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PACS 47.61.Fg – Flows in micro-electromechanical systems (MEMS) and nano-electromechanical
systems (NEMS)

PACS 83.85.Jn – Viscosity measurements
PACS 05.40.-a – Fluctuation phenomena, random processes, noise, and Brownian motion

Abstract – We analyze the advantages and drawbacks of a method which measures the viscosity
of liquids at microscales, using a thin glass fiber fixed on the tip of a cantilever of an ultra-low-noise
Atomic Force Microscope (AFM). When the fiber is dipped into a liquid, the dissipation of the
cantilever-fiber system, which is linked to the liquid viscosity, can be computed from the power
spectral density of the thermal fluctuations of the cantilever deflection. The high sensitivity of the
AFM allows us to show the existence and to develop a model of the coupling between the dynamics
of the fiber and that of the cantilever. This model, which accurately fits the experimental data,
gives also more insights into the dynamics of coupled microdevices in a viscous environment.

Copyright c© EPLA, 2014

Introduction. – The development of the study of com-
plex fluids needs measurements at micrometer scale to
observe local properties of the media. Furthermore one
often needs to measure the viscosity of very small liquid
samples. For these reasons several microrheology tech-
niques have been developed. The most common is based
on the measurement of the Brownian motion properties
either by tracking several free micrometer beads or by
trapping them in optical tweezers [1–3]. Both techniques
need a transparent fluid but an alternative method has
been recently proposed in ref. [4]. This method is based
on an excited suspended microchannel resonator and it
works for viscosities less than 10 mPa · s. In ref. [5] an-
other technique has been proposed, which measures the
thermal fluctuations of a hanging-fiber Atomic Force Mi-
croscope (AFM) probe. This method is interesting and
presents several advantages with respect to the other ones:
a) it can work with large viscosities; b) the fluid has not
to be transparent; c) the amount of needed fluid can be
very small. However the data analysis in ref. [5] relies on
several assumptions that could not be checked due to the
limited sensitivity of their apparatus.

In this paper we analyze the advantages and drawbacks
of this method with a very-low-noise AFM. This improved
sensitivity allows us to measure relatively high viscosities
and most importantly to develop a model for the fiber-
fluid interaction, which is more appropriate and precise
than that of ref. [5]. Thus the results of this paper are

not only useful for microrheology measurements of rather
viscous and opaque fluids but also to investigate the basic
dissipation mechanisms of a thin fiber inside a fluid and
to give more insights into the mechanical coupling of such
microdevices.

Experimental set-up. – The measurement of the
fluid viscosity is performed using a cylindrical micro-rod
fixed to an AFM cantilever, as sketched in fig. 1. The rod
is immersed into the fluid whose friction along its length
produces an extra damping for the cantilever, which is
detected by measuring the thermal noise of the cantilever.

The rod is fabricated using an optical single-mode fiber,
stretched under the flame of a blowtorch: its initial 125 μm
diameter is thinned to d ≈ 3 μm. The fiber is glued at
the apex of an AFM cantilever with a two-components
epoxy adhesive (Araldite). We use standard AFM can-
tilevers (Budget Sensors AIO): soft ones with a stiffness
kc ≈ 0.25N/m and a resonance frequency f0 ≈ 8 kHz, and
stiffer ones with kc ≈ 4 N/m and f0 ≈ 60kHz (resonant
frequencies after functionalization of the tip). A particu-
lar effort is done to glue the fiber as perpendicular to the
cantilever as possible to avoid torsion modes. The fiber
is cut at the appropriate length (around 200 μm) using
a sharp tweezer and a diamond tool. These operations
are performed under a bright light microscope with a ×20
magnification, using micromanipulators (from Narishige).
Finally the probes characteristics are checked with the
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Fig. 1: (Colour on-line) Experimental set-up. The fiber glued
to the cantilever is dipped in a liquid layer on a depth h, con-
trolled by the position Z of the piezo-actuator. The two laser
beams of the interferometer measure the cantilever deflection z.
The fiber deflection is noted y. The picture on the left is an
image of the fiber taken with a bright field microscope ×10
magnification.

microscope images (fig. 1) and we use only those in which
the fiber-cantilever angle is within the range [85◦, 95◦].

The hanging-fiber probe is mounted on a home-built
atomic force microscope. The deflection z of the cantilever
(fig. 1) is measured by an interferometric deflection sen-
sor [6], inspired by the original design of Schonenberger [7]
with a quadrature phase detection technique [8]: the in-
terference between the reference laser beam reflecting on
the static base and the sensing beam on the tip of the can-
tilever gives a direct measurement of the deflection with a
very high accuracy (see spectra fig. 2). This technique of-
fers a very low intrinsic noise (down to 10−14 m/

√
Hz [6])

and it is intrinsically calibrated. Thanks to this high reso-
lution, no external excitation of the cantilever is required,
and its thermal fluctuations can be measured over a wide
frequency range.

The viscosity measurement is performed using the same
fiber with 4 different liquids: alcanes (dodecane and hex-
adecane) and silicone oils (of viscosity 10 mPa · s and
20 mPa · s, respectively denoted 10v and 20v) chosen for
their range of viscosity, their weak evaporation, and their
good wetting of the glass fiber. The liquid is put in a
1.4 cm diameter copper container placed under the fiber;
the liquid layer is about 1 mm deep. When changing the
liquid, the fiber is rinsed thoroughly with the new liquid,
and the copper container is rinsed as well before putting
fresh liquid in it. Silicone oils have been studied after al-
canes, in an increasing order of viscosity. The pool can be
moved along the vertical axis Z by a piezo-actuator. The
measurements are performed at 25 ◦C.

In order to change the vertical height h between the tip
of the fiber and the undisturbed surface of the liquid (see
fig. 1), the position Z of the container is changed in 3 μm

h = 87 μm
h = 3 μm
air
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Fig. 2: (Colour on-line) Soft cantilever, hexadecane. Solid line:
measured PSD Smeas

z for several dipping depths h. Dashed line:
fit with the spectrum SSHO

z,0 of the SHO model using only the
data around the resonance (see text for details).

steps. We wait a few seconds after the displacement before
starting the measurement to let the fluid relax. The origin
of the height h is located with a 3 μm uncertainty either
from the jump of the static deflection due to the capillary
force on the fiber or from the sudden broadening of the
noise spectra between two displacement steps. The error
on the relative height results from the mechanical drift
of the actuator and the evaporation of the liquid, and is
estimated to be lower than 5 μm for a typical 100 μm dip-
ping experiment. By making several approach-separation
cycles we checked that the meniscus height is less than
12 μm and that the wetting layer has a negligible effect on
the results.

The cantilever deflection is sampled for at least 5 s, with
a 24 bits resolution, at 240 kHz for the soft cantilever and
500 kHz for the stiff one. The Power Spectral Density
(PSD) of the deflection is calculated with a resolution of
about 100 Hz for the data in liquid and 25 Hz for data in
air. The spectra are averaged more than 1000 times in
order to reduce the statistical noise.

Data analysis and parameters definition. – In
figs. 2 and 3 the measured PSD Smeas

z of the cantilever
deflection induced by the thermal noise is plotted at sev-
eral dipping depth h in hexadecane for the soft and stiff
cantilevers. The broadening of the resonance peak shows
the increase of damping as a function of h.

In order to check the quality of the measurement and to
extract a reliable value of the viscosity one has to fit the
PSD in a wide frequency range. As there is no external
force acting on the system, we can use the Fluctuation
Dissipation Theorem (FDT) [9], linking the mechanical
response function of the total system to the PSD Sz(f) of
the cantilever deflection z:

Sz(f) = −4kBT

ω
Im

(
1

G(ω)

)
=

4kBTG′′

ω|G|2 , (1)

where G = G′ + iG′′ is the the inverse of the mechanical
response function of the total system, kB is the Boltzmann
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Fig. 3: (Colour on-line) Stiff cantilever, hexadecane. Solid line:
measured PSD Smeas

z for several dipping depths h. Dashed
line: fit with SCHO

z,0 . Bold solid line: fit with SCHO
z,B . Black: air,

blue: h = 40 μm, red: h = 100 μm.

constant, T the temperature, Im(.) stands for the imag-
inary part and ω = 2πf is the angular frequency. For a
Simple Harmonic Oscillator (SHO) with viscous damping
for example, the response function is [9]:

G(ω) = k − mω2 + iγω (2)

with k, m and γ respectively the stiffness, mass and damp-
ing coefficient of the SHO.

A model for the damping. The key point is to have a
reliable model for G and most importantly of the damp-
ing coefficient of this system, assuming that the fiber is a
cylinder oscillating along its axis. As far as we know there
are no exact analytical solutions to this problem and one
has to do several approximations. The starting point is
the Stokes’ solution for the drag of a sphere oscillating
at frequency ω in a fluid of viscosity η and density ρ [10].
Supposing that there are only geometric corrections for the
fiber we can write the dissipation γc of the fiber-cantilever
system as

γc = γ0(h, d) + b
√

2
d

δ
ηh = γ0(h, d) + bd

√
ρηω h, (3)

where δ =
√

2η/(ρω) is the viscous penetration length and
b a generic geometric factor to be determined (b = b(h, d)
may depend on the values of h and d). An approximated
solution for the viscous coefficient γ0 for a fully immersed
rod is [11]:

γ0(h, d) = γ� +
2π

ln(h/d) + ε
ηh, (4)

where the constant γ� is the sum of the dissipation in
the liquid meniscus and of the effective dissipation of
the cantilever in air. The coefficient ε is a correction
(smaller than 1), which depends on the shape of the fiber’s
cross-section1. Except for the correction in ln(h/d), γ0 has

1In the ellipsoid model described in ref. [11] and used by Xiong
et al. [5], ε does not depend on h in our h/d range and is equal to
0.19. In a cylinder approximation [11], ε varies between −0.55 and
−0.58 and eq. (4) is valid only for a ratio h/d > 4.

a leading linear behavior in our range of h. As pointed out
in ref. [10] the term in

√
ω in eq. (3) becomes relevant only

if d > δ, thus it can be usually neglected at low frequencies.
Using eq. (3), we can compute [10] the storage modulus
G′ and the loss modulus G′′ of the fiber-cantilever system:

G′(ω) = kc + km − (mc + mfluid)ω2 − bd
√

ηρ ω3/2 h, (5)

G′′(ω) = γ0ω + bd
√

ηρ ω3/2 h, (6)

where kc is the stiffness of the cantilever, km is the menis-
cus stiffness, mc is the effective mass of the cantilever-
fiber system, and mfluid is the mass of the displaced fluid.
In our case, mfluid represents in the worst case of a to-
tally immersed fiber only 3% of mc and it will be ne-
glected. km is of the order of magnitude of the liquid’s
surface tension, a few tens of mN/m; we will not consider
its possible frequency dependence in this work. Inserting
expressions (5) and (6) in eq. (1) we get

Sz =
4kBT (γ0 + B̃

√
ω h)

(k − mcω2 − B̃ω3/2 h)2 + (γ0ω + B̃ω3/2 h)2
(7)

with k = kc + km and B̃ = bd
√

ηρ. Note that this
way we consider the cantilever-fiber system as a SHO
with a frequency-dependent damping coefficient γc and
a frequency-dependent added mass that can be viewed as
the mass of fluid in the boundary layer.

This model, which takes into account the effect of the
boundary layer to compute dissipation, will be noted
model SHOB and the predicted spectrum SSHO

z,B (f) where
four free parameters have to be adjusted to fit the data: k,
mc, γ0 and B̃. However when the resonance frequency is
small enough (i.e. d < δ ) then we may impose B̃ = 0. In
this case, we recover the classic SHO model, noted SHO0,
leading to the spectrum SSHO

z,0 (f).
Simple Harmonic Oscillator. We consider first the

SHO model for the soft cantilever. Indeed at the res-
onance frequency (8.2 kHz), δ varies between 6.8 μm for
dodecane and 28 μm for silicone oil 20v, thus for all the
liquids that we use δ > d � 3 μm and B̃ can be neglected.
We therefore fit the spectra using SSHO

z,0 (f) which has the
advantage of having only three free parameters.

In order to measure γ0 we proceed in the following way.
To begin with, we simply fit the resonant frequency peak,
as done in ref. [5], for each dipping depth h and each liq-
uid. This method is not very precise because the values of
γ0 depend on the chosen fitting range around the soft res-
onance. Therefore, one has to decide a criterium to select
this fitting range, which, in our case, is chosen in order to
have the best fit in the largest part of the spectra. The
results of these fits around the resonance peak are shown
in fig. 2. We notice that the spectra SSHO

z,0 do not fit prop-
erly our data at low frequency where some extra noise is
present below 2 kHz. The use of one more free parameter
with model SHOB does not improve the quality of the fit-
ting, because the additional terms deform the SHOB noise
spectrum even further away from our data.
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In order to understand where the noise increase at
f < 2 kHz is coming from, we analyze more precisely
the spectra in fig. 2. We notice that the spectrum in air
presents another resonance at about 29 kHz, which corre-
sponds to the first flexion mode of the fiber oscillations.
This resonance disappears when the fiber is immersed. To
find out what happens to this resonance, we decided to
do the same measurement with the same kind of fiber
(length and diameter) on a more rigid cantilever having
a resonance around 60 kHz. The aim is to avoid damp-
ing the fiber noise in the inertial tail of the resonance.
The spectra measured in air and in hexadecane using this
stiffer cantilever-fiber system are plotted in fig. 3. In the
spectrum in air, we clearly see the resonance of the can-
tilever at 57 kHz and the resonance of the fiber at 24 kHz,
at approximately the same frequency than the previous
system. When the fiber is dipped into the fluid this res-
onance becomes over-damped and the cut-off frequency
goes towards low frequencies close to 2 kHz. In contrast,
the resonance of the stiff cantilever behaves similarly to
that of the soft one, presenting a continuous broadening
of the resonance peak as a function of h. All these remarks
suggest that there is probably a coupling between the fiber
and the cantilever oscillations which perturbs the simple
picture of a SHO.

Coupled oscillators. Let us develop a model of Cou-
pled Harmonic Oscillators (CHO) for the cantilever (de-
flection z) and the fiber (deflection y of its extremity). In
a first approximation, the cantilever motion corresponds
to a forcing of the clamping base of the fiber along its axis,
thus we will neglect the effect of the cantilever deflection
on that of the fiber. The fiber is thus modeled as a classic
SHO and the Fourier transform yω of its deflection y is
described by

(kf − mfω2 + iγfω)yω = Ff , (8)

where mf , γf and kf are, respectively, the effective mass,
dissipation and stiffness of the fiber and Ff is a delta-
correlated thermal noise acting on the fiber, whose spec-
trum is SFf

= 4kBTγf . The PSD of the fiber thermal
noise is

Sy(f) =
4kBTτf

kf [(1 − ω2/ωf
2)2 + (τfω)2]

, (9)

where ωf =
√

kf/mf is the resonance of the fiber and
τf = γf/kf is the fiber relaxation time.

The fiber motion applies a torque on the cantilever end,
thus the equation describing the Fourier transform zω of
z is coupled to the fiber deformation y:

(G′ + iG′′)zω = Fc + αyω, (10)

where G′ and G′′ are defined in eqs. (5) and (6), and Fc is
a delta-correlated thermal noise, whose spectrum is SFc =
4kBTγc. The term αy (with α the coupling coefficient)
assumes the simplest coupling with the deflection of the
fiber y. The PSD SCHO

z (f) of z can be computed from

eqs. (8) and (10) by making the very reasonable hypothesis
that Ff and Fc are uncorrelated noise. We get

SCHO
z,n (f) = SSHO

z,n (f) +
α2

|G|2 Sy(f), (11)

where n stands for either 0 or B depending whether we
impose B̃ = 0 or not.

When the fiber is dipped into the fluid, we notice
that the motion of the fiber is over-damped, i.e. τf �
1/ωf . Thus eq. (9) reduce to a Lorentzian where
(1 − ω2/ωf

2)2 = 1. We can try to fit our data with
these CHOn models, i.e. eqs. (11) and (9). Because of
the large number of parameters in the model we proceed in
the following way using first the model CHO0 with B̃ = 0.
We begin to fit the spectrum around the cantilever reso-
nance to estimate γ0 and to obtain a first approximation
of SSHO

z,0 . Inserting this first approximation in eq. (11), we
can fit the expression Smeas

z /SSHO
z,0 − 1 with a Lorentzian,

from which the values of kf/α2 and τf are obtained. Using
these values in eq. (11) one can improve the fit of SSHO

z,0
and repeat the iteration. After 3 iterations the values of
the parameters become stable and we obtain a good fit on
the whole frequency range (fig. 3). The SCHO

z,0 fits well the
resonant peak as can be seen in the inset of fig. 3. How-
ever we see that the fit is not correct around 10 kHz where
the fitting curve is systematically above the data. The
problem could come from the fact that we perform the fit
around the resonance at 60 kHz keeping B̃ = 0. At such a
high frequency the CHO0 model is probably not adequate
because the boundary layer thickness δ is about 4.5 μm,
which is close to the fiber diameter. Thus one should use
the CHOB model which takes into account the boundary
layer effects.

To fit the data with SCHO
z,B (f), we use the same iter-

ation approach with one difference: to reduce the num-
ber of free parameters, the stiffness and mass are now
fixed to the values measured in air, kair

c = 3.7 N/m and
mair

c = 2.9 × 10−11 kg. This is justified because the other
contributions to the stiffness and mass are negligible with
respect to the values in air in the high frequency experi-
ment. After several iterations we get a correct fit of the
data except around the resonance (see the inset of fig. 3)
where the fit SCHO

z,B (f) is higher than the data. This in-
dicates that this model for the cantilever’s resonance at
high frequency is not perfect. Thus we conclude that in
order to discriminate between the two models (B̃ = 0 and
B̃ �= 0), we would need an even larger frequency range.
One could check at low frequencies, where SSHO

z,B (f) has
a dependence in

√
ω instead of the flat curve of SSHO

z,0 (f).
But in our data, the low-frequency part is hidden by Sy(f).
On the other hand, one could use the high-frequency part
of the spectra. Indeed at high frequency, SCHO

z,B (f) should
decrease in ω−7/2 instead of ω−4 of SSHO

z,0 (f). But in this
case the intrinsic noise of the interferometer hides the data
and this comparison is not possible. Besides, we could
see in air the second mode of the fiber very close to the
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Fig. 4: (Colour on-line) Evolution of the fiber stiffness kf and
damping coefficient γf as a function of the dipping depth h
of the fiber in hexadecane. The stiffness is constant, while
the damping increases from 0 and saturates for large h, where
immersion approaches the base of the fiber.
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63 μm: PSD Smeas

z (f) of the measured thermal noise for each
liquid (thin lines); fit with SCHO

z,0 (f), modeling the coupled os-
cillators (thick lines).

cantilever’s resonance on most high-frequency probes we
tested, so that this mode may also disturb the cantilever’s
resonance. As a result, it is not possible to clearly sepa-
rate the two contributions to the dissipation γc from our
measured noise spectra.

We can see in fig. 4 the evolution of the stiffness kf and
the dissipation γf of the fiber lateral oscillations as a func-
tion of dipping depth estimated from the two models. It is
interesting to notice that the values obtained from the two
models are very close and have a dependence on h which
is quite reasonable. Except at the very beginning2, the
stiffness is constant as expected. Instead, the dissipation
increases and tends to saturate at large h. This behavior
can be understood considering that γf is the damping of
the deflection mode of the fiber which has a large displace-
ment at the free extremity and a small one towards the
anchoring point. Therefore the non moving part of the

2When the fiber is just touching the liquid, surface tension effects
may perturb the measurement.
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Fig. 6: (Colour on-line) (a) Dissipation γ0 as a function of h for
each liquid. (b) Linear dissipation of each liquid (2πcη) as a
function of the tabulated viscosity for alcanes and silicone oils.

fiber will not contribute to dissipation and γf increases
fast at small h (region of large lateral displacement) and
saturates above a certain h (region of small displacement).
From this data it is possible to have the order of magni-
tude of α. Indeed taking into account the size of the fiber
and its Young modulus one estimates kf � 0.1 N/m and
α � 0.06–0.07 which is a reasonable value for the coupling.

Looking at fig. 2 we notice that the resonance of the
fiber in air is about at the same frequency for the soft
probe as for the stiffer one3. We can thus suppose that
the cut-off frequency when the fiber is immersed is also
around 2 kHz, that is to say, at the left of the cantilever
resonance. Therefore we can use the same iteration than
before to analyze our spectra using eq. (9) for the spectrum
of the fiber and model CHO0. In fig. 5, we can see fits for
each liquid at h = 63 μm. We see that now the model fits
our data properly on the whole frequency range. We can
also see in fig. 4 the same evolution for the stiffness and
the dissipation of the fiber. Data are noisier than those at
high frequency because the resonance of the cantilever is
closer to the cut-off frequency of the fiber.

Viscosity measurement at low frequency. In order to
perform viscosity measurements, we choose to focus on
low-frequency measurements, which present several ben-
efits when compared to high-frequency measurements.
Firstly the hanging-fiber probes are less difficult to
fabricate on softer and longer cantilevers. Secondly, the
signal over noise ratio is much higher with soft can-
tilevers. Finally, the viscosity measurement is based on

3In fig. 2 the amplitude of the fiber resonance is very low be-
cause being at a frequency larger than the cantilever resonance, it is
strongly filtered by the cantilever response (see eq. (11)).
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the dissipation γ0, and requires neither the calibration of
the unknown coefficient b not the knowledge of the liquid’s
density ρ.

We extract the dissipation coefficient γ0 for each liquid
at each depth from the CHO0 fitting procedure on the soft
probe’s data. The results are plotted in fig. 6(a), where we
can see a linear behavior as a function of h in the displayed
immersion range where h/d > 6. The error bars take
into account the standard deviation of the mass and the
stiffness of the cantilever during the dipping. Our range
in h is too small to measure the logarithmic correction of
eq. (4) and we rewrite it as: γ0 = γ� + 2πcηh, where c is
a parameter that depends on the geometry of the probe.
From the plot of fig. 6(a), we extract the slope 2πcη for
each liquid, and plot it in fig. 6(b) as a function of the
tabulated viscosity η. The data are aligned on a straight
line which correctly crosses the (0,0) point with a slope
2πc = 3.67 ± 0.07. We thus obtain c = 0.58 ± 0.01.

This value is interesting because it clearly excludes that
γ0 is simply given by eq. (4). Indeed for our measuring
range 6 < h/d < 30 and for −1 < ε < 0 one finds that the
function h/(ln(h/d)+ε) is well approximated by a straight
line (c′h + c′

o) with c′ always very close to 0.2, which is
incompatible to the measured value of c. This difference
is not so surprising since the model in ref. [11] considers a
fully immersed fiber whereas it crosses the liquid-air inter-
face in our system, and a small transverse component in
the driving by the cantilever also contributes to the mea-
sured dissipation. Thus it is necessary to calibrate c for
each fiber using reference fluids to have reliable results.

Conclusion. – In this paper, we have analyzed the
method of ref. [5] for the measurement of the local viscos-
ity at micrometer scales. This method has several advan-
tages, but it must be used with some precautions. Indeed,
the high sensitivity of our apparatus allows us to show the
existence of a fiber-cantilever coupling which may strongly
perturb the measure. We propose a model which takes
into account this coupling and fits the thermal noise spec-
tra. Of course the effect of the coupling can be tuned.
For example, by increasing the resonant frequency of the
cantilever, we can clearly separate the frequency of the
first mode of the cantilever and the first mode of the fiber.
This increases the quality of the data for the fiber’s mode
but does not simplify the viscosity measurements from the
cantilever’s resonance. We have tested a model taking into
account the frequency-dependent boundary layer terms
(model SHOB), but could not discriminate it from a sim-
pler SHO0 model by fitting the measured spectra, despite
our high-resolution deflection sensor. As a result, we pre-
fer using the simpler model with less free parameters.

Taking into account the coupling, with our low-noise
AFM, we can measure the viscosity between 1 mPa · s
and at least 20 mPa · s, with 5% of accuracy for its ab-
solute value. The accessible viscosity range is limited at
1 mPa · s in our measurements because for lower viscosi-
ties the fiber’s mode becomes too close to the cantilever’s

mode and cannot be separated from it. The upper vis-
cosity bound has not been reached yet, since over-damped
motion for higher viscosities can still be analyzed. In our
analysis we assume a no-slip boundary condition on the
fiber, which is justified because the intrinsic slip length re-
mains below 30 nm for simple liquids [12] (while it reaches
the micrometric scale for polymer melts [13]). Beware that
boundary slippage can strongly affect the b and c coeffi-
cients when working with nano-fibers like in refs. [14,15] or
when studying polymer melts with micro-fibers as in [16].

Finally our analysis on the cantilever fiber-coupling
shows that using functionalized cantilevers is often a good
idea but it is necessary to check the influence of added
elements [17]. In general our results give more insights
into the dynamics of coupled microdevices in a viscous
environment.
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