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Abstract

Background: Reliability is an important parameter in breeding. It measures the precision of estimated breeding
values (EBV) and, thus, potential response to selection on those EBV. The precision of EBV is commonly measured
by relating the prediction error variance (PEV) of EBV to the base population additive genetic variance (base PEV
reliability), while the potential for response to selection is commonly measured by the squared correlation between
the EBV and breeding values (BV) on selection candidates (reliability of selection). While these two measures are
equivalent for unselected populations, they are not equivalent for selected populations. The aim of this study was
to quantify the effect of selection on these two measures of reliability and to show how this affects comparison of
breeding programs using pedigree-based or genomic evaluations.

Methods: Two scenarios with random and best linear unbiased prediction (BLUP) selection were simulated, where
the EBV of selection candidates were estimated using only pedigree, pedigree and phenotype, genome-wide
marker genotypes and phenotype, or only genome-wide marker genotypes. The base PEV reliabilities of these EBV
were compared to the corresponding reliabilities of selection. Realized genetic selection intensity was evaluated to
quantify the potential of selection on the different types of EBV and, thus, to validate differences in reliabilities.
Finally, the contribution of different underlying processes to changes in additive genetic variance and reliabilities
was quantified.

Results: The simulations showed that, for selected populations, the base PEV reliability substantially overestimates
the reliability of selection of EBV that are mainly based on old information from the parental generation, as is the
case with pedigree-based prediction. Selection on such EBV gave very low realized genetic selection intensities,
confirming the overestimation and importance of genotyping both male and female selection candidates. The two
measures of reliability matched when the reductions in additive genetic variance due to the Bulmer effect,
selection, and inbreeding were taken into account.

Conclusions: For populations under selection, EBV based on genome-wide information are more valuable than
suggested by the comparison of the base PEV reliabilities between the different types of EBV. This implies that
genome-wide marker information is undervalued for selected populations and that genotyping un-phenotyped
female selection candidates should be reconsidered.
Background
Selection in livestock breeding programs is commonly
based on estimated breeding values (EBV) of selection
candidates. In addition to EBV, the variance of predic-
tion errors of EBV (PEV) is also routinely calculated
based on the statistical model that is used for genetic
evaluation in order to provide a measure of the precision
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with which the EBV are estimated [1, 2]. PEV for genetic
evaluations are routinely produced, either by computa-
tionally intensive direct inversion of the left hand side of
the mixed model equations or, where this is not possible,
by approximations [3–7] or selection index theory [8, 9].
To make interpretation of the precision of published
EBV easier for the end user and because of the relation-
ship between reliability and response to selection [10],
many breeding programs report the reliability of EBV
derived from PEV instead of directly reporting PEV, cal-
culated as 1 minus the ratio between PEV and additive
cle is distributed under the terms of the Creative Commons Attribution 4.0
ns.org/licenses/by/4.0), which permits unrestricted use, distribution, and
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genetic variance. Typically, additive genetic variance in
the base population is available and used in calcula-
tions, what we will call the base PEV reliability, which
quantifies the magnitude of PEV in relation to the base
additive genetic variance. This measure of reliability is
commonly used to reflect the extent to which EBV may
change when more information becomes available,
which is particularly relevant in breeding programs
with overlapping generations, e.g., in dairy cattle
breeding, but much less so in, e.g., pig and poultry
breeding programs.
Another measure of the reliability of EBV is the

squared correlation between breeding values (BV) and
EBV of selection candidates. This measure will hereafter
be called the reliability of selection because it measures
the response to selection that can be obtained when in-
dividuals are selected on those EBV, since response to
selection is proportional to the accuracy of the EBV, i.e.,
to the square root of the reliability [10]. The base PEV
reliability and the reliability of selection are equivalent
for unselected populations (See Appendix) but not for
selected populations, because selection reduces additive
genetic variance and therefore also the reliability of se-
lection [9, 11–15]. A recent study [16] showed that base
PEV reliability may substantially overestimate the reli-
ability of selection for selected populations, and that the
equilibrium value of the latter, i.e., the equilibrium
reliability, can be predicted from the parameters of unse-
lected populations. The theoretical basis of this overesti-
mation is demonstrated in Additional file 1 [See
Additional file 1]. In summary, this overestimation is
due to the reduced additive genetic variance among se-
lection candidates in populations under selection and
the magnitude of the overestimation varies depending
on the information that contributes to the EBV. The
overestimation is larger when the EBV depend more on
old information from the parental generation than on
new information from the current generation. The old
information has lower predictive ability for selected pop-
ulations than for unselected populations, because that
information was already used to perform selection of
parents and the base PEV reliability does not consider
this selection. More specifically, the EBV of selected par-
ents have a reduced variance and a low correlation with
the true BV of progeny, which vary between progeny
due to recombination and segregation of parental ge-
nomes. An example of an extreme case of overesti-
mation of reliability of selection by the base PEV
reliability is when the EBV of selection candidates are
based on a pedigree prediction, which uses only the old
information to estimate the parent average (PA) compo-
nent of the EBV. A counter example, for which the over-
estimation is very small is when the EBV are based on a
large progeny test, which provides new information to
precisely estimate both the PA and the Mendelian sam-
pling (MS) components of the EBV.
Since the base PEV reliability is a measure of the pre-

cision of EBV, it is often used as a measure of efficiency
when comparing alternative breeding programs, i.e., as a
measure of the reliability of selection. If comparisons be-
tween the alternative breeding programs that undergo
selection are based on the base PEV reliabilities, then
the contribution of old information to response to selec-
tion will be overestimated and the contribution of new
information will be underestimated. With the introduc-
tion of genomics, such comparisons have become very
common, e.g., comparing the reliability of progeny-
tested males and genomically-tested young males [17].
In addition, these comparisons often involve different types
of reliabilities: the base PEV reliability for progeny-tested
males and the reliability of selection for genomically-tested
young males via either forward validation or cross-
validation. These two types of reliabilities are not always
comparable because the base PEV reliabilities are the ex-
pected theoretical values under the assumption of no selec-
tion, while validation measures reliability of selection for
the analyzed case.
While traditional pedigree-based evaluations are rea-

sonably accurate at estimating the PA component of
breeding values, they often provide limited information
to estimate the MS component accurately, particularly
for young selection candidates. Genomic data provides
new information to estimate both the PA and MS com-
ponents with moderate reliability, which accounts for its
usefulness in breeding programs [17–19]. If the benefit
of this new (genome-wide marker) information is evalu-
ated using the base PEV reliability, its usefulness in a
breeding program may be undervalued, particularly
when compared to the value of old information from the
parental generation, i.e., the EBV of selected parents
[16]. There are potentially many scenarios that need to
take the predictive value of old and new information
into account when evaluating the usefulness of genome-
wide marker information in breeding programs undergo-
ing selection, as for example, the value of collecting
genome-wide marker information on un-phenotyped fe-
male selection candidates. To date, most breeding pro-
grams have predominantly used genome-wide marker
information to select un-phenotyped males, but not fe-
males. One of the reasons for this is that the perceived
improvement in response to selection when selecting
un-phenotyped females using genome-wide marker in-
formation is limited, e.g., [20–22].
The aim of this research was to quantify the effect of

selection on the two measures of reliability for pedigree-
based and genomic evaluation of selection candidates,
with the following working objectives: (i) to complement
the study of Bijma [16] by comparing the base PEV
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reliability and reliability of selection for pedigree-based
and genomic evaluations in populations under selection;
(ii) to evaluate the benefit of having genome-wide
marker information in such breeding programs; and (iii)
to quantify the effect of selection on additive genetic
variance and the reliability of selection and compare
these obtained values with theoretical equilibrium
reliabilities of [16].

Methods
The effect of selection on the two measures of reliability
was quantified using simulated data by comparing a sce-
nario with random selection to a scenario with selection
on best linear unbiased prediction (BLUP) EBV. The
simulation procedure involved generating genome, pedi-
gree, and phenotype data, which were in turn used in
genetic evaluation of selection candidates with the differ-
ent types of information. The effect of selection on the
two measures of reliability was evaluated by: (i) compar-
ing the base PEV reliabilities and reliabilities of selection,
(ii) quantifying the realized genetic selection intensities,
and (iii) evaluating the reduction of the reliability of se-
lection due to reduction in additive genetic variance and
comparing it to the theoretical equilibrium reliabilities.
Ten replicates were simulated and all the calculated sta-
tistics were summarized with their average and standard
deviation or 95 % confidence interval. All calculations
were done in R [23] unless otherwise stated.

Genome
Sequence data were generated for 4000 base haplotypes
for each of 30 chromosomes of the genome using the
Markovian Coalescent Simulator (MaCS) [24]. The chro-
mosomes were each 100 cM long, comprised 1.0 × 108

base pairs and were simulated using a per site mutation
rate of 2.5 × 10−8, a per site recombination rate of 1.0 ×
10−8, and an effective population size (Ne) that varied
over time, reflecting the estimates for the Holstein cattle
population [25]; in the base generation, Ne was equal to
100 and was increased linearly to 1256 at 1000 years
ago, 4350 at 10 000 years ago, and 43 500 at 100
000 years ago. A set of 9000 segregating sites were se-
lected at random from the simulated base haplotypes to
represent causative loci affecting a complex trait, with a
restriction that 300 were sampled from each chromo-
some. The allele substitution effect at each causative locus
(αi) was sampled from a normal distribution with a mean
of 0 and standard deviation of 1 divided by the square root
of the number of causative loci, i.e., 1/9000. A second
sample of 60 000 segregating sites was selected at random
as genome-wide markers on a single nucleotide poly-
morphism (SNP) array, with a restriction that 2000 SNPs
were sampled from each chromosome. There was no re-
striction on the frequency of causal loci or SNPs.
Pedigree and phenotypes
The base haplotypes were dropped through a simu-
lated pedigree of 25 generations using the AlphaDrop
program [26]. Each generation was generated by fac-
torial mating of 20 males and 500 females, with four
half-sib progenies per female. Altogether, there were
20 × 25 × 4 = 2000 individuals per generation, of which
half were males and half females.
The true BV of an individual was obtained as the sum of

all allele substitution effects of the causative loci, account-
ing for the individuals’ genotype at these loci. The base
additive genetic variance was equal to σA,0

2 = aTa/(n − 1),
where a is a 0 mean vector of BV of the n base individuals.
Phenotypes were obtained by adding a residual term to
the BV. The residual variance was scaled according to the
base additive genetic variance to give a heritability that
was set to a high value (0.75). Phenotypes were assigned
only to males, which resulted in a breeding scheme in
which males had a performance record of their own and
records on 51 male half sibs, whereas females had records
on 52 male half sibs. This setup was used to mimic the
level of reliabilities that are commonly achieved in dairy
cattle breeding programs with progeny testing, but keep-
ing the size of the simulated population small. The base
PEV reliabilities of the different types of EBV from these
data matched closely the level of reported reliabilities from
real dairy cattle breeding programs, e.g., [17, 20, 22].
Scenarios
In the random selection scenario (Table 1), each of the
25 generations were simulated by mating 20 males and
500 females that were each selected at random from a
set of 1000 selection candidates of each gender. In the
BLUP selection scenario, the simulation involved two
stages to generate genomes influenced by selection. In
the first stage, 10 generations were generated as in the
random selection scenario to reach equilibrium in the
pedigree information, so that subsequent selection on
this information would induce a reduction in additive
genetic variance, i.e., the Bulmer effect [11, 15, 16]. In
the second stage, each of the 15 generations were simu-
lated by mating 20 males and 500 females that were each
selected from a set of 1000 selection candidates of one sex
based on BLUP evaluation using pedigree and phenotype
information from the current and all previous generations.
This procedure provided data to analyze the effect of se-
lection on the two measures of reliability when the Bulmer
effect had reached equilibrium, which was conservatively
assumed to be reached after five generations of selection.
The results confirmed this assumption. Therefore, the
data from generations 16 to 25 were in equilibrium and
used to analyze the effect of selection on reliabilities, as
described in the following.



Table 1 Simulation design and data available for analysis

Generation Purpose Selection Genetic evaluation using

1 to 10 Pedigree information Random Pedigree

11 to 15 Bulmer equilibrium Random or BLUP Pedigree

16 to 20 Training population Random or BLUP Pedigree, markers, phenotypes

21 to 25 Validation population Random or BLUP Pedigree, markers
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Genetic evaluation
The simulated data were subject to retrospective genetic
evaluation of selection candidates in each generation
using different combinations of the following informa-
tion (Table 1): pedigree for 25 generations, 60 000
genome-wide marker genotypes for 5000 males from
generations 16 to 20 and for 2500 males and females
from generations 21 to 25 (i.e., a random sample of 500
individuals from each generation), and 5000 phenotypes
for males from generations 16 to 20. Individuals in gen-
erations 21 through 25 had no phenotypes and served as
a validation set to show the reduction in reliabilities with
each next generation of prediction. To limit the amount
of computing, a random sample of 500 validation indi-
viduals per generation was taken to represent the whole
generation and evaluated using the different types of
information.
Genetic evaluation was based on the following stand-

ard mixed model [2]:

y ¼ Xbþ Zaþ e; ð1Þ

where y is a vector of phenotype records, b is a vector of
fixed effects (only intercept was used), a ~N(0,Va) is a
vector of BV with an additive genetic covariance matrix
Va, e ~N(0,Ve) is a vector of residuals with a residual
covariance matrix of Ve = IσE

2, and X and Z are inci-
dence matrices that link phenotype records to b and a,
respectively. Pedigree and genomic evaluations differed in
the specification of the covariance structure for a; Va =
AσA,0

2 for the pedigree model and Va =GσA,0
2 for the gen-

omic model, where A and G are the respective relation-
ship matrices based on pedigree [2] and genome-wide
marker genotypes [27]. A complete pedigree with all 25
generations was used when setting up the A matrix. All
analyses were performed with the assumed known inter-
cept (b) and variances (σA,0

2 and σE
2) to facilitate compari-

son of reliabilities and to avoid variation in the results due
to the estimation of parameters that were not of interest
in this study. For this reason, the intercept value was first
estimated with model (1) and then reused as a known par-
ameter when estimating a.
Using the available data (Table 1), four types of EBV

were computed for the selection candidates: (i) EBVP was
estimated from pedigree information only, using the pedi-
gree model for all individuals in generations 20 to 25 that
were free of phenotypic information from their own per-
formance, collateral relatives, or descendants; (ii) EBVP&Y

was estimated from pedigree and phenotype information,
using the pedigree model for males and females in gener-
ation 20, in which the males had own performance pheno-
type records and records on male half-sibs, while the
females only had records on male half-sibs; (iii) EBVM&Y

was estimated from genome-wide marker and phenotype
information, using the genomic model for males in gener-
ation 20 that had an own performance phenotype record;
(iv) EBVM was estimated from genome-wide marker infor-
mation only, using the genomic model for a random sam-
ple of validation individuals from generations 21 to 25
that had no phenotype information.

Reliability
The reliability of selection was calculated as the squared
correlation between the EBV and BV for selection candi-
dates. The PEV reliability of an EBV was computed as:

R2 âið Þ ¼ 1−
Var ai−âið Þ
Var aið Þ ; ð2Þ

where Var(ai − âi) is the variance of prediction errors of
the EBV of animal i (PEV), which was obtained by
inverting the coefficient matrix corresponding to the
model used (1), and Var(ai) is a measure of additive gen-
etic variance σA

2 (See Appendix). The base PEV reliability
was calculated using equation (2), with Var(ai) set to the
base additive genetic variance σA,0

2 corrected for inbreed-
ing. This correction was applied due to substantial re-
duction in σA,0

2 caused by the deep pedigree and limited
number of parents used in the simulation. In addition to
this, the PEV reliability was calculated using equation
(2) with Var(ai) set to different values of additive genetic
variance σA

2 (See subsection “Variances” for details).

Realized genetic selection intensity
The realized genetic selection intensity was defined as
the selection differential of BV realized by retrospectively
selecting the candidates on a particular type of EBV,
standardized by σA,0. This metric was chosen to show
the potential for generating response to selection based
on the different types of EBV in order to confirm the ef-
fect of selection on the reliability of selection. Otherwise,
this metric does not provide any additional information
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beyond the reliability of selection and can be computed
only when simulated data is available.

Variances
To quantify the effect of changes in genetic variance on
the reliability of selection, the following variances were
computed for each generation: (i) the observed additive
genic variance; (ii) the expected additive genic variance;
and (iii) the additive genetic variance. Here, the additive
genetic variance (σA

2) refers to the variance of true breeding
values and the additive genic variance (σα

2) refers to the
additive genetic variance under the assumption of linkage
equilibrium between the causative loci, e.g., [10, 28]. The
observed additive genic variance in generation t (including
the base generation) was computed as:

σ2α;t ¼
X

pi;tqi;tα
2
i ; ð3Þ

where pi,t and qi,t are the allele frequencies in generation
t and alphai is the allele substitution effect of the i-th
causative locus. Inbreeding changes the additive genic
variance and its expectation in generation t of a ran-
domly mated finite population was computed as:

σ2α;t;inb ¼ σ2α;0 1−
1

2Ne

� �t

¼ σ2α;0 1−�F tð Þ; ð4Þ

where Ne is the effective size of the population and �F t is
a mean inbreeding coefficient in generation t [29]. The
equation (4) was also used to correct for the effect of in-
breeding on the additive genetic variance when calculat-
ing the base PEV reliability using equation (2). Note that
σα,0
2 ≈ σA,0

2 because the base generation was in linkage
equilibrium. The difference between the observed addi-
tive genic variance in the base generation (3) and the ex-
pected additive genic variance in generation t (4) was
used to estimate the cumulative change in additive genic
variance due to inbreeding up to generation t:

Δσ 2
α;t;inb ¼ σ 2

α;0−σ
2
α;t;inb; ð5Þ

while the difference between the expected and observed
additive genic variance in generation t was used to esti-
mate the cumulative change in additive genic variance
due to selection up to generation t:

Δσ2
α;t;sel ¼ σ2

α;t;inb−σ
2
α;t : ð6Þ

The total change in the additive genic variance up to
generation t was therefore equal to:

Δσ 2
α;t ¼ σ 2

α;0−σ
2
α;t ¼ Δσ 2

α;t;sel þ Δσ 2
α;t;inb: ð7Þ

The additive genetic variance in generation t (σA,t
2 ) was

computed as the variance of BV in generation t prior to
any selection within that generation. The difference
between the additive genic and the additive genetic vari-
ances in the BLUP selection scenario was used to esti-
mate the gametic phase disequilibrium covariance due
to the Bulmer effect [11]:

Δσ 2
GD;t ¼ σ2α;t−σ

2
A;t : ð8Þ

These variances (3) to (8) were used to gradually correct
(reduce) the base additive genetic variance and calculate
the PEV reliability based on these corrected values to
analyze the effect of the different underlying processes on
the reduction of the reliability of selection in comparison to
the base PEV reliability. In addition, the theoretical expect-
ation of reliability in selected populations, referred to as
equilibrium reliabilities, were also calculated for compari-
son to the base PEV reliabilities corrected for inbreeding
(see above) and the proportion of the selected individuals,
i.e., 2 % selected males and 50 % selected females [16].

Analysis
The focal generations for comparison of the base PEV
reliabilities and reliabilities of selection and realized gen-
etic selection intensities were generation 20 based on
phenotyped males and un-phenotyped females and gen-
erations 21 to 25 based on un-phenotyped individuals of
both sexes. Changes in the variances were evaluated
across all generations. The effect of changes in variances
on the PEV reliability and the reliability of selection was
analyzed in detail in generations 20 and 21 and com-
pared to the equilibrium reliabilities.

Results
Reliability
In the random selection scenario, the base PEV reliabil-
ities and reliabilities of selection were equal, within the
bounds of sampling, for both the pedigree model and
the genomic model (Table 2) and, therefore, only base
PEV reliabilities will be described. In general, reliabilities
increased with more information on the MS component
of BV. The base PEV reliability of EBVP was equal to
27 % in generations 20 and 21 and decreased each gen-
eration to 0 % in generation 25. The base PEV reliability
of EBVP&Y in generation 20 was higher than that of
EBVP due to the availability of phenotypic information
(35 % for females and 76 % for males). The base PEV re-
liability of EBVM&Y was even higher due to the availabil-
ity of genome-wide marker and phenotype information
(84 % in generation 20). The base PEV reliability of
EBVM decreased at a slower rate over generations than
that of EBVP,, i.e., it was equal to 67 % in generation 21
and decreased to 53 % in generation 25.
In the BLUP selection scenario, the base PEV reliabil-

ities followed the same pattern as in the random selec-
tion scenario. However, the reliabilities of selection were



Table 2 Prediction error variance (PEV) reliability and reliability
of selection (%)a of different types of estimates of breeding
values (EBV)b by scenario and generation

PEV reliability Reliability of selection

EBVP EBVP&Y EBVM EBVP EBVP&Y EBVM

Generationc: random selection

20f 271 351 / 257 326 /

20m 271 761 841 257 752 842

21 271 / 671 296 / 703

22 131 / 611 113 / 634

23 51 / 581 65 / 587

24 11 / 551 42 / 547

25 01 / 531 21 / 565

Generationc: BLUP selection

20f 271 351 / 33 133

20m 271 751 851 33 671 801

21 271 / 701 32 / 633

22 121 / 651 01 / 593

23 31 / 621 01 / 543

24 01 / 591 01 / 514

25 01 / 571 11 / 504
aAverage and standard error (as shown as subscripts)
bEBVP = estimates of breeding value based on pedigree information;
EBVP&Y = estimates of breeding value based on pedigree and phenotype
information; EBVM = estimates of breeding value based on marker information
(in generation 20 estimates of breeding value are based on marker and
phenotype information, i.e., EBVM&Y)
cin generation 20, the results are presented separately for females (f) and males
(m), because males have own phenotype records, whereas females do not
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consistently lower than the base PEV reliabilities, especially
for EBV with a large dependency on PA information
(Table 2), which shows that the base PEV reliabilities over-
estimated the reliabilities of selection in this scenario. The
ratio of the reliability of selection to the base PEV reliability
in generation 20 was equal to 0.11 for EBVP, 0.37 for
EBVP&Y for females, 0.89 for EBVP&Y for males, and 0.94
for EBVM&Y. In generation 21, the ratio of reliabilities for
EBVP was equal to 0.11 and 0.00 in the following genera-
tions, while for EBVM the ratio was equal to 0.90, 0.91,
0.87, 0.86, and 0.88 in generations 21 to 25, respectively
(Table 2).
Comparison of reliabilities of the different types of EBV

obtained with the BLUP selection scenario showed that
genomic prediction had a greater advantage over pedigree
prediction when based on the reliability of selection than
when based on base PEV reliability. For example, the dif-
ference between the reliability of genomic and pedigree
predictions in generation 21 was 17 % larger when based
on reliability of selection than when based on base PEV
reliability, which indicates that genotyping un-phenotyped
females might be more valuable than previously suggested,
e.g., [20–22].
Realized genetic selection intensity
To confirm differences between base PEV reliabilities
and reliabilities of selection, selection on the different
types of EBV was compared in terms of realized genetic
selection intensities of BV that could have been achieved
if candidates were selected on those EBV. In general, re-
alized genetic selection intensities reflected the reliabil-
ities of selection for both the random selection scenario
and the BLUP selection scenario and confirmed that
base PEV reliabilities overestimate reliabilities of selec-
tion in the BLUP selection scenario. Differences between
the realized genetic selection intensities were smaller
than between the two measures of reliability, because re-
alized genetic selection intensities are proportional to
the accuracy of selection, i.e., to the square root of reli-
ability of selection.
In the random selection scenario, selecting candidates

directly on true BV gave realized genetic selection inten-
sities that ranged from 0.73 to 0.76 with 50 % selected
and from 2.16 to 2.24 with 2 % selected (Table 3). Selec-
tion on EBVP gave the lowest realized genetic selection
intensities, which ranged from 0.19 to 0.22 with 50 % se-
lected and from 0.55 to 0.60 with 2 % selected in genera-
tions 20 and 21. These values practically decreased by
50 % in each next generation due to the low predictive
ability of EBVP. Selection on EBVP&Y gave higher real-
ized genetic selection intensities than selection on EBVP

due to the higher reliabilities of EBV when based on
phenotype information on full-sibs and half-sibs for fe-
males, as well as own performance records for males.
Realized genetic selection intensities with EBVP&Y were
equal to 0.24 and 0.55 with 50 % selected, and to 0.75
and 1.67 with 2 % selected, respectively. Selection on
EBVM&Y gave the highest realized genetic selection in-
tensity due to the use of genome-wide marker and
phenotype information. In generation 20, the realized
genetic selection intensities for EBVP&Y and EBVM&Y

were equal to 0.55 and 0.62 with 50 % selected and to
1.67 and 1.90 with 2 % selected, respectively. In the later
generations, selecting on EBVM gave more than half of
the realized genetic selection intensity compared to
selecting directly on true BV.
In the BLUP selection scenario, selection on true BV

gave realized genetic selection intensities that ranged
from 0.58 to 0.62 with 50 % selected and from 1.74 to
1.87 with 2 % selected and remained constant (within
the bounds of sampling) over all generations (Table 3).
These results in the BLUP selection scenario are be-
tween 16 and 22 % lower than for the random selection
scenario, with an increasing trend over time. Selection
on EBVP gave a realized genetic selection intensity of
only 0.02 with 50 % selected and between 0.09 and 0.10
with 2 % selected in generation 20, and dropped to 0 in
the later generations much more quickly than with the



Fig. 1 Additive genic variance (σα2) and changes due to inbreeding
and selection by scenario and generation. Average values with 95 %
confidence intervals are presented

Table 3 Realized genetic selection intensitya when selecting on true breeding value (BV) or different types of estimates of breeding
values (EBV)b by proportion selected, scenario, and generation

Proportion selected = 50 % Proportion selected = 2 %

BV EBVP EBVP&Y EBVM BV EBVP EBVP&Y EBVM

Generationc: random selection

20f 0.730.04 0.190.05 0.240.06 / 2.200.19 0.600.21 0.750.19 /

20m 0.740.04 0.190.05 0.550.04 0.620.04 2.230.17 0.550.25 1.670.16 1.900.15

21 0.750.04 0.220.04 / 0.540.04 2.230.21 0.600.22 / 1.650.19

22 0.760.03 0.090.02 / 0.480.03 2.240.18 0.270.09 / 1.450.13

23 0.730.04 0.050.03 / 0.440.05 2.210.28 0.130.11 / 1.350.26

24 0.730.06 0.020.01 / 0.410.05 2.160.15 0.070.06 / 1.220.16

25 0.740.04 0.010.01 / 0.420.03 2.170.15 0.030.06 / 1.270.14

Generationc: BLUP selection

20f 0.610.02 0.020.01 0.080.01 / 1.840.10 0.090.03 0.260.08 /

20m 0.620.02 0.020.01 0.410.02 0.510.02 1.870.11 0.100.07 1.260.06 1.560.09

21 0.600.03 0.020.01 / 0.380.03 1.870.17 0.080.06 / 1.220.14

22 0.610.02 0.000.01 / 0.380.02 1.830.10 0.010.04 / 1.180.14

23 0.590.03 0.000.01 / 0.370.03 1.800.14 −0.010.02 / 1.110.11

24 0.580.02 0.000.01 / 0.360.03 1.730.12 0.000.01 / 1.060.17

25 0.580.02 0.000.01 / 0.340.02 1.740.12 0.000.02 / 1.030.17
aAverage and standard error (as subscript)
bEBVP = estimates of breeding value based on pedigree information; EBVP&Y = estimates of breeding value based on pedigree and phenotype information,
EBVM = estimates of breeding value based on marker information (in generation 20 estimates of breeding value are based on marker and phenotype information,
i.e., EBVM&Y)
cin generation 20 the results are presented separately for females (f) and males (m), because males have own performance records, whereas females do not
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random selection scenario. These realized intensities
with EBVP were more than 80 % lower than with the
random selection scenario. With EBVP&Y, the reduction
of realized genetic selection intensity in comparison to
the random selection scenario was 66 % for females and
25 % for males. With EBVM&Y and EBVM, the reduction
of realized genetic selection intensity was between 12
and 30 %, with the largest difference observed in gener-
ation 21, which was the first generation of prediction
without phenotype information.

Changes in variances and effect on reliability
Additive genic variance decreased with each generation
in both the random and BLUP selection scenarios, al-
though the reduction was larger with the BLUP selection
scenario (Fig. 1). Additive genic variance in the base
generation was equal to 0.28 with both scenarios and by
generation 20 it was reduced to 0.25 with the random
selection scenario and to 0.22 with the BLUP selection
scenario. These reductions were mainly caused by in-
breeding and were quantified by subtracting the expected
additive genic variance under the finite population model
from the base generation value (5). The reduction caused
by inbreeding up to generation 20 was equal to 0.03 with
the random selection scenario and 0.045 with the BLUP
selection scenario. The remaining loss of 0.015 in genic
variance with the BLUP selection scenario was attributed
to the effect of selection.
For both scenarios, the additive genetic variance also

decreased with each generation, but with a significant
change in generation 10 when selection on EBV was in-
troduced in the BLUP selection scenario (Fig. 2). Addi-
tive genetic variance was equal to 0.28 in the base
generation with both scenarios and by generation 10, it



Fig. 2 Additive genetic variance (σA2) and Bulmer effect (σα2 − σA2) by
scenario and generation. Average values with 95 % confidence
intervals are presented
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decreased to 0.26 for both scenarios because of inbreed-
ing. Introduction of selection in generation 10 reduced
the additive genetic variance to 0.21 in generation 11,
while the additive genic variance was equal to 0.26. The
difference between these two variances gave an estimate
of −0.05 for the gametic phase disequilibrium covari-
ance. By generation 20, the additive genetic variance was
further reduced to 0.16. The overall reduction of the
base additive genetic variance (0.28) was due half to the
Bulmer effect (0.06) and half to loss in additive genic
variance caused by inbreeding (0.045) and selection
(0.015). In the random selection scenario, the additive
genetic variance in generation 20 was equal to 0.24,
which was equal to additive genic variance within the
bounds of sampling.
The effect of changes in variances (Figs. 1 and 2) on

the reliability of selection was quantified in detail in gen-
erations 20 and 21 by calculating the PEV reliability with
different values of additive genetic variance (Table 4). In
the random selection scenario, the reliability of selection
tended to be lower than the base PEV reliabilities.
Taking into account the reduction in variance due to in-
breeding, or using the additive genetic variance from
generation 20 or 21, gave a PEV reliability that matched
the reliability of selection within the bounds of sampling.
In the BLUP selection scenario, the base PEV reliabilities
considerably overestimated the reliability of selection, as
previously noted (Table 2). This overestimation was, due
to the reduction in additive genetic variance, as caused
by several underlying processes (Table 4). Inbreeding,
and to a small extent selection, reduced the additive genic
variance and therefore also the additive genetic variance
by changing the allele frequencies of causative loci. More
importantly, the additive genetic variance was also re-
duced by the generation of gametic phase disequilibrium
between the causative loci by selection, i.e., the Bulmer
effect. These reductions in additive genetic variance due
to inbreeding, selection, and the Bulmer effect were used
to gradually reduce the base additive genetic variance to
the additive genetic variance in generation 20 or 21 and to
recalculate the PEV reliabilities for each reduction. The
resulting PEV reliabilities matched the reliability of selec-
tion within the bounds of sampling. These results not only
show which processes contribute to the reduction of the
reliability of selection in selected populations but also that
the base PEV reliabilities overestimate the reliability of se-
lection in such populations by using the base additive gen-
etic variance instead of actual additive genetic variance of
selection candidates. Finally, the equilibrium reliabilities
matched the reliability of selection for EBVP and EBVP&Y

(Table 4 and Figs. 3 and 4, while there were minor dis-
crepancies for EBVM&Y and EBVM. Figures 3 and 4 show
contours of equilibrium reliabilities for the different pro-
portion of selected males and females and a dot for the re-
liability of selection obtained in this study (Table 4). The
discrepancies for EBVM&Y and EBVM arose because, in
this study, selection was on EBVP&Y and calculating the
equilibrium reliabilities with the higher EBVM&Y or EBVM

base PEV reliabilities, as if selection was on the EBVM&Y

or EBVM, leads to underestimation of the equilibrium reli-
abilities. Changing the proportion of selected males and
females when calculating the equilibrium reliability for
EBVP&Y and EBVM&Y in generation 20 (Fig. 3) and for
EBVP and EBVM in generation 21 (Fig. 4) showed that the
observed base PEV reliabilities were recovered when se-
lection was absent, i.e., the equilibrium reliabilities from
the bottom-left corners of Figs. 3 and 4 matched the base
PEV reliabilities corrected for inbreeding in Table 4.

Discussion
Reliability is important in breeding because it measures
the potential for response to selection in a breeding pro-
gram. The results of this study show that, in populations
under selection, reliability computed from PEV and the
base additive genetic variance (base PEV reliability) is not
equal to the squared correlation between the EBV and BV
in selection candidates (reliability of selection), with which
potential for response to selection is measured. The differ-
ence between these two measures of reliability arises from
their different scopes of interpretation. The base PEV reli-
ability overestimates the reliability of selection in selected
populations because it is computed from PEV and the
base additive genetic variance. The latter describes genetic
variation in the base population and not in the selection
candidates. As shown in this study, this overestimation can
be mitigated either by calculating the PEV reliability based
on the reduced additive genetic variance of the selection
candidates or by using theoretical equilibrium reliabilities.
It was also shown that the degree of overestimation differs
between types of EBV and that this has important



Table 4 Prediction error variance (PEV) reliabilitiesa based on different measures of additive genetic varianceb (VA), reliability of selection
a,

and equilibrium reliabilitiesa (%) of different types of estimates of breeding values (EBV)c by scenario in generations 20 and 21

Reliability EBVP,20 EBVP,21 EBVP&Y,20,f EBVP&Y,20,m EBVM&Y,20 EBVM,21

Random selection

PEV

σA2 = σA,02 351 361 421 791 861 711

σA2 = σA,02 − Δσα,t,inb2 271 271 351 761 841 671

σA2 = σA,t2 231 281 316 751 832 674

Reliability of selection 257 296 326 752 842 703

BLUP selection

PEV

σA2 = σA,02 391 391 451 791 871 751

σA2 = σA,02 − Δσα,t,sel2 361 361 431 781 871 741

σA2 = σA,02 − Δσα,t,inb2 271 271 351 751 851 701

σA2 = σA,02 − ΔσGD,t2 224 244 304 741 841 692

σA2 = σA,02 − Δσα,t2 − ΔσGD,t2 −59 −48 78 653 782 583

σA2 = σA,t2 −45 −47 74 652 781 583

Reliability of selection 33 32 133 671 801 633

Equilibrium 31 31 131 671 791 621
aAverage and standard error (as subscript)
bσA,0

2 = base additive genetic variance; Δσα,t,inb
2 = change in additive genic variance due to inbreeding from base to generation t (5); Δσα,t,sel

2 = change in additive
genic variance due to selection from base to generation t (6); Δσα,t

2 = Δσα,t,inb
2 + Δσα,t,sel

2 = change in additive genic variance due to inbreeding and selection from
base to generation t (7); ΔσGD,t

2 = change in additive genetic variance due to the Bulmer effect (8); σA,t
2 = additive genetic variance in generation t

cEBVP = estimates of breeding value based on pedigree information; EBVP&Y = estimates of breeding value based on pedigree and phenotype information;
EBVM = estimates of breeding value based on marker information; EBVM&Y = estimates of breeding value based on marker and phenotype information;
other subscripts denote generation (20 and 21) and a group of males (m) or females (f)
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consequences when breeding schemes and genotyping
strategies are compared based on the base PEV reliability;
in particular when the base PEV reliability of pedigree pre-
diction is compared to that of other types of EBV.
Reliability in selected populations
The following example illustrates that selection reduces
the reliability of selection and that this effect differs be-
tween types of EBV. Selecting the parents of the next
generation on any type of EBV reduces the variance of
these EBV, which are in turn used to obtain pedigree
predictions (EBVP) of the progeny. In the extreme case,
selecting and mating only two parents (with EBV1 and
EBV2 and corresponding base PEV reliabilities R 2

EBV 1
and

R 2
EBV 2

Þ would create a new generation for which all indi-

viduals have the same pedigree prediction, EBVP ¼ 1
2

EBV 1 þ EBV 2ð Þ; although there would be variation in
their BV due to the Mendelian sampling of parental ge-
nomes. In such a situation, the EBVP has no predictive
ability to differentiate between individuals, although the
base PEV reliability of EBVP would be greater than 0,

i.e., R 2
EBVP

≥ 1
4 R 2

EBV 1
þ R 2

EBV 2

� �
[See Additional file 1].

Consequently, these EBVP have no potential to generate
response to selection if selection is carried out among
progeny. In contrast, genomic predictions (EBVM) for
these individuals would have some predictive ability and
potential to generate response to selection, because
genome-wide markers provide new information to esti-
mate both the PA and MS component of EBV for each
individual [17–19], which can then be differentiated.
However, in selected populations, the predictive ability
of EBVM is also overestimated by the base PEV reliabil-
ity, albeit less so than for EBVP.
A detailed illustration on how selection reduces the reli-

ability of selection and how this effect differs between
types of EBV is in Additional file 1 [See Additional file 1].
In summary, selection of parents reduces the variance of
BV (i.e., additive genetic variance) in progeny but in par-
ticular the variance of EBVP in progeny. The reduction of
additive genetic variance in progeny reduces the reliability
of selection because the unchanged precision of EBV
coupled with a smaller variation in BV make it more diffi-
cult to differentiate between individuals. The reduction in
variance of EBVP in progeny reduces the reliability of se-
lection because EBVP only predicts the PA component of
BV and with increasing selection in parents, the predictive
ability of EBVP decreases, as illustrated previously. The re-
duced additive genetic variance in progeny has the same
effect on the reliability of selection for any type of EBV. In
contrast, the reduced variance of EBVP in progeny has a



Fig. 3 Equilibrium reliability and reliability of selection of different types of estimated breeding values in generation 20. Breeding values
estimated using (a) pedigree and phenotype information in males (EBVP&Y,m), (b) marker and phenotype information in males (EBVM&Y,m), and
(c) pedigree and phenotype information in females (EBVP&Y,f). Equilibrium reliabilities are shown with contours, as a function of the proportions
of males and females selected, while reliability of selection is shown as a point at the proportions selected used in this study
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different effect on the reliability of selection for different
types of EBV and is larger for EBV that are primarily based
on the PA component and smaller for EBV that are pri-
marily based on the MS component.
These illustrations indicate that the base PEV reliabil-

ity overestimates the reliability of selection because it
does not take into account the effect of selection on var-
iances. The expression for the base PEV reliability in-
volves PEV and the base additive genetic variance.
Selection does not affect the PEV [1, 13] but it does
affect the additive genetic variance. It causes a reduction
Fig. 4 Equilibrium reliability and reliability of selection of different types of
estimated (predicted) using (a) pedigree information (EBVP) and (b) marker
a function of the proportions of males and females selected, while reliabilit
this study
in the additive genetic variance that should be taken into
account if the PEV reliability is to be used as a measure
of the reliability of selection. The rationale behind the
expression for the base PEV reliability derives from the
PEV being the (posterior) variance of BV conditional on
the observed phenotypic information and the base addi-
tive genetic variance being the (prior) unconditional
variance of BV in the base population. Relating this pos-
terior to the prior quantifies the amount by which the
uncertainty in BV is reduced after phenotypic informa-
tion has been collected [2]. While the base additive
estimated breeding values in generation 21. Breeding values
information (EBVM). Equilibrium reliabilities are shown with contours as
y of selection is shown as a point at the proportions selected used in
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genetic variance must be used when calculating EBV and
PEV [2], which unconditional variance of BV should be
used when calculating the PEV reliability depends on the
scope of interpretation. If the aim is to measure the reli-
ability of selection among parents and progeny, then the
PEV reliability should be calculated based on the addi-
tive genetic variance in parents. However, if the aim is to
measure the reliability of selection among progeny, as in
the present study, then the PEV reliability should be cal-
culated based on the additive genetic variance in pro-
geny. When the scope of interpretation is not taken into
account, the PEV reliability can overestimate the reliabil-
ity of selection. The amount of overestimation depends
on the type of EBV, its base PEV reliability, and the in-
tensity of selection, which determines how much addi-
tive genetic variance has been lost over the generations
of selection [16].
Therefore, if the PEV reliability is used as a measure of

the reliability of selection, it should be computed based
on the additive genetic variance of selection candidates.
However, this is often not possible because the additive
genetic variance for sets of individuals is usually un-
known in real populations and its estimation is compu-
tationally demanding [13]. In addition, there is usually
no clear definition of the generation or groups of indi-
viduals of interest in livestock populations, which com-
plicates estimation even more. In such situations, the
base additive genetic variance may be the only estimate
available and therefore the base PEV reliabilities can
only be used as a measure of precision of EBV in rela-
tion to the base population variation and not as a meas-
ure of the reliability of selection to compare breeding
schemes. However, the difference between these two
measures of reliability can be predicted using the equi-
librium reliabilities calculated from the base PEV reli-
abilities and the proportions selected among males and
females [16]. As shown in this study, the equilibrium re-
liabilities matched the reliability of selection for any type
of EBV, which confirms the utility of theoretical expres-
sions to calculate the equilibrium reliability [16].
In this study, the reduction of additive genetic variance

across generations was caused by three processes: the
initial cycles of selection caused changes in gametic
phase disequilibrium (i.e., the Bulmer effect), and in-
breeding and selection caused changes in allele frequen-
cies. The Bulmer effect was responsible for 50 % of the
loss of variance, while changes in allele frequencies due
to inbreeding and selection were responsible for 37.5,
and 12.5 % of the loss of variance, respectively. The the-
oretical expressions for the equilibrium reliability derived
in [16] only account for the reduction in variance due to
the Bulmer effect, and not for reductions due to changes
in allele frequencies resulting from inbreeding and selec-
tion. However, our study demonstrates that the Bulmer
effect is the largest source of reduction in variance. In
addition, the expected loss of additive genetic variance in
finite populations [29] can be used to account for the ef-
fect of inbreeding on variance. The effect of inbreeding
was substantial in this study, because of the deep pedigree
and a small number of parents. In more typical scenarios,
the pedigree is not as deep, which suggests that the impact
of reduction in additive genetic variance due to selection
changing allele frequency would also be smaller than in
this study.

Implications for comparison of breeding programs
The difference between the base PEV reliabilities and
the reliability of selection has important consequences
for the design of breeding programs using genome-wide
marker information. Genome-wide marker information
is often considered to be of much lower value for un-
phenotyped females than for males. This perception is in
part due to the smaller impact that females have on the
next generation, but also due to the relatively small dif-
ference between the base PEV reliability of EBVP or
EBVP&Y and the base PEV or validation reliabilities of
EBVM. For example, in the BLUP selection scenario used
in this study, the base PEV reliabilities of EBVP and
EBVM in generation 21 were equal to 27 and 70 %, re-
spectively, with an absolute difference of 43 %. Several
studies have derived the value of genotyping un-
phenotyped females on the basis of gains in reliability,
while accounting for cost of genotyping and raising re-
placement females, e.g., [20–22]. However, our results
show that the gain in reliability of selection is much
higher than expected from comparison of the base PEV
reliabilities; in generation 21, reliability of selection was
3 % for EBVP and 63 % for EBVM, with an absolute dif-
ference of 60 %. This large difference demonstrates that
there is more value in genotyping un-phenotyped fe-
males in selected populations than previously reported.
This was further demonstrated by measuring the real-
ized genetic selection intensity for the different types of
EBV; in generation 21 of the BLUP selection scenario,
selecting 50 % of selection candidates gave realized gen-
etic selection intensity of 0.02 when selecting on EBVP

and of 0.38 when selecting on EBVM. These results
clearly show the benefit of investing in genotyping un-
phenotyped females. With increased selection intensity,
the effect of selection on realized genetic selection inten-
sity was even more pronounced due to further reduc-
tions of the base PEV reliability of EBVP. Comparing the
predictive abilities of EBVP and EBVM is, in some sense,
a comparison of extremes. Smaller but still significant
differences can be expected when the EBV of selection
candidates have a large dependency on information from
the parental generation. Failing to take the effect of se-
lection on additive genetic variance into account, can
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overstate the reliability of selection on such EBV in com-
parison with EBVM [15, 16]. This is not an issue when
the comparison of predictive abilities of EBVP or
EBVP&Y and EBVM are all based on validation correla-
tions among selection candidates.

Conclusions
Selection reduces genetic variance and the reliability of
selection, which is usually not accounted for when the
base additive genetic variance is used to calculate base
PEV reliabilities. This reduction in reliability of selection
is more pronounced for EBV that are based mainly on
information from the parental generation. An extreme
example of this is when EBV are based solely on parent
average. This implies that the genome-wide marker in-
formation has been undervalued in populations that are
under selection, and that genotyping un-phenotyped fe-
males must be reconsidered.

Appendix
Equivalence between base PEV reliability and reliability of
selection in unselected populations
The purpose of this appendix is to show that the two mea-
sures of reliability, the base PEV reliability and the reliabil-
ity of selection, are equivalent for unselected populations.
This is first shown by defining the reliability of selection
as the squared correlation between the true breeding
values (BV) and estimated breeding values (EBV) in an
unselected population [10], and then by demonstrating
that this is equivalent to the commonly used expression to
compute the base PEV reliability [1, 2, 13].
The reliability of selection is defined as a squared correl-

ation between the BV (a) and EBV (â) for selection candi-
dates. This value is commonly presented as a single value
for a group of individuals [10], which is likely based on the
intuition of obtaining the sample correlation between a vec-
tor of BV and a vector of EBV. However, expression for the
correlation between two vectors results in a matrix of cor-
relations Câ,a and squaring its elements via the Hadamard
product (∘) gives a matrix of squared correlations:

Corr a; âTð Þ ¼ Ca;â ¼ diag Var að Þð Þ−
1
2 Cov a; âTð Þdiag Var âTð Þð Þ−

1
2;

¼ diag Vað Þ−
1
2 Va;âdiag Vâð Þ−

1
2;

R2 âð Þ ¼ Ca;â ∘Ca;â ;

ðA1Þ
where the diagonal elements are the squared correlation
between BV and EBV for each individual, i.e., the reli-
ability for each individual, while the off-diagonal ele-
ments are the squared correlation between BV of one
individual and EBV of another individual, i.e., the “co-re-
liability” for each pair of individuals. In the expression
(A1), the notation diag(X) indicates a diagonal matrix
with the diagonal equal to the diagonal of matrix X. If
the evaluated individuals were unrelated and all of them
had a single own phenotype pre-corrected for any other
effect without error, then the reliability of this evaluation
would be the same for all individuals, R2, and (A1) could
be written as R2(â) = IR2, which is in line with the com-
mon usage [10]. However, in real applications, evaluated
individuals are related, they might have different
amounts of information, and phenotypes are not pre-
corrected, which leads to different reliabilities for differ-
ent individuals and to non-zero “co-reliabilities”. In such
cases, the mean of these reliabilities can be used to ob-
tain a single measure of reliability to predict response to
selection. Alternatively, the individual specific reliability
could be used along with the individual specific selection
intensity and generation interval as is done when re-
sponse to selection is predicted for breeding programs
with different “paths” of selection [17, 30].
The additive genetic covariance matrix Var(a) =Va =

AσA
2 in (A1) holds covariances between BV of selection

candidates, where A is the relationship matrix between
the selection candidates and σA

2 is the additive genetic
variance for the selection candidates. If the selection
candidates either represent the whole unselected popula-
tion or are a random sample from such a population,
then σA

2 is equal to the base additive genetic variance
σA,0
2 in such a population. The other two components in

(A1), Cov(a, âT) and Var(â), depend on σA
2 as well as on

the properties of the estimator of BV and will be worked
out in the following.
Using the standard linear mixed model (1) and assum-

ing known fixed effects (E(y) =Xb) and variance compo-
nents (σA,0

2 and σE
2), the EBV can be obtained by

regressing BV on the observed phenotypes pre-corrected
for fixed effects. The conditional expectation and vari-
ance of this regression can be expressed in two equiva-
lent ways [1, 2, 13]:

â ¼ E ajyð Þ ¼ E að Þ þ Cov a; yTð ÞVar yð Þ−1 y−Xbð Þ;
¼ VaZTV−1

y y−Xbð Þ;
¼ V−1

a þ ZTV−1
e Z

� �−1
ZV−1

e y−Xbð Þ;
ðA2Þ

Var ajyð Þ ¼ Var að Þ −Cov a; yTð ÞVar yð Þ−1Cov y; aTð Þ;
¼ Va−VaZTV−1

y ZVa;

¼ V−1
a þ ZTV−1

e Z
� �−1

:

ðA3Þ

where Var(a) =Va =AσA,0
2 is the additive genetic covari-

ance matrix with respect to the base population, Var(e) =
Ve = EσE

2 is the residual covariance matrix, and Var(y) =
Vy =ZVaZ

T +Ve is the phenotypic covariance matrix. The



Gorjanc et al. Genetics Selection Evolution  (2015) 47:65 Page 13 of 14
two equivalent expressions are shown to point out that the
conditional variance of BV given the phenotypes is the
variance of prediction errors (PEV) of EBV, i.e.,Var(a|y) =
Var(a − â), which is commonly obtained by inverting the
coefficient matrix (Va

− 1 +ZTVe
− 1Z).

Using (A2) it can be shown that the components of
(A1), Cov(a, âT) and Var(â), are equal to [1, 2, 13]:

Cov a; âTð Þ ¼ Va;â ¼ VaZTV−1
y ZVa : ðA4Þ

Var âð Þ ¼ Vâ ¼ VaZTV−1
y ZVa: ðA5Þ

which along with Var(a) gives all the required compo-
nents for computing the individual specific reliabilities
in (A1). Since Cov(a, âT) =Var(â) and Var(a − â) = Var(a)
−Var(â) the individual reliabilities in (A1) can be equiva-
lently expressed by contrasting the conditional variance
of BV to the variance of BV, i.e., additive genetic vari-
ance [1, 2, 13]:

R2 âið Þ ¼ Var âið Þ
Var aið Þ ¼

Var að Þ−Var ai−âið Þ
Var aið Þ ¼ 1−

Var ai−âið Þ
Var aið Þ :

ðA6Þ

Since the conditional variance of BV, Var(ai − âi), is
not affected by selection [1], the expressions (A1) and
(A6) give the same reliability when they refer to the
same group of individuals, i.e., when the same additive
genetic variance is used in both expressions. However,
the two expressions do not give the same reliability, if
they refer to two different additive genetic variances.
Commonly, the base additive genetic variance (σA,0

2 ) is
used to compute the base PEV reliability (A6), while the
reliability of selection is computed as squared correlation
between the EBV and BV in a selected group of individ-
uals (A1) that do not necessarily have the same additive
genetic variance (σA

2) as the base population.

Additional files

Additional file 1: Theoretical basis of the effect of selection on
reliability. Detailed illustration on how selection reduces the reliability of
selection and how this effect differs between types of estimated
breeding values [31]. (PDF 7873 kb)
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