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Stratified shear flow instabilities in the non-Boussinesq regime
E. Heifetz1 and J. Mak1, a)

Department of Geosciences, Tel Aviv University, Tel Aviv, 69978, Israel

Effects of the baroclinic torque on wave propagation normally neglected under the Boussinesq approximation is inves-
tigated here, with a special focus on the associated consequences for the mechanistic interpretation of shear instability
arising from the interaction between a pair of vorticity-propagating waves. To illustrate and elucidate the physical ef-
fects that modify wave propagation, we consider three examples of increasing complexity: wave propagation supported
by a uniform background flow; wave propagation supported on a piecewise-linear basic state possessing one jump; and
an instability problem of a piecewise-linear basic state possessing two jumps, which supports the possibility of shear
instability. We find that the non-Boussinesq effects introduces a preference for the direction of wave propagation that
depends on the sign of the shear in the region where waves are supported. This in turn affects phase-locking of waves
that is crucial for the mechanistic interpretation for shear instability, and is seen here to have an inherent tendency for
stabilisation.

a)julian.c.l.mak@googlemail.com; School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh, EH9 3FD,
United Kingdom
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I. INTRODUCTION

An approximation that is often made when studying the dynamics of stratified fluids is the Boussinesq approximation1,2. The
assumption is that the variation of density about a background reference density ρ′/ρ0 is small, and thus we may neglect inertial
effects associated with such terms except when it is multiplied by the gravitational acceleration g, i.e., buoyancy effects dominate.
This assumption of small density deviation is well satisfied in the ocean and remains useful for studying certain atmospheric
flows. The Boussinesq equation has and still remains a useful model for investigating a variety of fluid dynamical phenomena in
geophysical systems, such as convection3,4, wave-mean flow interaction5 and shear instabilities6,7, the last of which will be our
principal focus here.

To study shear instabilities, a further simplifying assumption that could be made is to employ ‘defects’ in the velocity and/or
density profile (i.e., piecewise-constant/linear profiles) as a model for sharp gradients in the basic state. Such an assumption is
useful for the study of the onset of instabilities for several reasons: the resulting dispersion relation often reduces to a low order
algebraic equation, for which analytical as well as asymptotic solutions exist; such solutions are often the leading asymptotic
order solution for general smooth profiles in the long-wave limit6,8; there is a mechanistic interpretation for the instability, seen
as the constructive interference of vorticity propagating waves travelling counter to the background flow7. The use of defects has
life beyond linear theory, allowing the derivation of reduced models via matched asymptotic methods to investigate the nonlinear
development and saturation of shear instabilities9,10. Since the use of defects is as a model for sharp gradients in the basic state,
one can ask whether it might be more appropriate to study flow instabilities in the presence of sharp density gradients without
the Boussinesq approximation, since the assumption of small density variation may no longer hold. To this end, there have
been several works studying shear instabilities beyond the Boussinesq approximation over the years, using smooth profiles but
with a density that has a small scale height11, and classic profiles with defects in12–14. However, these aforementioned works
in the non-Boussinesq setting focuses on solving the modified Taylor–Goldstein equation, to investigate the property of growth
rates with increasing deviation from the Boussinesq regime (which will be seen to be measured by a Froude number), without
necessarily providing a physical reason of what causes the modifications to the instability characteristics. Our work here aims
to complement these previous works by investigating the mechanistic modifications to the underlying wave dynamics by non-
Boussinesq effects, and how this affects the mechanistic interpretation of the instability accordingly. We provide mathematical
details and physical schematics on how the part of the baroclinic torque neglected by the Boussinesq approximation generates
vorticity anomalies; how this affects wave propagation and interaction is illustrated for increasingly more complex examples. An
instability problem where the cause of instability is strongly affected by the non-Boussinesq term is then presented and analysed
accordingly.

The layout of the document is as follows. In Section II we formulate the problem in terms of the vorticity, displacement and
pressure, to relate the generation of vorticity anomalies by the Boussinesq and non-Boussinesq effects. The dynamics of waves
supported on a uniform background is investigated and rationalised in Section III, to illustrate some of the possible effects due to
the non-Boussinesq term. In Section IV, we consider a more complex example where waves are now supported on defects, and
rationalise also the changes induced by the non-Boussinesq term. In Section V, a slightly simpler version of the Taylor–Caulfield
instability7,15–18 in the non-Boussinesq regime is investigated and analysed accordingly. This ties together the modification to
the wave dynamics and the instability properties resulting from the action-at-a-distance interaction between non-Boussinesq
interfacial waves. We conclude and discuss our results in Section VI.

II. MATHEMATICAL FORMULATION

We assume a two-dimensional, inviscid incompressible flow in the (x, z) plane, with governing equations

Du

Dt
= −gez −

1

ρ
∇p, Dρ

Dt
= 0, (1)

where u = (u, 0, w) is the velocity, g is the gravitational acceleration, p is the kinematic pressure, ρ is the density, and D/Dt =
∂/∂t + u · ∇ is the material derivative. The last equation for density comes from assuming ∇ · u = 0. Defining q =
∂w/∂x− ∂u/∂z (note that the vorticity component in the y direction is ωy = −q), the q equation is given by

Dq

Dt
= ey ·

(
1

ρ2
∇p×∇ρ

)
=

1

ρ2

(
∂p

∂z

∂ρ

∂x
− ∂p

∂x

∂ρ

∂z

)
, (2)

How both terms of the baroclinic torque generate vorticity anomalies is illustrated in the schematic depicted in Figure 1, with
the details in the caption.

Suppose we take a basic stateU(z), withQ(z) = −∂U/∂z. Then it follows from the x-component of the momentum equation
that we may take p = p(z). This leads to the basic state satisfying the hydrostatic balance

∂p

∂z
= −ρg, (3)
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∂p/∂x > 0, ∂ρ/∂z < 0

z

x

+q

∂p/∂z < 0, ∂ρ/∂x < 0

ρ+ δρ ρ

p+ δp

p

ρ+ δρ

ρ

p p+ δp

FIG. 1. Vorticity generation via baroclinic torque associated with p and ρ anomalies. We show here a case where (∂p/∂z)(∂ρ/∂x) > 0, a
case resembling hydrostatic balance, and a case where −(∂p/∂x)(∂ρ/∂z) > 0. Pressure gradients results in a flow tendency. However, the
acceleration is inversely proportional to the density of the fluid parcel, thus it results in shear and hence vorticity anomalies.

and we consider a basic state ρ = ρ(z). A linearisation of the vorticity equation then results in
(
∂

∂t
+ U

∂

∂x

)
q = −w∂Q

∂z
− 1

ρ2

(
ρg
∂ρ

∂x
+
∂ρ

∂z

∂p

∂x

)
, (4)

where the quantities with no overbars are perturbation quantities. Linearising the continuity equation results in the system of
equations given by

(
∂

∂t
+ U

∂

∂x

)
q = −w∂Q

∂z
− g

ρ

∂ρ

∂x
− 1

ρ2
∂ρ

∂z

∂p

∂x
,

(
∂

∂t
+ U

∂

∂x

)
ρ = −w∂ρ

∂z
, (5)

upon using the divergence-free condition on the perturbation velocity field. Note that the last term on the right hand side of the
linearised q equation is absent in the Boussinesq limit.

With the vertical perturbation displacement defined as
(
∂

∂t
+ U

∂

∂x

)
ζ = w, (6)

an integration yields the identity

ρ = −∂ρ
∂z
ζ, (7)

where only advective effects are considered. Since the velocity field is assumed to be non-divergent, we may define a stream-
function such that

u = −∂ψ
∂z

, w =
∂ψ

∂x
, (8)

and this results in the identity∇2ψ = q. Defining the Buoyancy frequency to beN2 = −(g/ρ)(∂ρ/∂z), the system of equations
(5) becomes

(
∂

∂t
+ U

∂

∂x

)
q = −∂ψ

∂x

∂Q

∂z
−N2 ∂

∂x

(
ζ − 1

g

p

ρ

)
,

(
∂

∂t
+ U

∂

∂x

)
ζ =

∂ψ

∂x
. (9)

The (∂/∂x)(p/ρ) term is the correction that is absent in the Boussinesq regime. Here, ψ may be formally inverted from q via a
Green’s function, which depends on the chosen domain and boundary conditions, so in theory we have a formulation in terms of
q and ψ, once we substitute for p in some way. The pressure p will be seen to be related to ψ and thus q via a substitution from
the momentum equation.

We observe that there are three dynamical regimes:
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1. A barotropic regime where ζ = p/(gρ). For barotropic flow, p = p(ρ), so that

Dp(ρ)

Dt
=

dp

dρ

Dρ

Dt
. (10)

With incompressibility, Dρ/Dt = 0, and so p = −ζ(∂p/∂z). Upon using the hydrostatic balance relation (3), we recover
the identity ζ = p/(gρ). In this regime, the linearised baroclinic torque cancels out exactly.

2. The Boussinesq regime where ζ � p/(gρ). In this regime, the fluid parcel adjusts its pressure distribution to the sur-
rounding environment on a fast enough time-scale such that pressure effects may be neglected, and buoyancy effects
dominate.

3. The case where ζ � p/(gρ). In this case, the non-Boussinesq effect outweighs the buoyancy effect and becomes the
dominant player in the dynamics.

We will now consider related examples of increasing complexity to see how the extra non-Boussinesq term in the linearised
baroclinic torque influences the dynamics.

III. BASIC WAVE DYNAMICS

We consider first the case where waves are supported on a uniform background flow with N = constant. Without loss of
generality, we take U = 0, and the governing equations (9) reduces to

∂q

∂t
= −N2 ∂

∂x

(
ζ − 1

g

p

ρ

)
,

∂ζ

∂t
=
∂ψ

∂x
. (11)

To substitute for p, we turn to the momentum equation ∂u/∂t = −(1/ρ)(∂p/∂x). Substituting for p in equation (11), taking
another time-derivative of the vorticity equation and substituting for ∂ζ/∂t results in

∂2

∂t2

(
∇2ψ − N2

g

∂ψ

∂z

)
= −N2 ∂

2ψ

∂x2
. (12)

This is the Taylor–Goldstein equation for this simplified case.
Now, taking ρ = ρ0e−z/H , ∂ρ/∂z = −ρ/H , so N2 = −(g/ρ)(∂ρ/∂z) = g/H , where H is a density scale height. Equation

(12) becomes

∂2

∂t2

(
∇2 − 1

H

∂

∂z

)
ψ = −N2 ∂

2ψ

∂x2
. (13)

With modal solutions of the form ψ = ψ̂(z)eik(x−ct), we obtain the dispersion relation

c2
(
∂2

∂z2
− 1

H

∂

∂z
− k2

)
ψ̂ = −N2ψ. (14)

We see that solutions of the form ψ̂ ∼ eimzez/(2H) satisfies |u|2 ∼ ez/H and ρ ∼ e−z/H , so ρ|u|2 <∞. Substituting this form
of solution into equation (14), the imaginary parts cancel out exactly, and the resulting dispersion relation is given by

c2 =
N2

m2 + k2 + 1/(4H2)
. (15)

In the Boussinesq limit, H →∞, and we recover the usual dispersion relation for gravity waves in a non-rotating system2. For
finite H , the phase speed of the waves reduced via the 1/(4H2) term. This is akin to how the scale height affects acoustic-
gravity waves19, and similar to the way in which the existence of a finite Rossby deformation radius attenuates the phase speed
of Rossby waves20.

A physical reason for this reduced phase speed may be rationalised via the changes to vorticity anomalies generated by the
corresponding baroclinic torques. For simplicity, we consider the case with m = 0, and, for completeness, we consider the
Boussinesq limit first. The vorticity generation comes from the (∂p/∂z)(∂ρ/∂x) = −gρ(∂ρ/∂x) term; since gρ > 0, the sign
of the resulting vorticity anomalies is correlated with the sign of −(∂ρ/∂x). The direction of the wave propagation is dependent
on how ζ is correlated with q; ζ ∼ q gives rightward propagating waves with c > 0, as in Figure 2(a), and vice versa21. However,
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-ψ +ψ

+q -q

(a)

∂ρ
∂x

< 0

+ρ -ρ+q

(b)

FIG. 2. Schematic for gravity waves propagation in the Boussinesq limit. (a) Direction of propagation depends on how ζ and q are correlated
at the peaks and troughs. Shown here is the case where ζ ∼ q, and results in c > 0; with ζ ∼ −q, the opposite is true. (b) Vorticity anomalies
at the nodes resulting from the baroclinic torque associated with the Boussinesq term, which depends on the ζ configuration and not on the
direction of wave propagation.

regardless of direction of wave propagation, equation (7) indicates that, for stable stratification, the ζ distribution sketched in
Figure 2(b) results in ∂ρ/∂x < 0, and thus results in positive vorticity anomaly at the node of the wave. Another way of
thinking about it is that the peaks of the wave has the tendency to descend whilst the troughs wants to rise, therefore the resulting
movement in this case is anti-clockwise, and is thus a positive vorticity anomaly as in Figure 1(a).

In the more general case with the non-Boussinesq term we also need to work out the distribution of p and see how this modifies
the scenario depicted in Figure 2. From the x-momentum equation, for a right-going wave (c > 0), observing that ψ ∼ ez/(2H),
we have

−cu = c
∂ψ

∂z
= −p

ρ
⇒ p ∼ −∂ψ

∂z
∼ −ψ ∼ q, (16)

and thus22 p ∼ q. This scenario is depicted in Figure 3(a). The resulting p distribution leads to ∂p/∂x < 0 at the nodes,
and the vorticity anomaly generated is related to −(∂ρ/∂z)(∂p/∂x) < 0, resulting in a negative vorticity anomaly at the
node as in Figure 1(b). So the correction torque results in vorticity anomalies that is of the opposite sign to the one generated
by the Boussinesq term depicted in Figure 3(b). This may be seen to reduce the wave propagation speed since the speed is
related to the magnitude of the vorticity anomaly generation at the nodes21. The magnitude of the pressure anomalies and
thus the resulting vorticity anomalies are related by the size of H , which in this instance measures the degree of deviation
away from the Boussinesq limit. The same line of thought may be applied to the c < 0 case, which results in q ∼ −p, and the
corresponding scenario is illustrated in Figure 3(b). Again, the sign of the resulting vorticity anomaly is seen to be opposite to the
one given in Figure 2(b). So, in this setting, the physical picture is that the baroclinic torque associated with the non-Boussinesq
effects reduces the wave propagation speed via generation of opposite signed vorticity anomalies to the ones generated by the
Boussinesq term at the nodes. This reduction is symmetric in magnitude for waves propagating in either direction, since the
pressure distribution associated with the waves with c > 0 and c < 0 depends only on the distribution of ζ (as p ∼ −cζ,
which may be seen when combining equations 11 and 16). We will see in the next section how the background shear affects the
propagation of right and left going waves in an asymmetric way.

IV. EDGE WAVE DYNAMICS

Suppose now our background profiles are piecewise-continuous, so that ∂Q/∂z and dρ/dz (and so N2(z)) are defects of the
form

∂Q

∂z
= ∆Qδ(z − h), N2(z) = ∆N2δ(z − h). (17)
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c > 0

-ψ

+q -q

+ψ

-q

(a)

+p -p∂p
∂x

< 0
ρ

ρ−∆ρ

+ψ -ψ

-q +q

(b)

c < 0

+p -p∂p
∂x

< 0

-q

FIG. 3. Schematic of the torque generated by the non-Boussinesq contribution for gravity waves with m = 0. The imposed wave structure is
as in Figure 2. The left and right panels depict a right and leftward propagation wave respectively, and the shading is associated with contours
of ψ = constant. As a result of the vorticity distribution at the peaks and troughs, we have the corresponding pressure distributions which
in turn generates vorticity anomalies at the wave nodes; these are seen to be the opposite sign as the one associated with the Boussnesq term
shown in Figure 2(b).

Then it may be seen that solutions of the form

q = q̂eik(x−ct)δ(z − h) (18)

are consistent solutions of (9), since there is no vorticity generation away from the location of the defect at z = h. Taking also
modal solutions of ψ, ζ and p, we have

(U − c)q̂ = −∆Qψ −∆N2ζ +
∆N2

g

p

ρ
, (U − c)ζ = ψ, (19)

where all the relevant terms are to be evaluated at z = h. In a domain that is unbounded in z, ψ is related to q via a Green’s
function

ψ(h) = − 1

2k

∫
q(z′)e−k|h−z

′| dz′ = − q̂

2k
, (20)

and it remains to relate p to the prognostic variables q and ζ.
We now wish to substitute p/ρ for u = −∂ψ/∂z by making use of the x-momentum equation. Generically, ψ is not differen-

tiable at z = h, however, u changes sign when z = h is crossed, hence, physically, for a wave supported on z = h, there can be
no self-induced u for a wave-like solution, and thus u = 0 at z = h. With this, the x-momentum equation becomes

0 = −ik
p

ρ
+Qikψ ⇒ Qψ =

p

ρ
. (21)

This means that, in the absence of shear, the pressure perturbation of the interfacial wave is zero, and the Boussinesq approxi-
mation holds exactly in the linearised baroclinic torque.

Substituting for ψ and p/ρ in (19), we obtain

(U − c)q̂ =

(
∆Q− Q

g
∆N2

)
q̂

2k
−∆N2ζ, (U − c)ζ = − q̂

2k
. (22)

The eigenstructure and dispersion relations are then given by

q̂± = 2k(c± − U)ζ±, (c± − U) = −
(

∆Q− (Q/g)∆N2

4k

)
±

√(
∆Q− (Q/g)∆N2

4k

)2

+
∆N2

2k
. (23)
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ρ

ρ−∆ρ

Q < 0

+p −p +p

+q +q−q
−q +q

∂p
∂x

< 0
∂p
∂x

> 0

FIG. 4. Schematic of the torque generated by the non-Boussinesq contribution for edge waves. With positive shear, we have Q < 0, and so
−ψ ∼ q ∼ p from (21). The choice of shear fixes the relation between q and p at the peaks and troughs. With this, the associated pressure
distribution generates vorticity anomalies at the nodes, introducing an asymmetry to the direction of wave propagation, in this case to leftward
propagation.

The coefficient (Q/g)∆N2 measures the deviation away from the Boussinesq limit. When ∆N2 = 0, we recover Rossby waves,
while for Q = ∆Q = 0, we recover the gravity waves in the Boussinesq regime21. The plus and minus branch are the branches
where the appropriate sign is taken.

We make the observation that, for (Q/g)∆N2 � (∆N2,∆Q), one of the branches vanish and so the edge waves become uni-
directional, with the preference direction dependent on the sign of Q. This is like the case for the propagation of Rossby waves
where, in the absence of stratification, is uni-directional and depends on the sign of ∆Q. This preference for the direction of
propagation is caused by the extra contribution to the baroclinic torque from the non-Boussinesq term. To see how this operates,
we consider the case where we have a positive shear with Q < 0. With this choice, q ∼ −ψ ∼ p from (21), and this fixes
the p and q relation at the peaks and troughs, as displayed in Figure 4. Then we may consider both the case where q ∼ ζ (for
rightward propagating waves) and q ∼ −ζ (for leftward propagating waves). Taking into account Figure 2(b), it may be seen
that the resulting pressure anomalies results in vorticity anomalies at the nodes that is of the opposite sign to the base case for the
rightward propagating wave (base case of Figure 3(a)), i.e., counteracts propagation. On the other hand, the vorticity anomalies
at the nodes for the leftward propagation wave is the same sign as the base case (of Figure 3(b)), i.e., reinforcing propagation.
Thus there is a leftward preference for wave propagation due to the non-Boussinesq contribution with positive shear; this is seen
to be consistent with the dispersion relation given in (23).

In this scenario with edge waves, the p and q relation is fixed by the sign of the shear, where as in the Section II for neutral
waves supported in a flow with no shear, the distribution depends on the direction of wave propagation. The correction to the
baroclinic torque acts to counteract wave propagation in a symmetric way for the neutral wave case, whilst the presence of a
shear introduces a preferred direction for wave propagation.

V. NON-BOUSSINESQ TAYLOR–CAULFIELD INSTABILITY

One mechanistic interpretation for the onset of shear instabilities is via the constructive interference of counter-propagating
waves. Waves that propagate vorticity anomalies may become phase-locked with each other via the advection by the background
flow and action-at-a-distance of the non-local velocity field induced by local vorticity anomalies. With phase-locking, depending
on the phase shifts, these waves may amplify each other and lead to instability7,18,21,23.

Since one of the key ingredients for this interpretation is counter-propagation, our hypothesis with the previous section in
mind is that, when the correction term (as measured by (Q/g)∆N2) becomes significant, instabilities reduce in growth rates and
eventually switch off because the waves can no longer phase-lock as they become increasingly uni-directional. This suggests a
physical interpretation to the work of Barros & Choi14, who find that a large shear across the interfaces plays a stabilising role,
which is perhaps somewhat counter-intuitive as the shear is normally seen as a source of instability. To test this hypothesis, we
consider a simplified form of the Taylor–Caulfield problem10,15,16,18,24, where the basic state is essentially given by

U(z) = Λz, N2(z) = ∆N2[δ(z − h) + δ(z + h)], (24)

with the δ-functions inN2(z) coming from the choice that ρ = ρ0 + |δρ|[1−H(z−h)−H(z+h)], H(z) the Heaviside function,
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h are the locations of the defects, and the imposed density is a staircase-like profile. With this, the instability comes from the
interaction of two interfacial gravity waves located on the defects10,16,18,24.

We proceed to non-dimensionalise the equations. By scaling with respect to T0 = Λ−1 and L0 = h, and taking modal
solutions as in (18), it may be seen that the dimensional equations (9) become (noting that δ-functions have dimensions L−10 and
that ∂Q/∂z = 0 here)

(±1− c)q̂1,2 = −R̂

(
ζ1,2 − F 2

(
p

ρ

)

1,2

)
, (±1− c)ζ1,2 = ψ1,2, (25)

where the equations are evaluated at z = ±1 for subscript 1 and 2 respectively. The parameters in this problem are

R̂ =
∆N2

hΛ2
, F 2 =

h2Λ2

gh
. (26)

The Richardson number R̂ measures the strength of the stratification. The Froude number F is given by the square of the mean
shear velocity scaled by the Boussinesq gravity wave speed. Since the presence of shear allows the non-Boussinesq baroclinic
term to operate, it measures the deviation from the Boussinesq limit. In the limit F → 0, we recover the Boussinesq limit where
solutions to the problem as stated are known18. With this rescaling, the edge wave structure (23) associated with this set up is
given by

q̂±1,2 = 2k(c± − U)1,2ζ
±
1,2, (c± − U)1,2 = −γ

2
±

√
(γ

2

)2
+
R̂

2k
.

(
γ =

R̂F 2

2k

)
(27)

It remains to relate ψ1,2 and (p/ρ)1,2 to q̂1,2 and ζ1,2. First, ψ1,2 may be related to q1,2 via the Green’s function in an
unbounded domain as in (20), except here we have18,21

ψ1,2 = − 1

2k
(q̂1,2 + q̂2,1e−2k). (28)

Note that we have a term with a flipped subscript to denote the interaction induced by anomalies on the other interface, with the
exponential factor representing the decay of interaction strength. For (p/ρ)1,2, we again make use of the x-momentum equation,
which is, in this setting and with u = −∂ψ/∂z,

−(±1− c)∂ψ1,2

∂z
= −

(
p

ρ

)

1,2

− ψ1,2. (29)

The physical argument here is that there should be no self-induced u on an interface, but there may be an induced u from the
other interface. Since a positive vorticity anomaly induces a positive u below and negative u above it (and vice-versa for negative
vorticity anomalies), we obtain

−∂ψ
∂z

=

{
− 1

2

∫
q(z′)e−k(z−z

′) dz′, z > z′,

+ 1
2

∫
q(z′)e+k(z−z

′) dz′, z < z′,
⇒ −∂ψ1,2

∂z
= ∓1

2
q̂2,1e−2k. (30)

Substituting the above into (25), we obtain the governing system of equations

(±1− c)(q̂1,2 ∓ γkq̂2,1e−2k) = −R̂ζ1,2 + γ(q̂1,2 + q̂2,1e−2k), (±1− c)ζ1,2 = − 1

2k
(q̂1,2 + q̂2,1e−2k). (31)

In matrix form, this is



1− c− γ R̂ −γe−2k[1 + (1− c)k] 0
1/(2k) (1− c) e−2k/(2k) 0

−γe−2k[1 + (1 + c)k] 0 −(1 + c+ γ) R̂
e−2k/(2k) 0 1/(2k) −(1 + c)






q̂1
ζ1
q̂2
ζ2


 = 0, (32)

and this yields the dispersion relation

(1 + γ2e−4kk2)c4 + 2γc3 −
[
2 + (R̂/k)− γ2(1− e−4k(1 + 2k + 2k2))

]
c2

−
[
2γ(1− R̂e−4k) + γ(R̂/k)(1− e−4k)

]
c

+

[
1− R̂

k
+
R̂2

4k2
(1− e−4k) + γ2(e−4k(1 + k)2 − 1)

]
= 0.

(33)
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FIG. 5. Contour of growth rate kci in (k, R̂) space at various values of F ; all the contours are at fixed levels at 0.01 spacing for all four panels.
The blue dashed contours are where the resonance condition (34) is satisfied.

When F = 0, γ = 0, and (32) as well as (33) reduce to previously known forms in the Boussinesq limit18.
The dispersion relation (33) may be solved numerically to obtain the four roots. We first show in Figure 5 the contours of the

growth rates over (k, R̂) space at several values of F . Figure 5(a) is exactly the solution in the Boussinesq limit for which an
analytic expression for the solution is available18. As we increase F , the growth rates reduces in Figure 5(b), notably around the
region of maximum growth. As F is increased further, the maximum growth rate decreases, and the region of instability shrinks
towards the small k region, as seen in Figure 5(c, d), consistent with our hypothesis.

Sometimes it is useful to show the locations where the resonance condition is satisfied7. These are the locations where the
counter-propagating edge waves have matching phase speeds, taking into account advection by the background flow. From
equation (27), these are the values of k where

c−1 (R̂, F, k) = 1 +


−γ

2
−

√
(γ

2

)2
+
R̂

2k


 and c+2 (R̂, F, k) = −1 +


−γ

2
+

√
(γ

2

)2
+
R̂

2k


 (34)

are equal. If interacting counter-propagating edge waves contribute the most to the dynamics, then the location where the
resonance condition is satisfied should be near to the location of optimal growth; otherwise, it shows that other dynamics (e.g.
pro-propagating modes, critical layers) are important. It also gives an indication of where in parameter space the interaction
required for instability may be expected. Locations of these are shown as dashed contours in Figure 5, and we see these show
reasonable correlation to the locations of largest growth. However, we notice that, in the larger F cases, even though we may
have edge waves with matching phase speeds, this does not necessary indicate instability, since the resonance condition does not
take into account the mutual interaction.

It is perhaps informative to see the behaviour of the individual solution branches. In Figure 6 we show the phase speeds cr
(solid blue) and the (magnified) growth rate 20kci (dashed red) for several values of R̂ and F . The first column shown in panels
(a, e, i,m) is the Boussinesq case where there is no preference for the direction of wave propagation for this choice of basic
state. Focusing on the phase speed, the outer two branches are the neutral waves, while the inner branches represent the stable
and unstable branch, occurring in conjugate pairs. As F increases, the degree of asymmetry increases, with a preference for
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FIG. 6. Line graphs of the solution branches of the dispersion relation (33), with blue solid lines denoting cr , and red dashed line denoting
20kci (factor of 20 to emphasise the instability region), at different values of R̂ and F . The rows are at different values of R̂ whilst the columns
are at different values of F (see diagram).

leftward propagating waves, which is consistent with the result in Section IV. We also note that although the branches appear to
cross, there is only instability when a pitchfork-like (rather than a transcritical one as in panels (d, h, l)) bifurcation occurs.

To further quantify the asymmetry between the leftward and rightward propagating waves, we wish to obtain the instability in
terms of the left and rightward propagating modes ζ±1,2 (cf. equation 23). Unlike the previous formulations where transformation
matrices were present18,21, the complication here is from the (p/ρ)1,2 term in equation (25). This contributes a (∂/∂t+U∂/∂x)u
term, which means we can no longer write the problem in the form ∂ζ/∂t = Aζ in a simple way, and the transformation matrix
acting on A becomes complicated. In principle, since everything is linear, an alternative approach that one could take is to work
out how the individual terms in the governing equation (25) should look like, and the equations for ζ±1,2 should have on the right
hand side the interaction terms written in terms of the appropriate contributions from the terms in (25). We may postulate for
example that the equation for ζ+1 say should only be affected by all variables not including ζ−1 , i.e., the governing equations
without the modal solution assumption should be of the form

(±1− c)q̂±1,2 = −R̂1,2

[
ζ±1,2 − F 2

(
p

ρ

)∗]
, (±1− c)ζ±1,2 =

∂ψ∗

∂x
, (35)
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where

ψ∗ = ψ±1,2 +
(
ψ+
2,1 + ψ−2,1

)
e−2k, (36)

and (p/ρ)∗ is to be defined analogously. With this, we may substitute accordingly noting that: (i) q̂±1,2 → 2k(c± −U)1,2ζ
±
1,2 via

the eigenstructure (27); (ii) we take ψ±1,2 = −q̂±1,2/2k, and again may be written in terms of ζ±1,2 via the eigenstructure; (iii) ζ±1,2
is a local variable so we leave it as is; (iv) some care needs to be taken for the (p/ρ)∗ term, but we essentially use the definition
that

p(z)

ρ
= −ψ −

{
0, z = zb
(c(zb)− U(z))(∂ψ/∂z), z 6= zb,

(37)

and these may be then be written in terms of ζ±1,2 via appropriate substitutions.
The resulting manipulations are quite unwieldy due to the large number of terms and we shall not present them here. Instead,

we may achieve the same goal by decomposing the resulting unstable modes into its normal modes. Since we already have c
from the calculations, one way to do this is to write (32) as




1− γ R̂ −γe−2k[1 + (1− c)k] 0
1/(2k) 1 e−2k/(2k) 0

−γe−2k[1 + (1 + c)k] 0 −(1 + γ) R̂
e−2k/(2k) 0 1/(2k) −1






q̂1
ζ1
q̂2
ζ2


 = c̃



q̂1
ζ1
q̂2
ζ2


 , (38)

and solve for c̃ and (q̂1, ζ1, q̂2, ζ2) (the returned solutions satisfies |c̃− c| < 10−15). To then transform the resulting solution into
ζ±1,2, we make use of the wave structure (27), so that the unstable mode in terms of normal modes is given by21




ζ+1
ζ−1
ζ+2
ζ−2


 =




2k(c+ − U)1 2k(c− − U)1 0 0
1 1 0 0
0 0 2k(c+ − U)2 2k(c− − U)2
0 0 1 1




−1

q̂1
ζ1
q̂2
ζ2


 . (39)

The plus and minus superscripts denote the rightward and leftward propagating modes, and it is primarily the interaction between
the two counter-propagating modes ζ−1 and ζ+2 that leads to instability, with the pro-propagating modes ζ+1 and ζ−2 that modify
the interactions accordingly.

With

ζ±1,2 = A±i eiε
±
1,2 , (40)

we define A±i > 0 and ε±1,2 ∈ (−π, π] to be the (real) amplitude and phase of the respective modes. With this, we show in
Figure 7 the (normalised) phase difference ∆ε/π between the counter-propagating modes and the ratio of the amplitude of the
rightward-propagating waves and the leftward-propagating waves τ , respectively given by

∆ε = ε+2 − ε
−
1 , τ =

A+
1 +A+

2

A−1 +A−2
. (41)

Starting first with the phase difference, since we defined it using the displacement rather than vorticity25, it may be seen that
−π < ∆ε < 0 is the unstable regime, and with −π/2 < ∆ε < 0, we are in the ‘hindering’ regime where the configuration
is such that the counter-propagating waves hinder each other’s propagation to achieve phase-locking, typical of fast waves (see
also Figure 8 here). We see in panels (a, d, g, j) this occurs for waves at higher values of R̂ and small k, which is consistent with
the dispersion relation (27), where faster waves occurs for larger R̂ and smaller k. The reverse is true when −π < ∆ε < −π/2,
and we are in the ‘helping’ regime. This explains why the locations where the resonance condition (34) is satisfied does not
necessarily correspond to the location of largest growth rate. As indicated from the Green’s function (20) and (28), the interaction
strength between the waves increases as k decreases, but then so does the counter-propagation speed from (23) and (27). Hence,
the gravest mode is obtained in growing, hindering configurations, which is a generic result that applies to barotropic and
baroclinic instabilities26,27.

For the ratio τ as defined in (41), we make the observation that, for the Boussinesq limit where F = 0, there is no preference
for direction of wave-propagation, so the value of τ should be equal to 1 over the parameter space, which is what we see in
panel (b). For non-zero F , there is a preference for leftward-propagation, so the value of τ is less than 1 and decreases in
size as F increases, which is what we observe in panels (d, f, h). The asymmetry is less strong for long-waves, indicating the
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FIG. 7. Diagnostics from the normal modes. (a, c, e, g) shows the normalised phase difference ∆ε/π, where −0.5 < ∆ε/π < 0 is the
‘unstable hindering’ regime, and −1 < ∆ε/π < −0.5 is the ‘unstable helping’ regime. (b, d, f, h) shows the ratio of the total amplitude of
rightward-propagating modes and the total amplitude of leftward-propagating modes.

non-Boussinesq effect appears to have a stronger effect on short-waves. This is perhaps consistent with the expectation that we
expect buoyancy effects to remain dominant for large-scale motions, and non-Boussinesq term affect small-scale motion more
substantially. Notice that the τ does not need to vanish for the instability to switch off; waves being unidirectional is a sufficient
but not necessary condition for phase-locking, and the ability to phase-lock may disappear before waves become unidirectional.

In the work of Rabinovich et al.18 in the Boussinesq regime, it was argued that, for phase-locking, the pro-propagating mode
on one flank should be in anti-phase and smaller by a factor of χ with the counter-propagating mode on the other flank. The
picture is likely to be somewhat more complicated here in the non-Boussinesq regime. There is now a preference for the direction
of travel, and thus χ1 = A−2 /A

−
1 may not be (and is generically not) equal to χ2 = A+

1 /A
+
2 . These diagnostics do not tell us

anything overly meaningful, and a presentation of the associated results has been omitted. For completeness, the ratio between
the two counter-propagating modes χ0 = A+

2 /A
−
1 shows that they are mostly comparable in magnitude over the unstable region,

with a slight preference towards the leftward counter-propagating mode A−1 . As we have seen before, the observed instabilities
are no longer stationary modes. A likely physical scenario for instability is that phase-locking is still achieved, but, as we may
expect from the hypothesis, since there is a preference for leftward propagation, the leftward travelling counter-propagating
mode dominates and imparts a leftward propagation to the resulting instability, which is consistent with the negative values of cr
observed in Figure 5. A schematic of the resulting interaction between counter-propagating waves is shown in Figure 8, and we
expect this to be the fundamental component in driving the instability, with the pro-propagating modes modifying the interaction
in a more complicated manner.
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FIG. 8. A regime diagram and for phase differences and the likely physical scenario of the resulting instability in the non-Boussinesq regime.
The regime diagram is defined using displacement with phase difference as defined in equation (41). The wave configuration between the two
counter-propagating modes is in a growing hindering regime here, with the top wave travelling to the left and bottom wave travelling to the
right. The top wave is of large amplitude, as indicated by the larger labels and arrows, consistent with the diagnostics as in Figure 7. Although
the waves are phase-locked, the leftward propagating wave dominates and imparts a leftward propagation to the resulting instability, consistent
with the observations in Figure 6.

VI. CONCLUSION AND DISCUSSION

In this article, we investigated how the portion of the baroclinic torque that is neglected by the Boussinesq approximation
affects wave propagation, and how this in turn affects the mechanistic interpretation for shear instability. Increasingly complex
examples were considered and rationalised, and it was found that the dynamics depends on the relation between pressure and
vorticity anomalies. In Section III we observed that, for neutral waves supported on a uniform background flow, the non-
Boussinesq term acts to reduce the wave speed via generating vorticity anomalies that counteract what would otherwise be
generated by the Boussinesq term, in a symmetric way that depends only on the direction of wave propagation. In Section IV,
the introduction of a background shear fixes this degree of freedom between the pressure and vorticity anomalies and introduces
an asymmetry for direction of wave propagation, which is to the left for positive shear (Q < 0). In Section V, a simplified
version of the Taylor–Caulfield problem was investigated and analysed. With positive shear, the hypothesis was that, since
there is a preference for leftward propagation of waves, as we increase the non-Boussinesq effect as measured by the Froude
number F , the waves should become increasingly uni-directional. With this, phase-locking becomes harder to achieve, and thus
increasing F reduces the region of instability and the maximum growth rates. This was indeed found to be the case via plots of
the maximum growth rate in Figure 5 and the values of the ratio of the total rightward propagating waves to the total leftward
propagating waves τ shown in Figure 7, the latter obtained by a decomposition of the unstable modes into its left and rightward
propagating constituents via the dispersion relation (27).

These results are in general agreement with the previous works on shear instability in non-Boussinesq systems12–14 even if
their precise set up is not identical to ours. We have studied in-depth the Taylor–Caulfield instability problem, which provides a
case where the non-Boussinesq effects are most prominent, since it is gravity waves that are most affected by such effects and,
in the Boussinesq limit, the interaction is completely symmetric, unlike for example the Holmboe instability23. In particular,
the observation that increasing the shear (i.e., the value of F ) stabilises the instability14 is in agreement of our results here; we
provided a mechanistic explanation by showing that the magnitude of the shear increases the degree of asymmetry for wave
propagation, which in turn affects phase-locking properties. Furthermore, the work of Barros & Choi14 analysed the non-
Boussinesq effect when it is combined with the effect of confinement by boundaries. As shown in some previous works28,29,
the reduction in growth owing to confinement can also be explained in terms of wave interaction, since mirror image waves that
are in anti-phase with the counter-propagating waves may be placed on the other side of the boundaries to enforce the boundary
conditions accordingly, as in the method of images. This results in a reduction of the overall interaction strength as well as the
ability of each wave to counter-propagating against the mean flow.

We believe that our observations and interpretation carries over to the non-Boussinesq Holmboe23 problem investigated
previously12–14, which is often attributed to the interaction between a Rossby wave and a gravity wave7,10,17,24,. Since the con-
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stituent wave modes in the interaction are fundamentally different (e.g., with phase speeds governed by ∆Q and R̂ respectively),
we naturally expect the interaction to be asymmetric. This then manifests in the instability by the phase speed cr being non-zero,
even if the mean speed of the shear layer is zero and the basic state possesses a symmetry. One observation previously is that
this asymmetry may be enhanced by making the distance between the density and vorticity defects asymmetric12–14,17,24,30–34,
as an explanation for the one-sided instabilities observes in Holmboe instability experiments35,36. Here, the non-Boussinesq
effect can contribute to the asymmetry via the physical mechanism explored here, thus providing another possible explanation
for such observations. Similar effects should also hold true in the corresponding smooth basic states30–34,37 when considered in
the non-Boussinesq regime. Furthermore, Holmboe instabilities have been shown to have the potential to contribute significantly
to mixing33,38,39, and it would be interesting to see if non-Boussinesq effects modified this observation. Non-Boussinesq effects
are expected to play a role for flows where buoyancy does not dominate, so are expected to be more active for small-scale flows,
and may play a role in shaping the dynamics in, for example, exchange flows and gravity currents; a related in-depth study is
left as future work.
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