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a b s t r a c t

Cubature rules on the triangle have been extensively studied, as they are of great practical
interest in numerical analysis. In most cases, the process by which new rules are obtained
does not preclude the existence of similar rules with better characteristics. There is
therefore clear interest in searching for better cubature rules.

Here we present a number of new cubature rules on the triangle, exhibiting full or
rotational symmetry, that improve on those available in the literature either in terms of
number of points or in terms of quality. These rules were obtained by determining and
implementing minimal orthonormal polynomial bases that can express the symmetries of
the cubature rules. As shown in specific benchmark examples, this results in significantly
better performance of the employed algorithm.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Cubature, that is the numerical computation of a multiple integral, is an important method of numerical analysis, as it
is of great practical interest in different applications involving integration. An extensive literature therefore exists on this
topic (see e.g. [1,2]), including also compilations of specific cubature rules [3].

The present paper considers cubature rules on the triangle. This is perhaps the most studied cubature domain, with a
correspondingly large body of literature a selection of which is presented here. While rules of degree up to 20, thus covering
most cases of practical interest, were progressively developed by 1985 [1,4–6], this is still an active field [7–16]. This activity
persists for two distinct reasons, the first being that different applications require different properties of the cubature rules;
the previously cited work for example focuses only on fully symmetric rules (which are also the easier to determine), while
only a few works consider rotationally symmetric [17,12] or asymmetric [18,19] rules. The second reason explaining the
interest in researchingnewcubature rules is that almost all rules in the literature have beendeterminednumerically using an
iterative procedure, therefore there is the possibility that a ‘‘better’’ rule (matching some given requirements) may exist, for
example one having fewer points (see [20] for a lower bound on the number of points for given degree). For fully symmetric
rules, the fact that the ‘‘best’’ existing rules for degree up to 14 have indeed the minimal possible number of points was
recently proved using solutions based on algebraic solving [15].

In this paper we focus on the iterative algorithm for obtaining fully symmetric cubature rules on the triangle initially
proposed by Zhang et al. [11] and recently refined byWitherden and Vincent [16]. Amain feature of [16] (which had already
been used in [18,12]) is the use of an orthonormal basis instead of the monomial basis usually employed. Further improving
upon this point, we describe here a minimal orthonormal basis for fully symmetric rules and then extend this basis to also
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cover the case of rules with only rotational symmetry. This results in a number of new rules that improve upon those found
in the literature, especially for the rotationally symmetric case.

The structure of the paper is as follows: after this introduction, Section 2 summarises the required theoretical background.
Section 3 presents orthonormal bases for the fully symmetric case, including minimal bases, in terms of the typically used
orthonormal polynomials while Section 4 presents the minimal basis in terms of symmetric polynomials. In Section 5 we
extend theminimal basis to obtain aminimal basis for cubature ruleswith rotational symmetry. A summary of the numerical
results is presented and discussed in Section 6, while the conclusions of the paper are stated in Section 7.

2. Theoretical background

A cubature rule approximates the integral of a function f on a domain Ω (normalised by the domain’s area A) as the
weighted sum of the function’s value evaluated at a set of nk points xi,

nk
i

wif (xi) ≈
1
A


Ω

f (x)dx. (1)

The cubature rule is of polynomial degree φ if Eq. (1) is exact for all polynomials of degree up to φ but not exact for at least
one polynomial of degree φ + 1.

Since Eq. (1) is linear in the function f , we only need to ensure that it is exact for a basis of the polynomials of degree φ.
The simplest such basis in two dimensions is the set of monomials xiyj in the Cartesian coordinates x and y with i + j ≤ φ,
but for the triangle another simple basis is the set of monomials Li1L

j
2L
φ−i−j
3 expressed in term of the areal (or barycentric)

coordinates L1, L2 and L3 (with all exponents being non-negative).
In two dimensions each point contributes three unknowns (two coordinates and a weight), therefore setting in Eq. (1) f

as each of the basis polynomials for degree φ results in a polynomial system of (φ+ 1)(φ+ 2)/2 equations in 3nk variables.
The solution of this system yields the cubature point coordinates and weights defining the cubature rule.

In the general (asymmetric) case it can be quite difficult to solve the above-mentioned system even for moderate values
of φ, therefore some symmetry conditions are imposed on the cubature points to reduce the number of unknowns. As
mentioned in the introduction, these symmetries may also be a requirement of the application being considered; on the
triangle, for example, full symmetry ensures that the computed approximate value of the integral is independent of the
order in which the vertices are numbered.

For cubature rules on the triangle, the most commonly used symmetry is full symmetry, where if a point with areal
coordinates (L1, L2, L3) appears in the rule, then all points resulting from permutation of the areal coordinates also appear.
Depending on the number of distinct values of the areal coordinates we therefore obtain different symmetry orbits (for 1, 2
or 3 distinct values we get orbits of type 0, 1 or 2which have 1, 3 or 6 points and contribute 1, 2 or 3 unknowns to the system
of equations); see [16] for a more detailed explanation of symmetry orbits. Full symmetry allows for a significant reduction
in the number of unknowns (roughly by a factor of 6 for larger values of φ) and, through appropriate considerations, for a
corresponding decrease in the number of equations [5].

The disadvantage of full symmetry is that in most cases it does not lead to the cubature rule with the minimal number
of points for a given degree and quality (in the sense of ‘‘quality’’ defined in Section 6). It is possible to get rules with
fewer points, while still reducing the number of equations and unknowns, by requiring only rotational symmetry. In this
case instead of considering all the permutations of the areal coordinates we only consider the even permutations, so that
(L1, L2, L3) is permuted into (L2, L3, L1) and (L3, L1, L2). This results in two types of orbits: type-0 with only one point (the
centroid) and type-1with three points, therefore the number of unknowns is approximately twice that of the fully symmetric
case.

3. Orthonormal bases on the triangle

3.1. A full orthonormal basis

While the monomials (in either the Cartesian or the areal coordinates) described in Section 2 are the simplest basis
polynomials, they lead at higher degrees to polynomial systems which are poorly conditioned, therefore the use of an
orthonormal basis has been proposed [18,12,16].

A standard set of orthonormal basis polynomials on the triangle has been proposed in the literature [21–23], which we
can write in the form

ψij(x) = P̂i

d/s


P̂ (2i+1,0)
j


1 − 2s


si (2)

where P̂ (α,β)n =
√
2n + α + 1P (α,β)n are scaled Jacobi polynomials and the values d and s depend on the coordinates.

Specific expressions for the ψij(x) (and therefore for d and s in Cartesian coordinates) are given in the literature by
specifying a reference triangle. Using areal coordinates, however, d and s are simply the difference and sum respectively
of two of the areal coordinates, without reference to a specific triangle. Choosing for example L2 and L1 we have

s = L2 + L1, d = L2 − L1. (3)
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An interesting property of the basis polynomials expressed in terms of d and s is that the ψij are the Gram–Schmidt
orthonormalisation of the monomials di(−s)j taken in increasing graded lexicographic order.

The basis P̃
φ

f of all polynomials of degree up to φ (the ‘‘full’’ basis) then contains all basis polynomials with i + j ≤ φ,
that is

P̃
φ

f =

ψij(x) | 0 ≤ i ≤ φ, 0 ≤ j ≤ φ − i


. (4)

Indicating by n(φ) the cardinality of the degree-φ basis and by m(ω) the number of basis polynomials of degree ω, for the
full basis we easily see that

nf (φ) =
(φ + 1)(φ + 2)

2
, mf (ω) = ω + 1. (5)

3.2. Objective orthonormal bases for fully symmetric rules

While a full basis is needed to represent all polynomials of degree φ, a reduced basis can be used when considering fully
symmetric cubature rules, as this restricts the form of the system of polynomial equations to be solved. Witherden and
Vincent [16] propose an ‘‘objective’’ basis, that is a subset of the full basis that can still represent the polynomial system for
fully symmetric rules,

P̃ φ
w =


ψij(x) | 0 ≤ i ≤ φ, i ≤ j ≤ φ − i


. (6)

In Eq. (6), due to the limits on j, the actual limits on i are 0 ≤ i ≤ ⌊φ/2⌋, and it is therefore easy to show that

nw(φ) =


(φ + 2)2

4


∼

1
2
nf (φ), mw(ω) = 1 + ⌊ω/2⌋. (7)

The Appendix presents the derivation of Eq. (7), with results for the bases given below being obtained in a similar way.
As already noted in [16], this objective basis is not optimal as its modes are not completely independent. Indeed, while

the basis P̃ φ
w is an objective basis, it is interesting to note that there is no obvious reason why the specific ψij polynomials

were omitted. It is actually possible to have other objective bases with the same cardinality that use another subset of the
full basis, such as

P̃ φ
w2

=

ψij(x) | 0 ≤ j ≤ ⌊φ/2⌋, j ≤ i ≤ φ − j


(8)

which is actually P̃ φ
w with the indices i and j swapped.

To further reduce the cardinality of the basis, we first note that for a symmetric orbit we will be adding the polynomials
ψij(d, s) and ψij(−d, s), which correspond to points with areal coordinates (L1, L2, L3) and (L2, L1, L3). If i is odd, however,
ψij(d, s) is also odd with respect to d and therefore all ψij with odd i can be removed from the objective basis P̃ φ

w to obtain
the ‘‘even’’ basis1

P̃ φ
e =


ψij(x) | 0 ≤ i ≤ ⌊φ/2⌋, i ≤ j ≤ φ − i, i even


(9)

for which we obtain

ne(φ) =


(φ + 3)2

8


∼

1
4
nf (φ), me(ω) = 1 + ⌊ω/4⌋. (10)

Expressing the basis polynomials in terms of d and s, and then d and s in terms of the areal coordinates, has therefore the
advantage of making obvious the symmetry and antisymmetry of the basis polynomials with respect to exchange of two
vertices.

As will also be discussed in Section 4, a symmetric basis with even lower cardinality is possible. Indeed for the minimal
basis we get [20]

nm(φ) =


(φ + 3)2

12
+

1
4


∼

1
6
nf (φ), mm(ω) = 1 + ⌊ω/6⌋ − κ6(ω) (11)

where

κa(ω) =


1 if ω mod a = 1
0 otherwise. (12)

1 Obviously different even bases can be obtained, e.g. starting from the basis P̃ φ
w2

.
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To construct a minimal basis of degree φ, it suffices to choose a subset of the even base of the same degree φ so that the
number of polynomials ψij with i + j = ω is given bymm(ω) as defined in Eq. (11), that is

P̃
φ

m̄ =

ψij(x) ∈ P̃ φ

e | #{ψij | i + j = ω ≤ φ} = mm(ω)

. (13)

While we do not provide here a proof that P̃
φ

m̄ is indeed an objective basis, it is relatively easy to check this for given values
of φ using a computer algebra system.

It is easy to create two such minimal objective bases as

P̃ φ
m =


ψ2i,ω−2i(x) | 0 ≤ i ≤ mm(ω)− 1, 0 ≤ ω ≤ φ


(14)

P̃ φ
m2

=

ψ2i,ω−2i(x) | ⌊ω/2⌋ −


mm(ω)− 1


≤ i ≤ ⌊ω/2⌋, 0 ≤ ω ≤ φ


. (15)

These two bases are obtained by considering each polynomial degree 0 ≤ ω ≤ φ and takingmm(ω) consecutive even values
for the first index of the basis polynomials, with the second index defined by the requirement that the sumof the two indices
is equal to the degree ω; in the first case we get the lowest possible values for the first index, while in the second case we
get the highest possible values.

The bases (14) and (15) can alternatively be written, after some calculations, as

P̃ φ
m =


ψij(x) | 0 ≤ i ≤ ⌊φ/3⌋, 2i ≤ j ≤ φ − i, i even, j ≠ 2i + 1


(16)

P̃ φ
m2

=

ψij(x) | 0 ≤ i ≤ φ, 0 ≤ j ≤ min(φ − i, i/2), i even


. (17)

This form, though less intuitive, was found to be slightly simpler to implement in a computer code.
Other minimal objective bases can also be derived. For example, minimising the maximum of i and j for a given φ (trying

to reduce number of computations and round-off error), results in the following basis:

P̃ φ
m3

=

ψij(x) | 0 ≤ i ≤ 2⌊φ/3⌋ + 2κ6(φ − 1), 2⌊i/4⌋ ≤ j ≤ min{φ − i, 2i}, i even


. (18)

Fig. 1 provides a graphical representation of the objective bases presented in this paper (including those for rotational
symmetry, presented in Section 5), for polynomial degree φ = 12. This should provide a more intuitive understanding of
how each objective basis is obtained. As the rows of each pyramid correspond to basis polynomials of equal degree, the
graphical representations for lower values of φ are obtained by removing rows from the bottom of each pyramid.

4. An orthonormal basis for symmetric polynomials

We present here the derivation of an orthonormal basis to be used in computing fully symmetric cubature rules on the
triangle, whichmakes full use of the imposed symmetry by using symmetric polynomials [24].More details on this approach
can be found in [15].

A symmetric polynomial is a multivariate polynomial in n variables, say x1, x2, . . . , xn, which is invariant under any
permutation of its variables. We define the elementary symmetric polynomials x̃k as the sums of all products of k distinct
variables xi, with negative sign when k is odd, that is

x̃k = (−1)k


i1<i2<···<ik

xi1xi2 · · · xik (19)

with x̃0 = 1. The fundamental theorem of symmetric polynomials states that any symmetric polynomial in the variables xi
can be expressed as a polynomial in the elementary symmetric polynomials x̃k.

We consider,without loss of generality, a type-2 orbit in a fully symmetric cubature rule on the triangle. This orbit consists
of a pointwith areal coordinates (L1, L2, L3) and the five other points resulting frompermutation of these coordinates (which,
for the type-2 orbit, are all distinct). Using Eq. (1) for a polynomial f̂ (L1, L2, L3) in the areal coordinates, yields only sums of
the form2

Ts = f̂ (L1, L2, L3)+ f̂ (L3, L1, L2)+ f̂ (L2, L3, L1)+ f̂ (L1, L3, L2)+ f̂ (L2, L1, L3)+ f̂ (L3, L2, L1). (20)

Therefore, for fully symmetric rules, the left hand side of (1) only contains symmetric polynomials in the areal
coordinates. According to the fundamental theorem of symmetric polynomials, these can therefore be expressed as
polynomials in the elementary symmetric polynomials L̃1 = −(L1 + L2 + L3), L̃2 = L1L2 + L2L3 + L3L1 and L̃3 = −L1L2L3
(noting, however, that in this case L̃1 = −1).

2 These sums appear multiplied by the weight corresponding to the orbit being considered.
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Fig. 1. Basis polynomials used in the different objective bases presented in this paper, for polynomial degree φ = 12. Only the index pairs i, j are shown
instead of ψij; the bold font indicates basis polynomials that are used in the objective basis, while smaller font size indicates polynomials in the full basis
that are not used in the objective basis.

It is therefore easily seen that instead of considering all polynomials of degree φ, or at least all polynomials in a basis
of degree φ, we only need to consider a symmetric basis consisting of the largest possible number of linearly independent
polynomials in L̃2 and L̃3 of weighted total degree less or equal to φ (with a weight 2 for L̃2 and a weight 3 for L̃3, as they
respectively involve double and triple products of L1, L2, and L3).
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The simplest such symmetric basis consists of the monomials L̃i2L̃
j
3 with 2i + 3j ≤ φ, that is

Qφ
s =


L̃i2L̃

j
3 | 2i + 3j ≤ φ


. (21)

For the basis Q
φ
s (and indeed for any symmetric basis) we easily obtain

ns(φ) =


(φ + 3)2

12
+

1
4


∼

1
6
nf (φ), ms(ω) = 1 + ⌊ω/6⌋ − κ6(ω) (22)

with κa(ω) already defined in Eq. (12), since we already used this result in Section 3.2 for the minimal objective basis.
The monomial symmetric basis given in Eq. (21) is obviously not orthogonal. To obtain an orthonormal symmetric basis

Q̃
φ
s we can orthonormalise the monomials in the basis Q

φ
s . While the orthonormalisation can be done numerically, to

minimise numerical errors we choose here to perform it analytically with a computer algebra system. This also allows for
an efficient implementation of a multivariate Horner scheme [25]. Note that monomials must be considered in weighted
lexicographic order to obtain orthonormal bases which include the bases of lower degree. Chabysheva et al. [26] have
recently discussed an orthonormalisation of this type, but their use of Cartesian coordinates leads to polynomials with a
significantly larger number of terms, and of higher degree.

It is important to note that the minimal objective basis and the orthonormal symmetric basis are not bases of the same
polynomials. Indeed, the minimal objective basis is not a proper basis of the symmetric polynomials (and actually does not
consist of symmetric polynomials); we need to sum the values of the basis polynomialsψij on all points of the orbit to obtain
a basis for the symmetric polynomials (which is then no longer orthogonal). The orthonormal symmetric basis, on the other
hand, is a proper orthonormal basis of the symmetric polynomials.

It is not clear whether the fact that the symmetric basis is really orthonormal would by itself provide better efficiency
or accuracy in obtaining results; the obvious advantage of the symmetric orthonormal basis is that it requires only a single
evaluation of the basis polynomials instead of the six evaluations (for type-2 orbits) required by theminimal objective basis.
On the other hand, the advantage of the minimal objective basis is that it is expressed in analytical form (in terms of the
Jacobi polynomials), making it easier to implement in a computer code. Additionally, the product form of the polynomials
in the objective basis allow for their more efficient evaluation.

Using either type of basis will result in a polynomial system with solutions that correspond to the same set of cubature
rules, but only if complex solutions are also taken into account. It is of theoretical interest that there can be real solutions of
the polynomial systemexpressed in terms of the symmetric polynomials that correspond to cubature ruleswith realweights
but complex point coordinates. Using an objective basis, on the other hand, it is obvious that any real solution corresponds
to a rule with real weights and coordinates.

5. Rotational symmetry

We consider now a rule with rotational symmetry. The system of polynomial equations will now contain, instead of the
terms Ts in Eq. (20), polynomials in the areal coordinates of the form

Tr = f̂ (L1, L2, L3)+ f̂ (L3, L1, L2)+ f̂ (L2, L3, L1). (23)

This can be written as

Tr =
Ts + Ta

2
(24)

where Ts is the symmetric polynomial given in Eq. (20) and Ta is the antisymmetric polynomial

Ta = f̂ (L1, L2, L3)+ f̂ (L3, L1, L2)+ f̂ (L2, L3, L1)− f̂ (L1, L3, L2)− f̂ (L2, L1, L3)− f̂ (L3, L2, L1). (25)

As already mentioned, Ts can be expressed as a polynomial in the symmetric polynomials L̃2 and L̃3. The antisymmetric
polynomial, on the other hand, can be expressed as the product of a symmetric polynomial (in L̃2 and L̃3) with the alternating
polynomial L̃A,

L̃A = (L1 − L2)(L1 − L3)(L2 − L3). (26)

Considering that L̃A is of degree 3 in the areal coordinates, we see that a rotationally symmetric basis using monomials is
given by

Qφ
r =


L̃i2L̃

j
3L̃

k
A | 2i + 3j + 3k ≤ φ, k ∈ {0, 1}


(27)

from which we can obtain [20]

nr(φ) = 1 +


(φ + 3)φ

6


∼

1
3
nf (φ), mr(ω) = 1 + ⌊ω/3⌋ − κ3(ω). (28)
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Table 1
Performance (rules/sec) for degree-15 rules with 49 points, using polyquad
(with different objective bases) and using pq.

Rule P̃ 15
f P̃ 15

w P̃ 15
w2

P̃ 15
e P̃ 15

m P̃ 15
m2

P̃ 15
m3

Q̃15
s

[1, 2, 7] 1.06 1.80 1.64 2.85 3.70 3.72 2.89 6.26
[1, 4, 6] 1.00 1.77 1.55 2.59 3.18 3.52 2.61 4.63
[1, 6, 5] 1.09 1.88 1.74 2.89 3.58 3.63 2.88 4.68
[1, 8, 4] 1.71 2.79 2.41 4.20 4.79 5.00 3.67 4.35

Table 2
Performance (rules/sec) for four different types of rules with rotational
symmetry, using polyquadwith two different objective bases and using pq.

Degree Points P̃
φ
r P̃

φ
r2 Q̃

φ
r

13 36 2.66 2.84 2.80
14 42 1.23 1.25 1.61
15 46 0.92 0.97 1.30
16 52 0.56 0.59 0.66

As in the fully symmetric case, the monomials in the basis Q
φ
r can be orthonormalised to obtain an orthonormal

rotationally symmetric basis Q̃
φ
r .

It is also possible to obtain minimal objective bases for rotationally symmetric rules in terms of the basis polynomials
ψij. After some calculations it can be seen that these will consist of a minimal objective basis for fully symmetric rules plus
a set of basis polynomials ψij with i odd. The bases in Eqs. (16) and (17) yield the following minimal objective bases for
rotationally symmetric rules

P̃ φ
r =


ψij(x) | 0 ≤ i ≤ ⌊φ/3⌋, 2i ≤ j ≤ φ − i, j ≠ 2i + 1


(29)

P̃ φ
r2 =


ψij(x) | 0 ≤ i ≤ φ, 0 ≤ j ≤ min(φ − i, ⌊i/2⌋ − κ2(i))


. (30)

As can be seen in Fig. 1, P̃ φ
r2 is just P̃

φ
r with the indices i and j swapped.

6. Results

6.1. Performance measurements

Witherden and Vincent [16] have developed the C++ code polyquad to compute fully symmetric cubature rules (on the
triangle and on other domains) using objective orthonormal bases. The objective bases for fully or rotationally symmetric
rules proposed in Section 3 can be easily implemented with minor modifications to the existing polyquad code. The
orthonormal basis for symmetric and rotationally symmetric polynomials presented in Section 4 could also be implemented
in polyquad, requiring however more extensive changes to the code. It was therefore found simpler to implement the
algorithm in a new Fortran 95 code named pq. The two implementations are not directly comparable, and their relative
performance depends among other things on the minimisation solver used and its parameters. Comparing the two codes
does however provide a first insight on the ability of one method to outperform the other.

Table 1 shows the performance of polyquad and pq for the case of fully symmetric rules of degree φ = 15 with 49
points, considering four different combination of orbits (using the notation [i, j, k] to indicate a rule with i type 0 orbits, j
type 1 orbits and k type 2 orbits), of which only the combinations [1, 4, 6] and [1, 6, 5] actually yield a cubature rule. The
performance is expressed as the number of trial rules evaluated per second, and represent the average of 20 different runs
with at least 100 rules evaluated per run.

Similarly, Table 2 shows the performance of polyquad and pq for the case of rotationally symmetric rules. As in this
case there is a single combination of orbits for a given total number of points, rules of different degrees, from 13 to 16, were
evaluated so as to always consider a combination of degree and number of points that actually yields cubature rules.

While the exact values depend on the compiler and hardware used, the results in Tables 1 and 2 show the relative
performance of different bases, with the best results in polyquad obtained with the minimal objective bases P̃m2 and
P̃r2 , and with the use of symmetric bases in pq outperforming the use of objective bases in polyquad.

The performance obtained using the orthonormal basis for symmetric polynomials critically depends on the efficiency
with which the basis polynomials can be evaluated. It is actually expected that appropriate optimisation of the computation
of the objective basis could lead to faster evaluation than in the case of the symmetric basis.
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Table 3
Number of points and quality for new fully symmetric cubature rules.

Quality Degree
15 16 17 18 19 20 21 22 23 24 25

PI 102
NI 48
PO 58 94 118

Table 4
Number of points and quality for new rotationally symmetric cubature rules.

Quality Degree
12 13 14 15 16 17 18 19 20 21 22 23 24 25

PI 57 70 85 100 109 117
NI 64
PO 31 40 51

6.2. New cubature rules

In presenting specific rules we are interested in the ‘‘quality’’ of the rule, which is expressed using two letters. The first
letter is ‘P’ if all weights are positive (otherwise it is ‘N’) and the second is ‘I’ if all points of the rule lie within the triangle
(otherwise it is ‘O’). We therefore obtain PI, NI, PO and NO rules (in decreasing order of quality).

Table 3 presents the newly obtained fully symmetric rules that improve on the ones in the literature either on quality or
on number of points. As mentioned in the introduction, it is already known [15] that no improved rules could be found for
φ ≤ 14. For PI rules, no improved results were obtained for φ ≤ 22.

The fully symmetric case has been extensively studied in the literature, especially for degrees up to 20, therefore only
a few new results were found. The implementation of the rotationally symmetric basis, on the other hand, yielded a larger
number of new rules that improve in some way on the results previously available (either in number of points or in quality
for a given number of points). These new rules are summarised in Table 4, starting from degree 12 as for lower degrees
no improved rules were obtained. Many of the obtained rules are of PI quality. However, when NI (or PO) rules with fewer
points were encountered these are also mentioned.

The coordinates and weights for the rules summarised in Tables 3 and 4, computed to double precision, are provided as
ancillary files at http://arxiv.org/abs/1411.5631. While in most cases many rules were computed for given degree, number
of points and quality, only one rule of each type is presented. This rule was selected to minimise the ratio of maximum to
minimum weight, avoiding however (for PI rules) rules with points almost on the boundary.

Rules of increasing degree take longer time to be computed, and are of decreasing interest in practical applications. For
this reason, only rules of degree up to 25 have been considered here. There is however no indication that rules of higher
degree cannot be obtained using the same method, given enough computation time. It is on the other hand also possible
that improved rules may be obtained even for the degrees considered here.

7. Conclusions

We have presented in this paper minimal orthonormal polynomial bases on the triangle for computing fully symmetric
and rotationally symmetric cubature rules. These bases can be either ‘‘objective’’ bases, that is subsets of the complete
polynomial basis that yield the required symmetry, or true fully/rotationally symmetric bases in terms of the symmetric
elementary polynomials (and the alternating polynomial for rotational symmetry).

As these bases are minimal, they allow for more efficient computation of cubature rules. We therefore present a number
of new rules that improve, in some aspects, on the rules available in the literature. Especially for the rotationally symmetric
rules, a large number of new rules is obtained, most of which are of PI quality.

Further optimisation of the implementation of the algorithm could be possible, for example by implementing a more
efficient computation of the basis polynomials or by employing a different optimisation solver to solve the polynomial
equations. This is currently a work in progress, as it would allow more efficient computation of rules of higher degree,
should they be needed, and especially more efficient computation of cubature rules on the tetrahedron.
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Appendix. Cardinality of the objective bases

To compute the cardinality of the objective bases presented in this paper, we make use of the well known formula
ν

i=0

i =
ν(ν + 1)

2
. (A.1)

Considering first the full basis, we recall here Eq. (4)

P̃
φ

f =

ψij(x) | 0 ≤ i ≤ φ, 0 ≤ j ≤ φ − i


.

For each value of i we have φ − i + 1 values of j. The cardinality of the basis is therefore

nf (φ) =

φ
i=0

(φ − i + 1) =

φ
i=0

(φ + 1)−

φ
i=0

i = (φ + 1)(φ + 1)−
φ(φ + 1)

2
=
(φ + 2)(φ + 1)

2
(A.2)

which is the well known result given in Eq. (5). The number of basis polynomials of degree ω is then directly calculated as

mf (ω) = nf (ω)− nf (ω − 1) = ω + 1. (A.3)

The same results can be obtained by calculating firstmf (ω). Considering that the degree ω of the basis polynomial ψij is
simply ω = i + j, we replace j = ω − i in the inequalities

0 ≤ i ≤ φ, 0 ≤ j ≤ φ − i (A.4)

to obtain, after some very simple manipulations,

0 ≤ ω ≤ φ, 0 ≤ i ≤ ω. (A.5)

From the second set of inequalities we directly obtainmf (ω) = ω + 1, so the cardinality is easily computed as

nf (φ) =

φ
ω=0

(ω + 1) =
(φ + 2)(φ + 1)

2
. (A.6)

Either of the procedures described above for the full basis can be employed to obtain the cardinality of the other objective
bases. The main aspect to consider is that the bounds for i and j (or ω) must be strict. This introduces the need to use the
floor function, which in turn makes the computations slightly more complicated.

Consider for example the objective basis introduced in [16], given here as P̃ φ
w in Eq. (6). The bounds for i and j are given

by

0 ≤ i ≤ φ, i ≤ j ≤ φ − i. (A.7)

From the first and last terms in the second set of inequalities we get 2i ≤ φ. As φ can be odd, the strict bound for i is
i ≤ ⌊φ/2⌋ so that the strict bounds are

0 ≤ i ≤ ⌊φ/2⌋, i ≤ j ≤ φ − i. (A.8)

For each value of i we have φ − 2i + 1 values of j therefore the cardinality of the basis is

nw(φ) =

⌊φ/2⌋
i=0

(φ − 2i + 1) =

⌊φ/2⌋
i=0

(φ + 1)− 2
⌊φ/2⌋
i=0

i = (φ + 1)(⌊φ/2⌋ + 1)− 2
⌊φ/2⌋(⌊φ/2⌋ + 1)

2

= (φ + 1 − ⌊φ/2⌋)(⌊φ/2⌋ + 1). (A.9)

Considering φ as either even or odd we can write φ = 2k + lwith l ∈ {0, 1} so that ⌊φ/2⌋ = (φ − l)/2 and

nw(φ) =

φ + 1 − (φ − l)/2


(φ − l)/2 + 1


=
(φ + 2)2

4
−

l2

4
=


(φ + 2)2

4


(A.10)

where the last step is computed considering that l2/4 < 1 and that nw is integer. We can then calculate mw , setting now
ω = 2k + lwith l ∈ {0, 1}, as

mw(ω) = nw(ω)− nw(ω − 1) =


(ω + 2)2

4


−


(ω − 1 + 2)2

4


=


(2k + l + 2)2

4


−


(2k + l − 1 + 2)2

4


=


(k + 1)2 + (k + 1)l + l2/4


−


(k + 1)2 + (k + 1)(l − 1)+ (l − 1)2/4


= (k + 1)2 + (k + 1)l +


l2/4


− (k + 1)2 − (k + 1)(l − 1)−


(l − 1)2/4


= k + 1 = 1 + ⌊ω/2⌋. (A.11)
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Alternatively we can easily computemw , by setting j = ω − i in the inequalities (A.8) to obtain

0 ≤ ω ≤ φ, 0 ≤ i ≤ ⌊ω/2⌋ (A.12)

so that from the second set of inequalities we directly obtain

mw(ω) = 1 + ⌊ω/2⌋. (A.13)

We then calculate nw , by considering separately the even and odd values of ω, as

nw(φ) =

φ
ω=0


1 + ⌊ω/2⌋


=

⌊φ/2⌋
k=0

(1 + k)+

⌊(φ−1)/2⌋
k=0

(1 + k) = · · · =


(φ + 2)2

4


. (A.14)

The formulas for n(φ) and m(ω) for the other objective bases are obtained in a similar way. In all cases, the asymptotic
behaviour for large values of φ is easily computed from the leading term of the polynomial n(φ), disregarding the presence
of the floor function.
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