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Structural brain magnetic resonance imaging (MRI) traits share part of their genetic variance 

with cognitive traits. Here, we use genetic association results from large meta-analytic 

studies of genome-wide association for brain infarcts, white matter hyperintensities, 

intracranial, hippocampal and total brain volumes to estimate polygenic scores for these 

traits in three Scottish samples: Generation Scotland: Scottish Family Health Study 

(GS:SFHS), and the Lothian Birth Cohorts of 1936 (LBC1936) and 1921 (LBC1921). These five 

brain MRI trait polygenic scores were then used to 1) predict corresponding MRI traits in the 

LBC1936 (numbers ranged 573 to 630 across traits) and 2) predict cognitive traits in all three 

cohorts (in 8,115 to 8,250 persons). In the LBC1936, all MRI phenotypic traits were 

correlated with at least one cognitive measure; and polygenic prediction of MRI traits was 

observed for intracranial volume. Meta-analysis of the correlations between MRI polygenic 

scores and cognitive traits revealed a significant negative correlation (maximal r=0.08) 

between the hippocampal volume polygenic score and measures of global cognitive ability 

collected in childhood and in old age in the Lothian Birth Cohorts. The lack of association to 

a related general cognitive measure when including the GS:SFHS points to either type 1 

error or the importance of using prediction samples that closely match the demographics of 

the genome-wide association samples from which prediction is based. Ideally, these 

analyses should be repeated in larger samples with data on both MRI and cognition, and 

using MRI GWA results from even larger meta-analysis studies. 
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Structural brain MRI traits and cognitive abilities are heritable, with over 50% of the 

variance for some MRI traits, e.g, frontal lobe volumes and white matter hyperintensities, 

being due to genes (Deary et al. 2009; Peper et al. 2007). Some of these MRI traits have 

been shown to share genetic variance with cognitive measures (Betjemann et al. 2010; 

Bohlken et al. 2014; Posthuma et al. 2002). Here, we test whether the additive effect of 

common DNA single nucleotide polymorphisms (SNPs) influencing cerebral white matter 

hyperintensities burden (WMH), brain infarcts (BI), hippocampal (HV), total brain (TBV) and 

intracranial (ICV) volumes predict variance in measures of cognitive ability. These MRI 

polygenic scores will be based on the results of four genome-wide association (GWA) 

studies (Bis et al. 2012; Debette et al. 2010; Fornage et al. 2011; Ikram et al. 2012), and 

estimated in three Scottish cohorts who have been measured on processing speed, 

memory, verbal and executive function. Firstly, we will establish whether the brain MRI 

polygenic scores predict their respective MRI trait in one of the cohorts who have MRI data. 

Where this is confirmed, we expect that common SNPs influencing these MRI traits will 

explain variance in the cognitive traits.  

Various brain MRI structural traits are associated with cognitive ability (Andreasen et 

al. 1993; Haier et al. 2004). The most investigated of these is TBV, which correlates 0.33 

with intelligence, as estimated from a meta-analysis of 37 samples (n=1530) (McDaniel 

2005). Twin studies have supported complete genetic mediation of this relationship in 

adults (Posthuma et al. 2002); and in children, genetic overlap has been shown between 

measures of TBV, neocortex, white matter and prefrontal cortex with a range of cognitive 

indices (IQ, reading ability, processing speed) (Betjemann et al. 2010). ICV, which might be 

considered as a premorbid/maximal brain size measure, has been associated with 
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vocabulary performance (Schottenbauer et al. 2007), and with semantic memory, executive 

function and spatial ability when adjusting for current brain pathology in older people 

(Farias et al. 2012). HV has largely been investigated in relation to memory abilities. A meta-

analysis of 33 studies reporting correlations between HV and memory performance showed 

a negative correlation of 0.25 for children and young adult samples, and a positive 

correlation (0.10) in older samples (Van Petten 2004). Heterogeneity within older sample 

estimates indicated a variable association dependent on age-related changes, possibly 

influenced more by environmental factors, which have a greater effect on HV in old age 

than do genes (Sullivan et al. 2001).  

Other brain MRI traits have shown significant associations with particular cognitive 

domains or in specific demographic groups. WMH, for example, are mainly associated with 

impaired executive functioning, particularly in ageing populations where WMH are more 

prevalent (Farias et al. 2012; Gunning-Dixon & Raz 2000; Hedden et al. 2012). A twin study 

of older men showed that 70-100% of the correlation between WMH and cognitive traits 

was due to common genes (Carmelli et al. 2002). BIs are also related to cognitive 

dysfunction and decline in the elderly, with rates being increased even in persons with 

covert BI in the absence of clinical stroke events (Vermeer et al. 2003). The genetic 

underpinning of this relationship is unknown.  

The genetic covariance between brain MRI and cognitive traits provides the rationale 

for our investigation which aims to establish whether the variability in cognition can be 

partly explained by structural brain differences. No common genes of large effect (e.g., >5% 

variance) have been reported for brain MRI traits. Therefore, we create brain MRI polygenic 

scores based on the summative influence of SNPs with differing levels of effect size (i.e., 
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from significant to non-significant effects) from recent GWA meta-analysis studies (Bis et al. 

2012; Debette et al. 2010; Fornage et al. 2011; Ikram et al. 2012). We test whether these 

polygenic scores are predictive of 1) their respective MRI trait, and 2) of cognitive variation. 

Material and Methods 

Cohorts 

Brain MRI polygenic profile scores were calculated in three independent Scottish cohorts: 

Generation Scotland: Scottish Family Health Study (GS:SFHS), the Lothian Birth Cohort 1936 

(LBC1936), and the Lothian Birth Cohort 1921 (LBC1921). GS:SFHS is a large population 

family-based study of around 24,000 Scottish participants sampled between the years 2006 

and 2011 (www.generationscotland.org/); 10,000 participants were selected for genome-

wide analysis based on: Caucasian ethnicity, being born in the UK, and full phenotype data 

(Kerr et al. 2013). In the current analysis only unrelated subjects were included, leaving an 

analysis sample of 6,814. The mean age of the sample was 55.5 years (SD=11.4) at testing 

(59% women). The LBC samples comprise relatively healthy individuals born in 1921 or 1936 

in the Edinburgh area, most of whom had completed the Moray House Test No. 12 (MHT) 

assessment of general intelligence in the Scottish Mental Surveys of 1932 or 1947 at a mean 

age of 11 years (Deary et al. 2012). The LBC1936 (n=1091; 49.8% women) were tested on 

the MHT and other cognitive measures in adulthood at a mean age of 69.5 years (SD=0.8). 

At age 73, a subset of these individuals (n=724) underwent structural MRI. The LBC1921 

(n=550; 57.4% women) completed the MHT plus additional cognitive tests at a mean age of 

79.1 years (SD=0.6) and later at 83.3 years (SD=0.54). Following informed consent, 

venesected whole blood was collected for DNA extraction for the LBC samples with both 

file:///C:/Users/Sarah%20Harris/david-b/Local%20Settings/Temporary%20Internet%20Files/Content.Outlook/DL8NL2EO/www.generationscotland.org/
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saliva and blood being used for DNA extraction in the GS:SFHS. Ethical approval for the LBCs 

was obtained from Scotland’s Multicentre Research Ethics Committee and local research 

ethics committee. GS:SFHS ethical approval was granted by the NHS Tayside Committee on 

Medical Research Ethics (REC Reference Number: 05/S1401/89). Research Tissue Bank 

status was approved by the Tayside Committee on Medical Research Ethics (REC Reference 

Number: 10/S1402/20), enabling generic ethical approval for medical research purposes. 

MRI measures in LBC1936 

Structural T2-, T2*-, FLAIR- and T1-weight brain MRI data were collected using a GE Signa 

1.5 T HDXT clinical scanner. BIs were coded for size and location based on vascular territory 

and typical signal characteristics by consultant neuroradiologists using a validated stroke 

lesion rating scale (Wardlaw et al. 2011; Wardlaw & Sellar 1994) which differentiates 

infarcts into cortical, lacunar, borderzone and brainstem/cerebellar. Lacunar infarcts were 

coded as being cavitated or not (Wardlaw et al. 2013). BI of any size and location were 

present in 93 individuals and absent in 537. WMH measured in the white matter, subcortical 

grey matter including cerebellum and brainstem were quantified semi-automatically with 

MCMxxxVI (Hernandez Mdel et al. 2010). Images were inspected and false positive and 

negative lesions manually corrected 

(http://www.bric.ed.ac.uk/research/imageanalysis.html). Focal stroke lesions were masked 

manually to distinguish them from other structures. The dependent measure was the 

natural logarithm(WMH burden in mL +1). ICV includes the contents within the inner skull 

table including venous sinuses and has its inferior limit in the axial slice just superior to the 

tip of the odontoid peg at the foramen magnum and superior to the inferior limits of the 

cerebellar tonsils. The ICV was obtained semi-automatically using the T2*W sequence. The 
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first approximation of the ICV was obtained automatically using the Object Extraction Tool 

in Analyze 9.0. Then, the cervical spinal cord inferior to the inferior boundary was removed 

manually, along with the pituitary gland (in cases where this latter structure was included). 

HV was obtained after an automatic segmentation of left and right hippocampi using FSL 

tools (www.fmrib.ox.ac.uk/fsl) and an ageing template. The resulting automatically 

segmented masks were visually assessed for accuracy, and manually edited using Analyze 

9.0 (Mayo Clinic, AnalyzeDirect, Inc. Mayo Clinic) if required. Mean of left and right 

hippocampal volumes was used. TBV (mm3) was defined by the volume of the cerebrospinal 

fluid, venous sinuses and meninges subtracted from the ICV. To correct for variation in head 

size between individuals, HV and TBV were expressed as percentages of ICV.  

Cognitive measures collected in all cohorts 

In GS:SFHS, four cognitive ability tests were administered: the Wechsler Digit Symbol 

Substitution Test (DS), Wechsler Memory Scale Logical Memory Test (sum of immediate and 

delayed recall of one paragraph) (LM), the phonemic Verbal Fluency Test using the letters C, 

F, and L, each for one minute (VF), and the Mill Hill Vocabulary Scale combining junior and 

senior synonyms (MHV) (Smith et al. 2006). In the LBC samples, DS, LM and VF tests were 

administered, but instead of the MHV, the National Adult Reading Test (NART) (Nelson 

1982) was used to index vocabulary ability. For the LBC1921, DS was only measured at age 

83 years, where the sample size was reduced (n=302). A composite score of these four 

measures (or 3 age 79 measures for the LBC1921) was formed by deriving regression-based 

factor scores from an unrotated principal components analysis which explained 45%-55.3% 

of variance across cohorts. In addition to these four overlapping tests across the three 

http://www.fmrib.ox.ac.uk/fsl
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cohorts, LBC samples had overlapping MHT scores from childhood (MHT11) and old-age 

(MHT).  

Genotyping 

Genotyping in the GS:SFHS and LBC samples was performed at the Wellcome Trust Clinical 

Research Facility Genetics Core, Edinburgh (www.wtcrf.ed.ac.uk). GS:SFHS samples were 

genotyped on the Illumina HumanOmniExpressExome-8 v1.0 DNA Analysis BeadChip using 

Infinium chemistry (Marioni et al. 2014). In the LBC samples, Illumina Human610-Quadv1 

Chip whole genome genotyping was available. Genotype quality control procedures are 

described elsewhere (Davies, 2011), but briefly, necessary exclusion were made for gender 

discrepancies, individual relatedness, and non-Caucasian descent. Good quality genotyping 

information was available for 509 (LBC1921) and 1005 (LBC1936) Caucasian individuals. 

Statistical Analysis 

Five sets of brain MRI polygenic scores—BI, WMH, ICV, TBV, and HV—were estimated using 

SNP association results from GWA meta-analyses of the Cohorts for Heart and Aging 

Research in Genomic Epidemiology (CHARGE) consortium (Bis et al. 2012; Debette et al. 

2010; Fornage et al. 2011; Ikram et al. 2012). In these studies, GWA was performed using 

HapMap release 22, Build 36 imputed data in Caucasian samples ranging in size from 8175 

(mean age 67.5 ±7.7 years) to 9401 (the mean age of each of the contributing cohorts was 

as follows: 76.2 ±5.4, 63.2 ±4.4, 65.3 ±8, 71.7 ±4.8, 63.9 ±11.3, 72.9 ±7.9, and 67.2 ±5.3). See 

Supplementary Table 1 (available on the Cambridge Journals Online website) for a 

comparison of age characteristics with the prediction cohorts. 
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A series of brain MRI polygenic scores were estimated in the GS:SFHS and LBC samples by 

inclusion of SNPs with varying association p-values—p<0.01, p<0.05, p<0.1, p<0.5, p<1—

from the GWA meta-analyses. These scores were calculated on observed genotype data 

using the profile scoring function in PLINK software (Purcell et al. 2007) and represented the 

sum of individual SNP effects whereby the meta-analytic effect size (Z-score/beta) was 

weighted by the number of copies (0/1/2) of the effect allele carried by the individual. Prior 

to calculating these scores, exclusions of SNP data were made in the three cohorts for: 

minor allele frequency <0.05, Hardy-Weinberg Equilibrium test <px10-7, and strand 

ambiguity (AT and GC SNPS). To minimise any bias caused by correlated SNPs entering the 

polygenic score, remaining SNPs were pruned for linkage disequilibrium based on r2 being 

less than 0.25 within a 200-SNP sliding window. As part of profile scoring, the remaining 

SNPs were then matched with those from the GWA meta-analysis results. Whereas the 

GWA results were for ~2.5 million SNPs, only a subset of these (at most ~112,000) were 

used in polygenic score estimation. Supplementary Table 2 shows the number of SNPs 

included in the calculation of the polygenic scores. In the polygenic score calculation, 

missing genotypes for any individual were imputed based on the observed SNP allele 

frequency in the cohort.  

Multiple regression was used to test the association between brain MRI polygenic scores 

and brain MRI traits in the LBC1936. Predictors included: brain MRI polygenic score, age at 

MRI scan, sex, three population stratification principal components (seeDavies et al. 2011), 

and the number of non-missing SNPs forming the score for each individual (less reliable 

polygenic scores will be formed for individuals with a greater amount of missing data). The 

dependent measure was the MRI trait corresponding with the MRI polygenic score in the 



 11 

prediction model. ICV was additionally entered as a covariate in the analysis of WMH in line 

with the GWA study of WMH (Fornage et al. 2011). Sensitivity analyses for all MRI 

dependent measures were performed by excluding 43 individuals with self-reported stroke. 

The LBC1936 was a relatively healthy sample (no self-reported dementia) and consistent 

with the previous GWA studies we do not adjust for other genotypes such as APOE. 

Regression analyses were performed for polygenic scores at each SNP inclusion criterion 

(p<0.01, p<0.05, p<0.1, p<0.5, p<1). Because the polygenic scores at different SNP inclusion 

are non-independent, we made a Bonferroni correction to our alpha level of .05 for the five 

polygenic MRI traits, which gave an adjusted significance level of .01.  

 For the cognitive measures, similar regression models were tested, but with age at MRI 

scanning replaced by age at cognitive test. Standardised betas from the regression models 

for the cognitive traits were meta-analysed under a random effects model in R (MAc 

package) (R Development Core Team 2008) giving an overall effect size and standard error. 

Given the inter-correlations among the four cognitive tests and among the five MRI 

polygenic traits we made an alpha-level adjustment based on a matrix spectral 

decomposition (Nyholt, 2005) of these traits (g was not included because it is a composite 

measure of the cognitive tests, and we chose one polygenic score (p<1 inclusion threshold) 

to avoid dependency among polygenic scores at differing SNP p-value inclusion levels).  

Using the largest cohort, GS:SFHS, we identified 8.86 effective traits to give an adjusted 

alpha level of .006. Heterogeneity between sample estimates was tested via Cochran’s Q 

statistic.  

Results 
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Polygenic prediction of MRI traits in the LBC1936 

The sample size varied between 573 (WMH) and 629 (BI).  ICV was the only variable to show 

significant associations at the corrected alpha level (p<0.01); correlations ranged 0.08-0.10 

across all p-value polygenic inclusion criteria (Supplementary Table 4). The HV polygenic 

score was most strongly correlated with HV at the polygenic p<0.50 inclusion (r=0.08, 

p=0.04) and polygenic p<1 inclusion (r=0.07, p=0.05). Polygenic scores for TBV at the 

polygenic p<0.01 inclusion was correlated .08 with TBV (p=0.02). For WMH, correlations of 

0.08 and 0.09 (p<0.05) were observed at p<0.05, p<0.50 and p<1 polygenic inclusion 

thresholds. All BI polygenic score correlations showed correlational p-values greater than 

0.05 with BI. Exclusion of stroke cases did not alter the polygenic score effects, thus, 

subsequent results are reported for the larger sample to reduce the standard error of the 

estimates. 

Correlation between MRI and cognitive traits in LBC1936  

Phenotypic correlations between MRI traits and the main cognitive traits of interest in the 

LBC1936 (n ranged 570 to 629) are shown in Supplementary Table 3. With the exception of 

HV, all brain MRI traits were significantly correlated with at least one cognitive trait. BI 

correlated significantly (negatively) with all cognitive traits (n ranged 625 to 629) and TBV 

correlated significantly (positively) with all traits except NART (n ranged 619 to 623).  

Polygenic prediction of cognitive traits in all cohorts 

Meta-analysis results of the correlations between the brain MRI polygenic scores (at 

differing polygenic p-value inclusion intervals) and cognitive measures are shown in Table 1. 
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The only significant correlations (at the corrected alpha level) to demonstrate consistency 

across differing polygenic p-value threshold scores were for HV with MHT11 and MHT in old 

age (at polygenic p<0.50 and 1 thresholds). For MHT11, the correlational p-value was .003 

and for MHT, it was .003. A negative correlation was observed such that a smaller HV was 

related to better MHT scores. Forest plots for these variables (only measured in the LBC 

samples) and for a comparable measure (general cognitive ability) in all three cohorts are 

shown in Supplementary Figure 1. For TBV, heterogeneity was found between cohort 

estimates for DS, MHT11, and MHT.  

TABLE 1 ABOUT HERE 

Discussion 

Our study showed that MRI ICV polygenic scores derived from GWA results on around 

10,000 individuals (CHARGE) were predictive of variance in ICV in 624 subjects aged 72. On a 

phenotypic level, BI and WMH were negatively correlated with cognitive measures in this 

cohort, whereas the cranial and TBV measures were positively correlated. A meta-analysis 

of this and another elderly cohort showed HV polygenic scores were negatively correlated 

with the same general cognitive ability test measured in childhood and old age, explaining 

up to 1% of cognitive score variance. No other brain MRI polygenic scores were significantly 

associated with any other cognitive traits in the meta-analyses including all three Scottish 

cohorts. 

This is the first study to test whether the SNP effects reported in current GWA studies of 

brain MRI traits are predictive of variance in these traits in an independent sample. At a 

significance level corrected for multiple testing, we confirm this for ICV, and for other traits 
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(WMH, TBV, and HV) at an unadjusted alpha level of .05. The amount of variance explained 

by these polygenic effects, although small, is consistent with other polygenic prediction 

studies of psychiatric and disease traits and is argued to increase with increases in size of 

the genome-wide association samples on which prediction is based (Dudbridge 2013). The 

lack of polygenic prediction for BI is likely due to the small number of individuals in our 

sample with BI (14.8%); as a dichotomous variable this analysis was less powered than those 

of continuous traits.  

HV polygenic scores showed the strongest positive correlations with HV at polygenic p<0.5 

and p<1 inclusion thresholds (although not significant at a corrected alpha level). It was at 

these thresholds that we observed a significant (negative) correlation (at a corrected alpha 

level) between polygenic variation in HV and phenotypic variation in MHT despite a lack of 

association between phenotypic variation in HV and MHT. This is an interesting finding given 

that in young adulthood, HV shows a negative phenotypic correlation at least with measures 

of memory, an aspect of general cognitive ability. Incomplete synaptic pruning during 

childhood and adolescence has been offered as an explanation for the negative association 

between HV and cognition in earlier life (Foster et al. 1999); and if genes influence pruning 

then it might be that this variation is driving the negative correlation between HV polygenic 

scores and general cognitive ability in our sample.  

Alternatively, the HV polygenic score derived in our study might not be a valid measure of 

variation in HV because it did not significantly predict HV, therefore, any correlation with 

cognition could be a false positive finding. That a similar measure of general cognitive ability 

was not found to be associated with HV polygenic scores in the meta-analysis of all cohorts 

further supports this finding representing type 1 error. If it is important for the independent 
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prediction samples to closely match the samples used in the GWA study on which polygenic 

scores are based, then the LBC samples more closely matched the brain MRI GWAS samples 

in age (being elderly), whereas GS:SFHS was predominantly comprised of individuals under 

the age of 60 years (62%). The polygenic scores would therefore represent genetic effects 

that are important in old age, so it follows that prediction is going to be more reliable in 

older adults. However, the observation in the LBC samples that HV polygenic scores did not 

predict vocabulary or the general cognitive factor (results not shown), which are strongly 

correlated with MHT scores again points to type 1 error. 

In conclusion, polygenic effects on MRI ICV, determined in a relatively small GWA study, 

were predictive of phenotypic trait variation in ICV in an independent sample. The lack of 

association between ICV polygenic scores and cognitive ability in the larger meta-analysis 

sample might suggest that other types of genetic variants (e.g., rare, structural) explain their 

genetic covariance. Larger GWA studies of WMH, TBV, HV and BI will likely improve the 

polygenic prediction of these traits in independent samples. Polygenic scores based on 

these larger studies should then be investigated in relation to cognition. Improvements in 

the harmonization of imaging measures across studies will also enable GWA results for 

other brain MRI measures such as laterality to be included. 
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Table 1. Meta-analysis Standardised Betas (SE) between MRI Trait Polygenic Scores and Cognitive Traits. Bolded Rows Indicate 

Polygenic Scores that Significantly Predicted the Accompanying MRI Phenotype and for which we would expect significant correlations. 

 

p< Digit 
Symbol 

Verbal 
Fluency 

Logical 
Memory 

Vocabul-
ary 

General 
Factor 

MHT11 MHT  

 (N= 8020) (N= 8250) (N= 8249) (N= 8212) (N= 8115) (N= 1411) (N= 1498) 

BI        
.01 0(.01) 0(.01) 0(.01) 0(.01) 0(.01) -.06(.06)  ̾ -.04(.03) 
.05 0(.01) .03(.02) 0(.01) -.01(.01) .01(.01) -.02(.03) .03(.03) 
.10 -.01(.01) .03(.03) ̾ -.01(.01) -.02(.01) 0(.02) -.05(.05) 0(.03) 
.50 -.02(.01) .01(.02) -.01(.01) -.03(.01) -.02(.01) -.04(.03) -.02(.03) 
1 -.01(.01) .02(.02) -.01(.01) -.02(.01) -.01(.02) -.04(.03) 0(.03) 
WMH        
.01 -.01(.01) .01(.01) 0(.01) 0(.01) 0(.01) -.01(.03) 0(.03) 
.05 .01(.01) .01(.01) 0(.01) .01(.01) .01(.01) -.01(.04) 0(.05) 
.10 0(.01) 0(.01) -.02(.01) -.01(.01) -.01(.01) -.05(.05) -.03(.03) 
.50 -.01(.01) 0(.01) -.02(.01) -.01(.01) -.02(.01) -.03(.04) -.03(.04) 
1 -.01(.01) 0(.01) -.02(.01) -.01(.01) -.02(.01) -.02(.04) -.02(.03) 
ICV        
.01 -.01(.01) 0(.01) -.02(.01) 0(.01) -.01(.01) .02(.03) -.03(.03) 
.05 0(.01) .01(.02) -.01(.01) 0(.01) 0(.01) .03(.03) -.03(.03) 
.10 0(.02) 0(.01) 0(.01) .01(.01) .01(.01) .04(.03) -.01(.03) 
.50 0(.02) .01(.01) 0(.01) .01(.01) .01(.01) .02(.03) -.02(.03) 
1 .01(.02) .01(.01) 0(.01) .01(.01) .01(.01) .01(.03) -.02(.03) 
HV        
.01 -.02(.02) 0(.02) -.01(.01) -.01(.04) -.01(.02) -.04(.03) -.07(.03)* 
.05 0(.01) 0(.01) -.02(.02) -.01(.01) -.01(.01) -.04(.03) -.05(.03)* 
.10 -.01(.02) 0(.01) -.01(.01) -.01(.01) 0(.01) -.05(.03) -.05(.03)* 
.50 -.02(.03) 0(.01) -.02(.02) -.03(.03) -.02(.02) -.08(.03)** -.08(.03)** 
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1 -.03(.03)  ̾ 0(.01) -.02(.02) -.02(.02) -.02(.03) -.08(.03)** -.08(.03)** 
TBV        
.01 .05(.03) ̾ .02(.01) 0(.01) .01(.02) .02(.03) -0.01(.09)  ̾ 0(.05) 
.05 .04(.03) .02(.01)* 0(.01) .01(.01) .03(.01)* -0.02(.08)  ̾ -0.04(.07)  ̾
.10 .04(.03) ̾ 0(.01) -.01(.01) -.03(.03) .01(.01) -0.02(.08)  ̾ -0.03(.07)  ̾
.50 .05(.03) ̾ 0(.01) 0(.01) .02(.01) .03(.02) 0(.07) ̾ -0.01(.07)  ̾
1 .04(.03) ̾ .01(.01) 0(.01) .03(.02) .03(.03) 0(.08) ̾ -0.02(.08)  ̾

*p<.05; **p<.01 

̾sample heterogeneity (p<.05): 

BI: MHT11 (p<.01 inclusion), LBC1936 (r=-.01), LBC1921 (r=-.13*); Verbal Fluency (p<.1 inclusion) GS (r=0), LBC1936 (r=.07*), 

LBC1921 (r=.02) 

HV: Digit Symbol (p<1 inclusion), GS (r=.01), LBC1936 (r=-.09*), LBC1921 (r=-.01) 

TBV: Digit Symbol (p<.01, .1, .5, 1), GS (r=.01, 0, .01, .01), LBC1936 (r=.11*, .09*, .10*, .09*), LBC1921 (r=.04, .03, .05, .05); 

MHT11 (p<.01, .05, .1, .5, 1), LBC1936 (r=.07*, .05, .06, .07*, .07*), LBC1921 (r=-.10*, -.11*, -.11, -.08, -.08); MHT (p<.05, .1, 

.5, 1), LBC1936 (r=.02, .03, 06, .06), LBC1921 (r=-.11*, -.11*, -.09*, -.10*) 

 


