/Th ratios. It is therefore conceivable that fluids derived from lower parts of the subducted 679 

basalt, and equilibrated with unaltered MORB at sub-solidus conditions, as well as partial 680 

melt from the uppermost AOC are jointly responsible for the high Ba/Th ratios observed in 681 
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sediment starved arcs. Our experiments show how effective epidote can be at keeping Ba/Th 682 

high and La/Sm low.  683 

The tendency of our melts to show elevated Zr/Nd (range: 10-1070), Hf/Sm (range: 684 

1-60), and Li/Y (range: 3-80) ratios (Fig. 5) may at first seem paradoxical given that arc 685 

basalts do not show positive anomalies for these elements. Using the same compilation as 686 

Elliott (2003) for the most mafic Izu-Bonin and Tonga lavas, these ratios are closer to 7±1 687 

(Zr/Hf), 0.6±0.1 (Hf/Sm) and 0.4±0.1 (Li/Y). However, the trace element ratios of the added 688 

slab component are only mirrored in arc basalts when the elements of interest are not 689 

incorporated significantly into mantle minerals (e.g. Ba/Th). Zirconium, Hf and Li, however, 690 

are only modestly incompatible in mantle minerals (pyroxene, olivine). Studies such as that 691 

of Stolper & Newman (1994) have quantified the exchange of elements with the mantle 692 

wedge and concluded that all but the most incompatible elements are likely to equilibrate 693 

with it. Hence, we suggest that Zr, Hf and Li can be significantly modified by equilibration 694 

with the mantle wedge, to the extent that they no longer provide a clear insight into slab 695 

processes.   696 

Finally we note that melts derived from the basaltic portion of the slab have elevated 697 

U/Th ratios. This will lead to isotopic disequilibrium between the activities of 
238

U and 
230

Th 698 

that will be retained in the melt on timescales less than five half-lives of 
230

Th (i.e. 350 ky). 699 

An activity excess of 
238

U over 
230

Th is a characteristic of many sediment-starved arcs (e.g. 700 

McDermott & Hawkesworth, 1991). For example, in the Marianas the maximum 
238

U 701 

activity excess over 
230

Th observed by Elliott et al. (1997) and Avanzinelli et al. (2012) is 702 

~1.6 (also see Elliott, 2003 for a compilation of high 
238

U activity excess over 
230

Th). Such a 703 

value is consistent with basalt-derived melts generated at 800-850°C from AOC, although 704 
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we note that our source normalized U/Th ratios are poorly constrained due to analytical 705 

limitations.  706 

 707 

CONCLUSIONS 708 

Through a series of experiments conducted at sub-arc P-T conditions (750-1000°C, 3 GPa) 709 

in the presence of excess water, we show that the temperature and composition of the down-710 

going oceanic crust (pristine MORB versus AOC) can have a profound effect on the sub-arc 711 

phase assemblage and geochemistry, and therefore the resulting slab contribution to arc 712 

magma geochemistry. Notably, an order of magnitude elevated potassium content in AOC 713 

over MORB shifts the water-saturated basaltic solidus to lower temperature (~750°C AOC, 714 

825±25°C MORB). Just above the solidus, run products texturally indicate the presence of 715 

two liquids: an aqueous fluid with quench “fish eggs,” and a vesicular hydrous melt. With 716 

increasing temperature, the second vapour phase diminishes and disappears across the 717 

solvus. Further experimentation at varying P, XH2O is needed to constrain the solvi and 718 

second critical endpoints for AOC and MORB.  719 

For slab-top temperature estimates from recent subduction models (e.g. Syracuse et 720 

al., 2010), our study confirms the likelihood that melt ± fluid, particularly from an altered 721 

(high-K2O) oceanic basalt protolith can transport important trace elements to the sources of 722 

arc magmas. Slab-top temperature imparts an important control on trace element 723 

concentrations in the melt and the ratios of key element pairs. In particular, oceanic crust can 724 

contribute melts with high ratios of Ba/Th and U/Th under conditions at which residual 725 

phengite is absent, but epidote is present. The results from our undoped starting materials 726 
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demonstrate the primacy of residual epidote as opposed to the LREE-rich allanite of 727 

previous, doped experimental studies.  728 
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 966 

FIGURE CAPTIONS 967 

Figure 1: Phase proportions in experiments on MORB and AOC (Table 2). Mineral 968 

abbreviations are: grt=garnet; cpx=clinopyroxene; qtz/coe=quartz/coesite; ky=kyanite; 969 

*=trace epidote, +=trace Fe-Ti oxide, ^=trace rutile.  970 

 971 

Figure 2: Representative back-scattered electron (BSE) images of experimental run products 972 

at different temperatures in MORB and AOC. Mineral abbreviations as in Fig. 1, plus 973 

rt=rutile, vap=vapour and ep=epidote. Partial melts are always microvesicular due to 974 

exsolution of water upon quench. In some experiments, we find clear evidence for the 975 

presence of a vapour phase in addition to glass, as evidenced by a second, larger generation 976 
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of vesicles often containing “fish egg” textured spherules (quenched silicate fraction of a 977 

fluid phase rich in dissolved silicates, c.f. Adam et al., 1997).  978 

 979 

Figure 3: (a) Al/Na+K+2Ca ratios of quenched glasses showing a trend from peraluminous 980 

to metaluminous compositions at higher temperatures. (b) The granite classification scheme 981 

of Barker (1979) indicating that the experimental partial melts are trondhjemitic to tonalitic 982 

in composition. 983 

 984 

Figure 4: Major element chemistry of quenched glasses (on an anhydrous basis) showing 985 

systematic changes with temperature. Where SiO2 decreases, Al2O3 systematically increases 986 

with increasing temperature. The general tendency for CaO to increase with increasing 987 

temperature is consistent with the progressive consumption of clinopyroxene and epidote 988 

during melting. Titanium oxide contents increase systematically with increasing temperature 989 

in the presence of rutile because of increasing solubility.  990 

 991 

Figure 5: Trace element compositions of experimental glasses normalised to PUM (primitive 992 

upper mantle; Sun & McDonough, 1989). Starting compositions are shown as thick solid 993 

grey lines. At low temperatures trace element patterns are spiky, becoming smoother and 994 

approaching their levels in the starting materials as temperature increases. Fluid-mobile 995 

elements (e.g. alkalis) are the most enriched at all conditions. Light REE are strongly 996 

depleted in partial melts, due to the presence of residual epidote up to ~900°C. Glasses also 997 

show enrichment of Zr (over Nd), Hf (over Sm) and Li (over Y), although these 998 
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characteristics are rarely reflected in arc magmas because of the subsequent control exerted 999 

by mantle wedge peridotite.  1000 

 1001 

Figure 6: Trace element chemistry of quenched glasses showing systematic changes with 1002 

temperature. Different element groups behave differently with increasing temperature, e.g. 1003 

HREE, Y and Sc concentrations increase with increasing temperature, in contrast to most 1004 

fluid-mobile elements. The different trace element patterns can be related to the presence or 1005 

absence of residual phases as well as the additional vapour. 1006 

 1007 

Figure 7: Schematic subcritical silicate-H2O diagram versus temperature at constant pressure 1008 

(3 GPa) (after Manning, 2004). Note that this sketch does not attempt to illustrate the 1009 

chemography of our bulk-rocks. Instead, the figure approximates melt-fluid equilibrium in a 1010 

simplified case in which the bulk composition corresponds to the minimum melt (+ H2O) of 1011 

AOC and MORB. Different residual solid phases that are present in our experimental run 1012 

products are ignored here. It is illustrated in the diagram that our experiments only constrain 1013 

the temperature at which two fluids condense to a single fluid (solvus: dashed lines). 1014 

However, the position along the abscissa is not constrained because we did not vary the 1015 

experimental water content. It is therefore possible that two fluids would have been present 1016 

at higher temperatures, had more water been added.   1017 

 1018 

Figure 8: Variation of log ΣLREE (La-Sm) in glasses versus temperature. Solid curves are 1019 

modelled ΣLREE using the allanite solubility equation (9) given in Klimm et al. (2008), for 1020 

pure allanite (Xall=1), and for Xall=0.3 (approximating the composition found by Klimm et 1021 
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al., 2008). The ΣLREE of our undoped experiments is significantly lower when compared to 1022 

allanite-saturated experiments, because these elements are hosted in epidote.  1023 

 1024 

Figure 9. (La/Sm)PUM versus Ba/Th for mafic arc lavas worldwide (compilation of Elliott, 1025 

2003). Superimposed are the chemical compositions of the experimental glasses of this 1026 

study, as well as the sub-solidus experiments of Green & Adam (2003). Barium/Th ratios are 1027 

highest in our melts at 800-850°C from an AOC source, where epidote is present (retaining 1028 

Th) but phengite (retaining Ba) is absent. Conversely, at low, sub-solidus temperatures,  1029 

residual phengite will retain Ba and reduce Ba/Th in the fluids. Thus elevated Ba/Th is 1030 

favoured by a narrow temperature interval between phengite-out and epidote-out. 1031 
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Table 1. Starting compositions of basalts used in various experiments (TS=this study, Kessel 05a/b, Klimm08, G&A03), in comparison 

to natural compositions (Devey94, Hoff88, LEG-46, Kelley03) 

 

 

Comp. "Pristine" MORB  "Altered" MORB (AOC)  

Study TS TS Dev94 Kess05a Kess05b TS TS LEG46 LEG46 Kelley03 Klimm08 G&A03 Hoff88 

Type MORB   Stdev 37DS-1 

*Syn. 

MORB 

Syn. 

MORB AOC Stdev A3-Av Stdev 

Av. AOC 

Pacific 

 *Syn. 

AOC 

*Oc. 

Tholeiite 

Av. 

MORB 

Majors (wt.%)             

n 20 20 1 - - 40 40 12 12 117 - - 26 

SiO2 49.6 0.3 48.7 53.4 51.7 51.0 0.5 50.5 0.3 50.4 50.0 51.3 50.7 

TiO2 0.63 0.02 0.64 1.45 1.52 1.58 0.04 1.66 0.02 1.74 1.17 1.89 1.62 

Al2O3 15.5 0.1 15.9 17.2 16.7 15.7 0.3 15.5 0.2 12.3 16.1 14.1 15.3 

FeOtot 8.9 0.2 10.1 8.50 9.98 9.6 0.2 10.0 0.2 12.5 11.7 12.2 10.5 

MnO 0.18 0.04 0.18 - - 0.13 0.03 0.20 0.01 0.23 0.10 0.19 - 

MgO 10.3 0.1 10.1 5.93 7.03 7.4 0.1 7.7 0.3 6.36 7.16 6.55 7.62 

CaO 13.0 0.1 12.7 10.2 9.92 11.0 0.1 10.9 0.1 13.3 10.2 10.5 11.4 

Na2O 1.83 0.08 1.71 3.24 3.17 3.3 0.1 3.0 0.1 2.35 3.31 2.80 2.69 

K2O 0.04 0.01 0.03 - - 0.25 0.02 0.21 0.08 0.63 0.28 0.31 0.11 

P2O5 0.05 0.02 0.04 - - ND ND 0.14 0.01 0.17 - 0.22 - 

Sum 100 - 100 100 100 100 - 100 - 100 100 100 100 

Mg# 0.67 0.01 0.64 0.55 0.56 0.58 0.01 0.58 0.01 0.48 0.52 0.49 0.56 

                 

Traces (ppm)                

n 5 5 1 - - 5 5 4-12 4-12 117 - - 26 

Li 3.39 0.07 - 247 - 33.3 0.1 13 12 14.1 92 82.6 - 

Sc 47 1 - 148 - 41.8 0.8 38 1 37.4 83 - 41.4 

Ti 3880 60 - 8590 - 9034 248 9822 113 - 7010 11300 9740 

V  265 6 - - - 233 4 282 5 338 48 355 - 

Rb 0.7 0.2 0.58 84 - 4.4 0.5 1.9 1.1 13.7 - 102 1.26 

Sr 56 1 55 113 - 214 3 137 5 109 36 210 113 

Y  19.8 0.3 18.6 102 - 34 1 34.8 1.1 40.7 40 159 35.8 
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Zr 29.2 0.5 28 151 - 107 6 116 3 112 145 227 104 

Nb 2.7 0.2 1.69 135 - 2.3 0.2 1.9 0.4 2.89 120 128 3.51 

Cs 0.06 0.03 - 87 - 0.32 0.07 - - 0.317 - 80.7 0.014 

Ba 7.1 0.2 6.9 97 - 5.1 0.7 - - 15.6 - 176 13.9 

La 2.0 0.1 1.00 131 - 3.8 0.2 4.3 0.4 3.4 158 97.0 3.90 

Ce 3.4 0.2 2.91 137 - 13 1 11.8 1.5 11.4 167 114 12.0 

Nd 3.2 0.3 3.22 176 - 13 1 10.6 1.1 11.3 176 - 11.2 

Sm 1.3 0.1 1.33 180 - 3.7 0.3 4.1 0.2 3.95 163 94.3 3.75 

Eu 0.57 0.07 0.57 192 - 1.2 0.1 1.32 0.02 1.34 207 - 1.34 

Gd 1.26 0.09 2.05 220 - 4.9 0.4 - - 5.55 - - 5.08 

Dy 2.7 0.2 3.05 239 - 5.5 0.5 6.5 0.2 6.56 - - 6.30 

Lu 0.31 0.04 0.35 143 - 0.55 0.03 0.64 0.03 0.636 133 100 0.589 

Hf 0.9 0.2 1.04 231 - 2.6 0.3 3.0 0.1 3.07 39 13.5 2.97 

Ta 0.34 0.02 - 120 - 0.17 0.03 0.20 0.01 0.21 36 11.2 0.192 

Th 0.13 0.01 - 229 - 0.14 0.03 0.15 0.01 0.173 268 106 0.187 

U  0.06 0.03 - 241 - 0.08 0.02 - - 0.390 257 102 0.071 

                 

ΣΣΣΣLREE    9.9 0.4 8.5 624 - 33 2 31 2 30 664 305 31 

Major element analyses are recalculated on an anhydrous basis for comparison; trace element are given as published 

- either not reported or not added to the experiment 

Abbreviations used: Syn=synthetic; Av=average; Oc=oceanic; TS=this study; ND=not determined 

* trace element doped compositions 

LEG56-A3-Av: majors, Rb, Sr, Y, Zr, Nb: Dungan et al. (1979); Ti, V, Hf, Ta, Th: Bougault & Cambon (1979); Li, Sc, La, Ce, Nd, Sm, Eu, 

Dy, Lu: Emmermann & Puchelt (1979)   

Hoff88=Hofmann (1988); Kess05a/b=Kessel et al. (2005a/b); Kelley03=Kelley et al. (2003); Klimm08=Klimm et al. (2008); G&A03=Green 

& Adam (2003); Dev94=Devey et al. (1994).  
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Table 2. Run conditions and phase proportions 

P=3 GPa time Temp. major phases in %    

Run [days] [°C] grt cpx qtz/coe (st*)/ky Fe-Ti phen liq  vapour glass trace phases 

MORB             

LC2 7 800 29.1 44.9 4.7 6.2 - - 15.0 X+FE - ep, rt 

   34.3 52.9 5.5 7.3 - - -    

LC1 5 850 40.7 33.9 - - - - 25.3 X+FE X ep, Fe-Ti, rt 

   47.2 39.5 - - - - 13.3    

LC3B 4 900 42.5 30.7 - - - - 26.9 X X ep, Fe-Ti, rt 

   49.2 35.5 - - - - 15.3    

LC4 3 1000 40.7 29.3 - - - - 30.2 - X Fe-Ti 

   47.0 33.8 - - - - 19.4    

             

AOC                         

LCA0 8 750 - 59.6 5.9 15.9 1.7 1.8 15.0 X+FE - ep, rt, apa 

   - 70.2 7.0 18.7 2.1 2.1 -    

LCA0 rep
#
 8 750 31.5 37.4 - - - - 31.1 X X ep, rt, grt seeds 

   36.3 43.1 - - - - 20.6    

LCA2B 7 800 32.7 34.3 - - - - 33.0 X+FE X ep, rt, Fe-Ti, ky 

   37.6 39.5 - - - - 22.9    

LCA1 5 850 31.8 35.4 - - - - 32.7 (X) X ep, rt, Fe-Ti, ky 

   36.6 40.8 - - - - 22.7    

LCA3 4 900 30.3 35.7 - - - - 34.0 - X ep, rt, Fe-Ti, ky 

   34.8 40.9 - - - - 24.3    

LCA4 3 1000 34.3 20.7 - - - - 45.1 - X Fe-Ti 

      38.8 23.4 - - - - 37.8       
#
LCA0 rep is a repeat experiment of LCA0, run with grt seeds at ETH Zürich, see Methods for more information

 

Abbreviations used: grt=garnet; cpx=clinopyroxene; qtz/coe=quartz/coesite; ky=kyanite; Fe-Ti=Fe-Ti oxide; phen=phengite; liq=bulk liquid; 
ep=epidote; rt=rutile; apa=apatite; FE=”fish eggs”; (st*) refers to the presence of staurolite as Al-rich phase in AOC sub-solidus experiment . 

Mass balances were initially performed using anhydrous compositions (values in italic), and H2O was later reintegrated (see text) 
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Table 3. Major and minor element compositions of experimental glasses 

 

 

Exp.  LC1 LC1 LC1 LC3B LC3B LC3B LC4 LC4 LC4 

LCA0 

rep 

LCA0 

rep 

LCA0 

rep 

Type measured SD anhydr. measured SD anhydr. measured SD anhydr. measured SD anhydr. 

T (°C) 850 850 850 900 900 900 1000 1000 1000 750 750 750 

(wt %) MORB MORB MORB MORB MORB MORB MORB MORB MORB AOC AOC AOC 

n 24 24 24 36 36 36 52 52 52 8 8 8 

SiO2 60 4 76 57 2 74 54 3 71 58 3 73 

TiO2 0.19 0.03 0.24 0.25 0.04 0.32 0.29 0.08 0.38 0.12 0.02 0.15 

Al2O3 11.9 0.8 15.0 11.5 0.7 14.8 12.6 0.8 16.4 12.8 0.7 16.2 

FeO tot 0.9 0.2 1.2 0.9 0.1 1.1 1.5 0.9 1.9 0.7 0.1 0.8 

MgO 0.5 0.4 0.7 0.3 0.1 0.4 1 1 1 0.5 0.1 0.6 

CaO 2.9 0.3 3.7 3.8 0.6 4.9 4 1 6 1.7 0.2 2.2 

Na2O 1.8 0.5 2.3 2.8 0.3 3.6 2.4 0.7 3.1 4.4 0.2 5.5 

K2O 0.4 0.2 0.5 0.7 0.2 0.9 0.5 0.3 0.7 0.9 0.1 1.1 

P2O5 0.2 0.1 0.2 0.2 0.1 0.3 0.1 0.1 0.1 0.11 0.04 0.14 

Sum 79 5 100 78 2 100 77 3 100 79 4 100 

Al/(K+Na+2Ca) 1.4 0.2 1.4 0.9 0.1 0.9 1.0 0.2 1.0 1.1 0.1 1.1 

(Na+K)/Al 0.29 0.07 0.29 0.47 0.05 0.47 0.36 0.09 0.36 0.64 0.06 0.64 

Mg# 0.5 0.4 0.5 0.4 0.2 0.4 0.5 0.8 0.5 0.6 0.2 0.6 
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Exp.  LCA2B LCA2B LCA2B LCA1 LCA1 LCA1 LCA3 LCA3 LCA3 LCA4 LCA4 LCA4 

Type measured SD anhydr. measured SD anhydr. measured SD anhydr. measured SD anhydr. 

T (°C) 800 800 800 850 850 850 900 900 900 1000 1000 1000 

(wt %) AOC AOC AOC AOC AOC AOC AOC AOC AOC AOC AOC AOC 

n 46 46 46 34 34 34 36 36 36 44 44 44 

SiO2 59 3 74 61 2 72 61 1 70 54 5 65 

TiO2 0.15 0.02 0.19 0.21 0.03 0.25 0.41 0.03 0.47 0.8 0.2 0.9 

Al2O3 12.5 0.9 15.7 13.6 0.6 16.1 14.3 0.3 16.5 14 1 17 

FeO tot 0.8 0.1 1.0 0.9 0.2 1.1 1.6 0.1 1.8 3 1 3 

MgO 0.6 0.2 0.8 0.3 0.2 0.4 0.9 0.1 1.0 1.3 0.8 1.5 

CaO 1.9 0.2 2.4 2.3 0.3 2.7 3.9 0.3 4.5 6 3 8 

Na2O 2.8 0.4 3.6 4.6 0.5 5.4 3.8 0.6 4.3 3 1 4 

K2O 1.4 0.2 1.8 1.4 0.3 1.7 0.96 0.08 1.11 0.7 0.2 0.9 

P2O5 0.31 0.08 0.39 0.32 0.07 0.38 0.36 0.06 0.42 0.2 0.1 0.3 

Sum 80 4 100 84 2 100 86.7 0.9 100.0 84 4 100 

Al/(K+Na+2Ca) 1.3 0.1 1.3 1.0 0.1 1.0 1.0 0.1 1.0 0.8 0.2 0.8 

(Na+K)/Al 0.50 0.07 0.50 0.67 0.08 0.67 0.51 0.07 0.51 0.4 0.1 0.4 

Mg# 0.6 0.2 0.6 0.4 0.2 0.4 0.5 0.1 0.5 0.4 0.3 0.4 

SD=refers to 1 sigma of n (number) analyses; anhydr.=anhydrous 
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Table 4. Major and minor element composition of "fish eggs". 

Exp.  LC1 LC1 LC1 LCA2B LCA2B LCA2B 

Type measured SD anhydr. measured SD anhydr. 

T (°C) 850 850 850 800 800 800 

(wt.%) MORB MORB MORB AOC AOC AOC 

n 7 7 7 13 13 13 

SiO2 65 5 81 65 2 78 

TiO2 0.15 0.07 0.19 0.11 0.04 0.13 

Al2O3 11 1 13 13 1 15 

FeO tot 0.7 0.3 0.8 0.4 0.1 0.5 

MgO 0.4 0.2 0.5 0.4 0.3 0.4 

CaO 2.5 0.4 3.1 1.8 0.4 2.2 

Na2O 0.5 0.3 0.6 1.6 0.5 1.9 

K2O 0.31 0.03 0.39 1.2 0.3 1.4 

P2O5 0.05 0.03 0.06 0.15 0.05 0.18 

Sum 80 6 100 83 2 100 

SD=refers to 1 sigma of n (number) analyses; anhydr.=anhydrous 
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Table 5. Trace element compositions of hydrous glasses  

 

Exp.  LC3B LC3B LC4 LC4 

LCA0* 

rep  

LCA0* 

rep  LCA2B LCA2B LCA1 LCA1 LCA3 LCA3 LCA4 LCA4 

Type meas stdev meas stdev meas stdev meas stdev meas stdev meas stdev meas stdev 

T (°C) 900 900 1000 1000 750 750 800 800 850 850 900 900 1000 1000 

(ppm) MORB MORB MORB MORB AOC AOC AOC AOC AOC AOC AOC AOC AOC AOC 

n 7 7 5 5 11 11 5 5 5 5 5 5 6 6 

Li 5.1 0.8 9 2 - - 38 7 63 9 65 3 58 6 

Sc 5.6 0.4 10 2 1.9 0.3 3.4 0.3 1.9 0.2 4.4 0.6 10.3 0.6 

Ti 1770 50 3040 420 655 31 1020 150 1270 140 2580 60 7000 340 

V  530 40 600 150 131 9 260 20 230 20 209 5 310 30 

Rb 10 2 6 1 16.7 0.9 26 4 23 2 20 4 12 1 

Sr 220 10 180 60 415 12 440 20 470 10 720 30 400 20 

Y  1.9 0.2 2.9 0.9 0.60 0.05 3.0 0.4 0.75 0.06 1.9 0.1 7.4 0.4 

Zr 40.3 0.9 56 5 43 2 81 6 96 3 181 5 151 4 

Nb 2.2 0.1 4.4 0.3 0.24 0.03 0.50 0.09 0.49 0.06 0.92 0.06 4.8 0.2 

Cs 0.4 0.1 0.4 0.1 3.4 0.2 1.6 0.2 1.6 0.7 1.3 0.2 0.6 0.2 

Ba - - - - 18.4 0.8 23.3 0.9 27 1 20.7 0.8 19 4 

La 0.52 0.06 1.6 0.8 <0.04 - 0.34 0.08 0.09 0.02 0.28 0.07 6.7 0.6 

Ce 1.1 0.3 4 2 0.08 0.02 1.1 0.1 0.09 0.01 0.9 0.1 20 2 

Nd 0.8 0.2 3 2 <0.02 - 0.8 0.1 0.09 0.06 1.2 0.2 15 2 

Sm 0.24 0.08 1.0 0.6 <0.02 - 0.28 0.03 0.05 0.02 0.4 0.1 3.4 0.3 

Eu 0.10 0.04 0.3 0.2 <0.06 - 0.12 0.06 0.05 0.04 0.16 0.03 0.89 0.05 

Gd 0.21 0.03 0.7 0.3 <0.03 - 0.26 0.04 0.05 0.02 0.32 0.07 2.3 0.2 

Dy 0.32 0.06 0.5 0.3 0.08 0.02 0.5 0.1 0.09 0.03 0.28 0.06 1.4 0.2 

Lu 0.014 0.006 0.04 0.01 <0.02 - 0.022 0.004 <DL <DL 0.011 0.004 0.10 0.02 

Hf 0.9 0.2 1.5 0.2 1.6 0.2 2.4 0.2 2.8 0.3 5.1 0.4 3.7 0.3 

Ta 0.08 0.01 0.22 0.05 <0.03 - 0.04 0.01 0.03 0.02 0.05 0.01 0.27 0.05 

Th 0.11 0.04 0.27 0.08 <0.02 - 0.012 0.005 0.012 0.003 0.036 0.003 0.28 0.04 

U  0.07 0.02 0.12 0.06 0.04 0.01 0.07 0.02 0.08 0.04 0.17 0.04 0.14 0.04 
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ΣΣΣΣLREE 2.6 0.4 10 3 <0.2 - 2.5 0.2 0.3 0.1 2.7 0.2 45 2 

Ba/Th 460 180 130 40 >920 - 1870 770 2330 610 580 50 70 20 

La/SmPUM 1.5 0.3 1.1 0.5 - - 0.8 0.1 1.3 0.5 0.4 0.1 1.3 0.1 

U/Thn 2 1 1.0 0.8 >3.5 - 10 6 12 9 9 4 0.9 0.4 

*Experiment analyzed by LA-ICP-MS, all other exp are analyzed by SIMS; Ba concentrations for AOC are LA-ICP-MS data, see methods for more details  

ΣLREE=SUM (La-Sm); La/SmPUM are PUM normalized; U/Thn are source normalized 

Analyses below detection limits (DL) are reported as <DL. 
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