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Abstract

A major engineering challenge in statistical
machine translation systems is the efficient
representation of extremely large translation
rulesets. In phrase-based models, this prob-
lem can be addressed by storing the training
data in memory and using a suffix array as
an efficient index to quickly lookup and ex-
tract rules on the fly. Hierarchical phrase-
based translation introduces the added wrin-
kle of source phrases with gaps. Lookup
algorithms used for contiguous phrases no
longer apply and the best approximate pat-
tern matching algorithms are much too slow,
taking several minutes per sentence. We
describe new lookup algorithms for hierar-
chical phrase-based translation that reduce
the empirical computation time by nearly
two orders of magnitude, making on-the-fly
lookup feasible for source phrases with gaps.

1 Introduction

Current statistical machine translation systems rely
on very large rule sets. In phrase-based systems,
rules are extracted from parallel corpora containing
tens or hundreds of millions of words. This can re-
sult in millions of rules using even the most conser-
vative extraction heuristics. Efficient algorithms for
rule storage and access are necessary for practical
decoding algorithms. They are crucial to keeping up
with the ever-increasing size of parallel corpora, as
well as the introduction of new data sources such as
web-mined and comparable corpora.

Until recently, most approaches to this problem
involved substantial tradeoffs. The common prac-
tice of test set filtering renders systems impracti-
cal for all but batch processing. Tight restrictions
on phrase length curtail the power of phrase-based
models. However, some promising engineering so-
lutions are emerging. Zens and Ney (2007) use a
disk-based prefix tree, enabling efficient access to
phrase tables much too large to fit in main memory.
An alternative approach introduced independently
by both Callison-Burch et al. (2005) and Zhang and
Vogel (2005) is to store the training data itself in
memory, and use a suffix array as an efficient in-
dex to look up, extract, and score phrase pairs on the
fly. We believe that the latter approach has several
important applications (§7).

So far, these techniques have focused on phrase-
based models using contiguous phrases (Koehn et
al., 2003; Och and Ney, 2004). Some recent models
permit discontiguous phrases (Chiang, 2007; Quirk
et al., 2005; Simard et al., 2005). Of particular in-
terest to us is the hierarchical phrase-based model of
Chiang (2007), which has been shown to be supe-
rior to phrase-based models. The ruleset extracted
by this model is a superset of the ruleset in an equiv-
alent phrase-based model, and it is an order of mag-
nitude larger. This makes efficient rule representa-
tion even more critical. We tackle the problem using
the online rule extraction method of Callison-Burch
et al. (2005) and Zhang and Vogel (2005).

The problem statement for our work is: Given
an input sentence, efficiently find all hierarchical
phrase-based translation rules for that sentence in
the training corpus.
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We first review suffix arrays (§2) and hierarchical
phrase-based translation (§3). We show that the ob-
vious approach using state-of-the-art pattern match-
ing algorithms is hopelessly inefficient (§4). We
then describe a series of algorithms to address this
inefficiency (§5). Our algorithms reduce computa-
tion time by two orders of magnitude, making the
approach feasible (§6). We close with a discussion
that describes several applications of our work (§7).

2 Suffix Arrays

A suffix array is a data structure representing all suf-
fixes of a corpus in lexicographical order (Manber
and Myers, 1993). Formally, for a text T , the ith
suffix of T is the substring of the text beginning at
position i and continuing to the end of T . This suf-
fix can be uniquely identified by the index i of its
first word. The suffix array SAT of T is a permuta-
tion of [1, |T |] arranged by the lexicographical order
of the corresponding suffixes. This representation
enables fast lookup of any contiguous substring us-
ing binary search. Specifically, all occurrences of a
length-m substring can be found in O(m + log |T |)
time (Manber and Myers, 1993). 1

Callison-Burch et al. (2005) and Zhang and Vogel
(2005) use suffix arrays as follows.

1. Load the source training text F , the suffix array
SAF , the target training text E, and the align-
ment A into memory.

2. For each input sentence, look up each substring
(phrase) f̄ of the sentence in the suffix array.

3. For each instance of f̄ found in F , find its
aligned phrase ē using the phrase extraction
method of Koehn et al. (2003).

4. Compute the relative frequency score p(ē|f̄) of
each pair using the count of the extracted pair
and the marginal count of f̄ .

5. Compute the lexical weighting score of the
phrase pair using the alignment that gives the
best score.

1Abouelhoda et al. (2004) show that lookup can be done in
optimal O(m) time using some auxiliaray data structures. For
our purposes O(m + log |T |) is practical, since for the 27M-
word corpus used to carry out our experiments, log |T | ∼ 25.

6. Use the scored rules to translate the input sen-
tence with a standard decoding algorithm.

A difficulty with this approach is step 3, which can
be quite slow. Its complexity is linear in the num-
ber of occurrences of the source phrase f̄ . Both
Callison-Burch et al. (2005) and Zhang and Vogel
(2005) solve this with sampling. If a source phrase
appears more than k times, they sample only k oc-
currences for rule extraction. Both papers report
that translation performance is nearly identical to ex-
tracting all possible phrases when k = 100. 2

3 Hierarchical Phrase-Based Translation

We consider the hierarchical translation model of
Chiang (2007). Formally, this model is a syn-
chronous context-free grammar. The lexicalized
translation rules of the grammar may contain a sin-
gle nonterminal symbol, denoted X . We will use a,
b, c and d to denote terminal symbols, and u, v, and
w to denote (possibly empty) sequences of these ter-
minals. We will additionally use α and β to denote
(possibly empty) sequences containing both termi-
nals and nonterminals.

A translation rule is written X → α/β. This rule
states that a span of the input matching α is replaced
by β in translation. We require that α and β con-
tain an equal number (possibly zero) of coindexed
nonterminals. An example rule with coindexes is
X → uX 1 vX 2 w/u′X 2 v′X 1 w′. When discussing
only the source side of such rules, we will leave out
the coindexes. For instance, the source side of the
above rule will be written uXvXw. 3

For the purposes of this paper, we adhere to the
restrictions described by Chiang (2007) for rules ex-
tracted from the training data.

• Rules can contain at most two nonterminals.

• Rules can contain at most five terminals.

• Rules can span at most ten words.
2A sample size of 100 is actually quite small for many

phrases, some of which occur tens or hundreds of thousands
of times. It is perhaps surprising that such a small sample size
works as well as the full data. However, recent work by Och
(2005) and Federico and Bertoldi (2006) has shown that the
statistics used by phrase-based systems are not very precise.

3In the canonical representation of the grammar, source-side
coindexes are always in sorted order, making them unambigu-
ous.

977



• Nonterminals must span at least two words.

• Adjacent nonterminals are disallowed in the
source side of a rule.

Expressed more economically, we say that our goal
is to search for source phrases in the form u, uXv,
or uXvXw, where 1 ≤ |uvw| ≤ 5, and |v| > 0 in
the final case. Note that the model also allows rules
in the form Xu, uX , XuX , XuXv, and uXvX .
However, these rules are lexically identical to other
rules, and thus will match the same locations in the
source text.

4 The Collocation Problem

On-the-fly lookup using suffix arrays involves an
added complication when the rules are in form uXv
or uXvXw. Binary search enables fast lookup
of contiguous substrings. However, it cannot be
used for discontiguous substrings. Consider the rule
aXbXc. If we search for this rule in the following
logical suffix array fragment, we will find the bold-
faced matches.
...
a c a c b a d c a d ...
a c a d b a a d b d ...
a d d b a a d a b c ...
a d d b d a a b b a ...
a d d b d d c a a a ...
...

Even though these suffixes are in lexicographical
order, matching suffixes are interspersed with non-
matching suffixes. We will need another algorithm
to find the source rules containing at least one X sur-
rounded by nonempty sequences of terminal sym-
bols.

4.1 Baseline Approach
In the pattern-matching literature, words spanned by
the nonterminal symbols of Chiang’s grammar are
called don’t cares and a nonterminal symbol in a
query pattern that matches a sequence of don’t cares
is called a variable length gap. The search prob-
lem for patterns containing these gaps is a variant of
approximate pattern matching, which has received
substantial attention (Navarro, 2001). The best algo-
rithm for pattern matching with variable-length gaps
in a suffix array is a recent algorithm by Rahman

et al. (2006). It works on a pattern w1Xw2X...wI

consisting of I contiguous substrings w1, w2, ...wI ,
each separated by a gap. The algorithm is straight-
forward. After identifying all ni occurrences of
each wi in O(|wi| + log |T |) time, collocations that
meet the gap constraints are computed using an ef-
ficient data structure called a stratified tree (van
Emde Boas et al., 1977). 4 Although we refer the
reader to the source text for a full description of
this data structure, its salient characteristic is that
it implements priority queue operations insert and
next-element in O(log log |T |) time. Therefore, the
total running time for an algorithm to find all con-
tiguous subpatterns and compute their collocations
is O(

∑I
i=1 [|wi|+ log|T |+ ni log log |T |]).

We can improve on the algorithm of Rahman et
al. (2006) using a variation on the idea of hashing.
We exploit the fact that our large text is actually a
collection of relatively short sentences, and that col-
located patterns must occur in the same sentence in
order to be considered a rule. Therefore, we can
use the sentence id of each subpattern occurrence
as a kind of hash key. We create a hash table whose
size is exactly the number of sentences in our train-
ing corpus. Each location of the partially matched
pattern w1X...Xwi is inserted into the hash bucket
with the matching sentence id. To find collocated
patterns wi+1, we probe the hash table with each
of the ni+1 locations for that subpattern. When a
match is found, we compare the element with all el-
ements in the bucket to see if it is within the window
imposed by the phrase length constraints. Theoreti-
cally, the worst case for this algorithm occurs when
all elements of both sets resolve to the same hash
bucket, and we must compare all elements of one
set with all elements of the other set. This leads to a
worst case complexity of O(

∑I
i=1 [|wi|+ log|T |] +∏I

i=1 ni). However, for real language data the per-
formance for sets of any significant size will be
O(

∑I
i=1 [|wi|+ log|T |+ ni]), since most patterns

will occur once in any given sentence.

4.2 Analysis
It is instructive to compare this with the complex-
ity for contiguous phrases. In that case, total lookup
time is O(|w| + log|T |) for a contiguous pattern w.

4Often known in the literature as a van Emde Boas tree or
van Emde Boas priority queue.
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The crucial difference between the contiguous and
discontiguous case is the added term

∑I
i=1 ni. For

even moderately frequent subpatterns this term dom-
inates complexity.

To make matters concrete, consider the training
corpus used in our experiments (§6), which contains
27M source words. The three most frequent uni-
grams occur 1.48M, 1.16M and 688K times – the
first two occur on average more than once per sen-
tence. In the worst case, looking up a contiguous
phrase containing any number and combination of
these unigrams requires no more than 25 compari-
son operations. In contrast, the worst case scenario
for a pattern with a single gap, bookended on either
side by the most frequent word, requires over two
million operations using our baseline algorithm and
over thirteen million using the algorithm of Rahman
et al. (2006). A single frequent word in an input
sentence is enough to cause noticeable slowdowns,
since it can appear in up to 530 hierarchical rules.

To analyze the cost empirically, we ran our base-
line algorithm on the first 50 sentences of the NIST
Chinese-English 2003 test set and measured the
CPU time taken to compute collocations. We found
that, on average, it took 2241.25 seconds (∼37 min-
utes) per sentence just to compute all of the needed
collocations. By comparison, decoding time per
sentence is roughly 10 seconds with moderately ag-
gressive pruning, using the Python implementation
of Chiang (2007).

5 Solving the Collocation Problem

Clearly, looking up patterns in this way is not prac-
tical. To analyze the problem, we measured the
amount of CPU time per computation. Cumulative
lookup time was dominated by a very small fraction
of the computations (Fig. 1). As expected, further
analysis showed that these expensive computations
all involved one or more very frequent subpatterns.
In the worst cases a single collocation took several
seconds to compute. However, there is a silver lin-
ing. Patterns follow a Zipf distribution, so the num-
ber of pattern types that cause the problem is actu-
ally quite small. The vast majority of patterns are
rare. Therefore, our solution focuses on computa-
tions where one or more of the component patterns
is frequent. Assume that we are computing a collo-

Computations (ranked by time)

C
um
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e 

Ti
m

e 
(s

)

300K

150K

Figure 1: Ranked computations vs. cumulative time.
A small fraction of all computations account for
most of the computational time.

cation of pattern w1X...Xwi and pattern wi+1, and
we know all locations of each. There are three cases.

• If both patterns are frequent, we resort to a
precomputed intersection (§5.1). We were not
aware of any algorithms to substantially im-
prove the efficiency of this computation when it
is requested on the fly, but precomputation can
be done in a single pass over the text at decoder
startup.

• If one pattern is frequent and the other is rare,
we use an algorithm whose complexity is de-
pendent mainly on the frequency of the rare
pattern (§5.2). It can also be used for pairs
of rare patterns when one pattern is much rarer
than the other.

• If both patterns are rare, no special algorithms
are needed. Any linear algorithm will suffice.
However, for reasons described in §5.3, our
other collocation algorithms depend on sorted
sets, so we use a merge algorithm.

Finally, in order to cut down on the number of un-
necessary computations, we use an efficient method
to enumerate the phrases to lookup (§5.4). This
method also forms the basis of various caching
strategies for additional speedups. We analyze the
memory use of our algorithms in §5.5.

5.1 Precomputation
Precomputation of the most expensive collocations
can be done in a single pass over the text. As in-
put, our algorithm requires the identities of the k
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most frequent contiguous patterns. 5 It then iterates
over the corpus. Whenever a pattern from the list is
seen, we push a tuple consisting of its identity and
current location onto a queue. Whenever the oldest
item on the queue falls outside the maximum phrase
length window with respect to the current position,
we compute that item’s collocation with all succeed-
ing patterns (subject to pattern length constraints)
and pop it from the queue. We repeat this step for
every item that falls outside the window. At the end
of each sentence, we compute collocations for any
remaining items in the queue and then empty it.

Our precomputation includes the most frequent
n-gram subpatterns. Most of these are unigrams,
but in our experiments we found 5-grams among
the 1000 most frequent patterns. We precompute
the locations of source phrase uXv for any pair u
and v that both appear on this list. There is also
a small number of patterns uXv that are very fre-
quent. We cannot easily obtain a list of these in ad-
vance, but we observe that they always consist of a
pair u and v of patterns from near the top of the fre-
quency list. Therefore we also precompute the loca-
tions uXvXw of patterns in which both u and v are
among these super-frequent patterns (all unigrams),
treating this as the collocation of the frequent pattern
uXv and frequent pattern w. We also compute the
analagous case for u and vXw.

5.2 Fast Intersection

For collocations of frequent and rare patterns, we
use a fast set intersection method for sorted sets
called double binary search (Baeza-Yates, 2004). 6

It is based on the intuition that if one set in a pair
of sorted sets is much smaller than the other, then
we can compute their intersection efficiently by per-
forming a binary search in the larger data set D for
each element of the smaller query set Q.

Double binary search takes this idea a step further.
It performs a binary search in D for the median ele-
ment of Q. Whether or not the element is found, the

5These can be identified using a single traversal over a
longest common prefix (LCP) array, an auxiliary data struc-
ture of the suffix array, described by Manber and Myers (1993).
Since we don’t need the LCP array at runtime, we chose to do
this computation once offline.

6Minor modifications are required since we are computing
collocation rather than intersection. Due to space constraints,
details and proof of correctness are available in Lopez (2007a).

search divides both sets into two pairs of smaller sets
that can be processed recursively. Detailed analysis
and empirical results on an information retrieval task
are reported in Baeza-Yates (2004) and Baeza-Yates
and Salinger (2005). If |Q| log |D| < |D| then the
performance is guaranteed to be sublinear. In prac-
tice it is often sublinear even if |Q| log |D| is some-
what larger than |D|. In our implementation we sim-
ply check for the condition λ|Q| log |D| < |D| to
decide whether we should use double binary search
or the merge algorithm. This check is applied in the
recursive cases as well as for the initial inputs. The
variable λ can be adjusted for performance. We de-
termined experimentally that a good value for this
parameter is 0.3.

5.3 Obtaining Sorted Sets

Double binary search requires that its input sets be
in sorted order. However, the suffix array returns
matchings in lexicographical order, not numeric or-
der. The algorithm of Rahman et al. (2006) deals
with this problem by inserting the unordered items
into a stratified tree. This requires O(n log log |T |)
time for n items. If we used the same strategy, our
algorithm would no longer be sublinear.

An alternative is to precompute all n-gram occur-
rences in order and store them in an inverted index.
This can be done in one pass over the data. 7 This
approach requires a separate inverted index for each
n, up to the maximum n used by the model. The
memory cost is one length-|T | array per index.

In order to avoid the full n|T | cost in memory,
our implementation uses a mixed strategy. We keep
a precomputed inverted index only for unigrams.
For bigrams and larger n-grams, we generate the in-
dex on the fly using stratified trees. This results in
a superlinear algorithm for intersection. However,
we can exploit the fact that we must compute col-
locations multiple times for each input n-gram by
caching the sorted set after we create it (The caching
strategy is described in §5.4). Subsequent computa-
tions involving this n-gram can then be done in lin-
ear or sublinear time. Therefore, the cost of building
the inverted index on the fly is amortized over a large
number of computations.

7We combine this step with the other precomputations that
require a pass over the data, thereby removing a redundant
O(|T |) term from the startup cost.
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5.4 Efficient Enumeration

A major difference between contiguous phrase-
based models and hierarchical phrase-based models
is the number of rules that potentially apply to an
input sentence. To make this concrete, on our data,
with an average of 29 words per sentence, there were
on average 133 contiguous phrases of length 5 or
less that applied. By comparison, there were on av-
erage 7557 hierarchical phrases containing up to 5
words. These patterns are obviously highly overlap-
ping and we employ an algorithm to exploit this fact.
We first describe a baseline algorithm used for con-
tiguous phrases (§5.4.1). We then introduce some
improvements (§5.4.2) and describe a data structure
used by the algorithm (§5.4.3). Finally, we dis-
cuss some special cases for discontiguous phrases
(§5.4.4).

5.4.1 The Zhang-Vogel Algorithm
Zhang and Vogel (2005) present a clever algo-

rithm for contiguous phrase searches in a suffix ar-
ray. It exploits the fact that for each m-length source
phrase that we want to look up, we will also want to
look up its (m− 1)-length prefix. They observe that
the region of the suffix array containing all suffixes
prefixed by ua is a subset of the region containing
the suffixes prefixed by u. Therefore, if we enumer-
ate the phrases of our sentence in such a way that
we always search for u before searching for ua, we
can restrict the binary search for ua to the range con-
taining the suffixes prefixed by u. If the search for
u fails, we do not need to search for ua at all. They
show that this approach leads to some time savings
for phrase search, although the gains are relatively
modest since the search for contiguous phrases is not
very expensive to begin with. However, the potential
savings in the discontiguous case are much greater.

5.4.2 Improvements and Extensions
We can improve on the Zhang-Vogel algorithm.

An m-length contiguous phrase aub depends not
only on the existence of its prefix au, but also on
the existence of its suffix ub. In the contiguous case,
we cannot use this information to restrict the starting
range of the binary search, but we can check for the
existence of ub to decide whether we even need to
search for aub at all. This can help us avoid searches
that are guaranteed to be fruitless.

Now consider the discontiguous case. As in the
analogous contiguous case, a phrase aαb will only
exist in the text if its maximal prefix aα and maxi-
mal suffix αb both exist in the corpus and overlap at
specific positions. 8 Searching for aαb is potentially
very expensive, so we put all available information
to work. Before searching, we require that both aα
and αb exist. Additionally, we compute the loca-
tion of aαb using the locations of both maximal sub-
phrases. To see why the latter optimization is useful,
consider a phrase abXcd. In our baseline algorithm,
we would search for ab and cd, and then perform a
computation to see whether these subphrases were
collocated within an elastic window. However, if we
instead use abXc and bXcd as the basis of the com-
putation, we gain two advantages. First, the number
elements of each set is likely to be smaller then in
the former case. Second, the computation becomes
simpler, because we now only need to check to see
whether the patterns exactly overlap with a starting
offset of one, rather than checking within a window
of locations.

We can improve efficiency even further if we con-
sider cases where the same substring occurs more
than once within the same sentence, or even in mul-
tiple sentences. If the computation required to look
up a phrase is expensive, we would like to perform
the lookup only once. This requires some mecha-
nism for caching. Depending on the situation, we
might want to cache only certain subsets of phrases,
based on their frequency or difficulty to compute.
We would also like the flexibility to combine on-
the-fly lookups with a partially precomputed phrase
table, as in the online/offline mixture of Zhang and
Vogel (2005).

We need a data structure that provides this flex-
ibility, in addition to providing fast access to both
the maximal prefix and maximal suffix of any phrase
that we might consider.

5.4.3 Prefix Trees and Suffix Links
Our search optimizations are easily captured in a

prefix tree data structure augmented with suffix links.
Formally, a prefix tree is an unminimized determin-
istic finite-state automaton that recognizes all of the
patterns in some set. Each node in the tree repre-

8Except when α = X , in which case a and b must be collo-
cated within a window defined by the phrase length constraints.
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Figure 2: Illustration of prefix tree construction showing a partial prefix tree, including suffix links. Suppose
we are interested in pattern abXcd, represented by node (1). Its prefix is represented by node (2), and node
(2)’s suffix is represented by node (3). Therefore, node (1)’s suffix is represented by the node pointed to by
the d-edge from node (3), which is node (4). There are two cases. In case 1, node (4) is inactive, so we
can mark node (1) inactive and stop. In case 2, node (4) is active, so we compute the collocation of abXc
and bXcd with information stored at nodes (2) and (4), using either a precomputed intersection, double
binary search, or merge, depending on the size of the sets. If the result is empty, we mark the node inactive.
Otherwise, we store the results at node (1) and add its successor patterns to the frontier for the next iteration.
This includes all patterns containing exactly one more terminal symbol than the current pattern.

sents the prefix of a unique pattern from the set that
is specified by the concatenation of the edge labels
along the path from the root to that node. A suffix
link is a pointer from a node representing path aα to
the node representing path α. We will use this data
structure to record the set of patterns that we have
searched for and to cache information for those that
were found successfully.

Our algorithm generates the tree breadth-search
along a frontier. In the mth iteration we only search
for patterns containing m terminal symbols. Regard-
less of whether we find a particular pattern, we cre-
ate a node for it in the tree. If the pattern was found
in the corpus, its node is marked active. Otherwise,
it is marked inactive. For found patterns, we store
either the endpoints of the suffix array range con-
taining the phrase (if it is contiguous), or the list of
locations at which the phrase is found (if it is dis-
contiguous). We can also store the extracted rules. 9

Whenever a pattern is successfully found, we add all
patterns with m + 1 terminals that are prefixed by it

9Conveniently, the implementation of Chiang (2007) uses a
prefix tree grammar encoding, as described in Klein and Man-
ning (2001). Our implementation decorates this tree with addi-
tional information required by our algorithms.

to the frontier for processing in the next iteration.
To search for a pattern, we use location infor-

mation from its parent node, which represents its
maximal prefix. Assuming that the node represents
phrase αb, we find the node representing its max-
imal suffix by following the b-edge from the node
pointed to by its parent node’s suffix link. If the node
pointed to by this suffix link is inactive, we can mark
the node inactive without running a search. When a
node is marked inactive, we discontinue search for
phrases that are prefixed by the path it represents.
The algorithm is illustrated in Figure 2.

5.4.4 Special Cases for Phrases with Gaps
A few subtleties arise in the extraction of hierar-

chical patterns. Gaps are allowed to occur at the be-
ginning or end of a phrase. For instance, we may
have a source phrase Xu or uX or even XuX . Al-
though each of these phrases requires its own path in
the prefix tree, they are lexically identical to phrase
u. An analogous situation occurs with the patterns
XuXv, uXvX , and uXv. There are two cases that
we are concerned with.

The first case consists of all patterns prefixed with
X . The paths to nodes representing these patterns
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will all contain the X-edge originating at the root
node. All of these paths form the shadow sub-
tree. Path construction in this subtree proceeds dif-
ferently. Because they are lexically identical to their
suffixes, they are automatically extended if their suf-
fix paths are active, and they inherit location infor-
mation of their suffixes.

The second case consists of all patterns suffixed
with X . Whenever we successfully find a new pat-
tern α, we automatically extend it with an X edge,
provided that αX is allowed by the model con-
straints. The node pointed to by this edge inherits
its location information from its parent node (repre-
senting the maximal prefix α).

Note that both special cases occur for patterns in
the form XuX .

5.5 Memory Requirements

As shown in Callison-Burch et al. (2005), we must
keep an array for the source text F , its suffix array,
the target text E, and alignment A in memory. As-
suming that A and E are roughly the size of F , the
cost is 4|T |. If we assume that all data use vocabu-
laries that can be represented using 32-bit integers,
then our 27M word corpus can easily be represented
in around 500MB of memory. Adding the inverted
index for unigrams increases this by 20%. The main
additional cost in memory comes from the storage
of the precomputed collocations. This is dependent
both on the corpus size and the number of colloca-
tions that we choose to precompute. Using detailed
timing data from our experiments we were able to
simulate the memory-speed tradeoff (Fig. 3). If we
include a trigram model trained on our bitext and the
Chinese Gigaword corpus, the overall storage costs
for our system are approximately 2GB.

6 Experiments

All of our experiments were performed on Chinese-
English in the news domain. We used a large train-
ing set consisting of over 1 million sentences from
various newswire corpora. This corpus is roughly
the same as the one used for large-scale experiments
by Chiang et al. (2005). To generate alignments,
we used GIZA++ (Och and Ney, 2003). We sym-
metrized bidirectional alignments using the grow-
diag-final heuristic (Koehn et al., 2003).

0

0

0

1000

0

Number of frequent subpatterns

Insert text here

41 sec/sent

41 seconds

405 sec/sent

0 MB

725MB

Figure 3: Effect of precomputation on memory use
and processing time. Here we show only the mem-
ory requirements of the precomputed collocations.

We used the first 50 sentences of the NIST 2003
test set to compute timing results. All of our algo-
rithms were implemented in Python 2.4. 10 Timing
results are reported for machines with 8GB of mem-
ory and 4 3GHz Xeon processors running Red Hat
linux 2.6.9. In order to understand the contributions
of various improvements, we also ran the system
with with various ablations. In the default setting,
the prefix tree is constructed for each sentence to
guide phrase lookup, and then discarded. To show
the effect of caching we also ran the algorithm with-
out discarding the prefix tree between sentences, re-
sulting in full inter-sentence caching. The results are
shown in Table 1. 11

It is clear from the results that each of the op-
timizations is needed to sufficiently reduce lookup
time to practical levels. Although this is still rela-
tively slow, it is much closer to the decoding time of
10 seconds per sentence than the baseline.

10Python is an interpreted language and our implementations
do not use any optimization features. It is therefore reasonable
to think that a more efficient reimplementation would result in
across-the-board speedups.

11The results shown here do not include the startup time re-
quired to load the data structures into memory. In our Python
implementation this takes several minutes, which in principle
should be amortized over the cost for each sentence. However,
just as Zens and Ney (2007) do for phrase tables, we could com-
pile our data structures into binary memory-mapped files, which
can be read into memory in a matter of seconds. We are cur-
rently investigating this option in a C reimplementation.
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Algorithms Secs/Sent Collocations
Baseline 2241.25 325548
Prefix Tree 1578.77 69994
Prefix Tree + precomputation 696.35 69994
Prefix Tree + double binary 405.02 69994
Prefix Tree + precomputation + double binary 40.77 69994
Prefix Tree with full caching + precomputation + double binary 30.70 67712

Table 1: Timing results and number of collocations computed for various combinations of algorithms. The
runs using precomputation use the 1000 most frequent patterns.

7 Conclusions and Future Work

Our work solves a seemingly intractable problem
and opens up a number of intriguing potential ap-
plications. Both Callison-Burch et al. (2005) and
Zhang and Vogel (2005) use suffix arrays to relax
the length constraints on phrase-based models. Our
work enables this in hierarchical phrase-based mod-
els. However, we are interested in additional appli-
cations.

Recent work in discriminative learning for many
natural language tasks, such as part-of-speech tag-
ging and information extraction, has shown that fea-
ture engineering plays a critical role in these ap-
proaches. However, in machine translation most fea-
tures can still be traced back to the IBM Models of
15 years ago (Lopez, 2007b). Recently, Lopez and
Resnik (2006) showed that most of the features used
in standard phrase-based models do not help very
much. Our algorithms enable us to look up phrase
pairs in context, which will allow us to compute in-
teresting contextual features that can be used in dis-
criminative learning algorithms to improve transla-
tion accuracy. Essentially, we can use the training
data itself as an indirect representation of whatever
features we might want to compute. This is not pos-
sible with table-based architectures.

Most of the data structures and algorithms dis-
cussed in this paper are widely used in bioinformat-
ics, including suffix arrays, prefix trees, and suf-
fix links (Gusfield, 1997). As discussed in §4.1,
our problem is a variant of the approximate pattern
matching problem. A major application of approx-
imate pattern matching in bioinformatics is query
processing in protein databases for purposes of se-
quencing, phylogeny, and motif identification.

Current MT models, including hierarchical mod-

els, translate by breaking the input sentence into
small pieces and translating them largely indepen-
dently. Using approximate pattern matching algo-
rithms, we imagine that machine translation could
be treated very much like search in a protein
database. In this scenario, the goal is to select
training sentences that match the input sentence as
closely as possible, under some evaluation function
that accounts for both matching and mismatched
sequences, as well as possibly other data features.
Once we have found the closest sentences we can
translate the matched portions in their entirety, re-
placing mismatches with appropriate word, phrase,
or hierarchical phrase translations as needed. This
model would bring statistical machine translation
closer to convergence with so-called example-based
translation, following current trends (Marcu, 2001;
Och, 2002). We intend to explore these ideas in fu-
ture work.
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