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1 Introduction

N = (2, 2) superconformal field theories play an important role as world-sheet descriptions

of superstrings. There are various constructions and approaches known: the geometric con-

struction as non-linear sigma model, rational coset constructions (Kazama-Suzuki models),

and the realisation as infrared fixed-point of a supersymmetric Landau-Ginzburg model

(see e.g. [1] for a review). Each approach has advantages and disadvantages, in the sense

that there are certain quantities that are easy to compute, and others that are difficult.

For example, in the rational construction one has good control over the correlation func-

tions, and many quantities can be determined exactly, but on the other hand, it is hard to

compute deformations of the theory, because the large rational symmetry is then broken.

In contrast to that, in Landau-Ginzburg models deformations of the superpotential are

easily described, but only few quantities can be computed exactly, namely those that are

protected when one follows the renormalisation group flow to the infrared. It is therefore

desirable to make contact between the different approaches to combine the advantages and

to learn more about the different descriptions. One example of such a connection is given

by gauged linear sigma models, which provide a relation between geometric models and cer-

tain Landau-Ginzburg orbifolds [2], and in this way one has obtained a good understanding

of the moduli space of such theories.

We are interested here in the connection between rational theories and their Landau-

Ginzburg realisation. It is known that there is a large class of supersymmetric coset

models that have a Landau-Ginzburg description, a subclass of the Kazama-Suzuki mod-

els [3, 4]. Within this class there are the Grassmannian Kazama-Suzuki models that have a

description as cosets SU(n+ 1)k/U(n). The superpotentials of the corresponding Landau-

Ginzburg theories have been identified in [5, 6], relying on the identification of the chiral

ring of bulk fields.

In rational theories, one also has a distinguished family of rational boundary conditions

and defects, and it is therefore natural to study those and to look for their counterparts

on the Landau-Ginzburg side. This has been studied for (products of) minimal models

and orbifolds thereof in [7–12]. In these models the rational algebras are (products of)

super-Virasoro algebras, so that the algebraic structures are rather simple. A non-minimal

situation has been explored in [13], where we identified matrix factorisations for some

rational boundary conditions in the SU(3)/U(2) Kazama-Suzuki model. The strategy there

was to identify first some elementary factorisations, and then build others with the help of

the cone construction as tachyon condensates of elementary ones. This approach, however,

cannot be driven very far, because the cones in question quickly become very complicated.

In this work we want to continue to study the SU(3)/U(2) model, but following a

different approach. The idea is to generate new boundary conditions by fusing defects onto

known boundary conditions. If we have identified the appropriate defects as matrix fac-

torisations, we can use them to generate new matrix factorisations for boundary conditions

from known ones by taking tensor products of matrix factorisations.

To identify matrix factorisations for defects, we make use of an interface between the

SU(3)/U(2) Kazama-Suzuki model and the product of two minimal models that we intro-

– 2 –
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duced in [14]. The fusion of this variable transformation interface to a matrix factorisation

has a simple operator-like description: it can be implemented by a simple operation acting

individually on each entry of the matrix factorisation.

Fusing this interface to a matrix factorisation in the minimal models results in a

matrix factorisation for the Kazama-Suzuki model. This interface then allows us to identify

a matrix factorisation for a particular rational topological defect in the Kazama-Suzuki

model. Fusing this defect to the matrix factorisations identified in [13], we generate matrix

factorisations for all rational boundary conditions.

1.1 Plan of the paper and summary of results

In section 2 we review matrix factorisations for B-type boundary conditions in Landau-

Ginzburg models and the variable transformation interface between the Kazama-Suzuki

model and products of minimal models. Section 3 gives an introduction to the confor-

mal field theory description of Kazama-Suzuki models. We introduce the rational B-type

boundary conditions |L, `〉 (labelled by two integers) in the SU(3)/U(2) model and renor-

malisation group flows between them. Defects D[Λ,Σ;λ,µ] (the SU(3)/U(2) coset labels are

explained in section 3.1) and their fusion to boundary conditions are briefly reviewed.

After these preparations we present in section 4 our central result: a dictionary be-

tween all rational boundary conditions |L, `〉 and matrix factorisations Q|L,`〉. We start

in section 4.1 from the identification [13] of the boundary conditions |L, 0〉 with the poly-

nomial matrix factorisations Q|L,0〉 (cf. (4.3)). We show that they can also be obtained

from permutation factorisations in the product of two minimal models with the help of the

variable transformation interface. As presented in section 4.2, the interface allows us to re-

late the computation of RR-charges in Kazama-Suzuki models to computations in minimal

models. One may obtain another class of identifications via taking cones of the factorisa-

tions Q|L,0〉. The construction principle [13] is prescribed by the Fredenhagen-Schomerus

flow rules (4.17), resulting in the explicit formula (4.19) for the factorisations Q|L,1〉. As

detailed in the second half of section 4.3, it is not feasible to search for further classes of

identifications via the route of taking more complex cones.

In section 4.4 we use the interface to identify the topological defect D[0,0;1,3] in the

Landau-Ginzburg description. We identify it in terms of a “fusion functor” D(1) as pre-

sented in (4.27), which acts on the polynomial entries of a matrix factorisation and imple-

ments the fusion of this defect onto a boundary. From the conformal field theory description

we know how this defect acts on rational boundary conditions (see (4.31)), and in this way

— starting from the factorisations Q|L,0〉 — we have obtained a recursive Ansatz (4.32) to

construct all factorisations Q|L,`〉.
The explicit realisation of this Ansatz proves to be technically challenging, yet we

succeed in constructing the full set of identifications in closed form. Firstly, we focus

in section 4.5.1 on the simpler case of the rational matrix factorisations of type Q|0,`〉,
obtaining the closed formula (4.56). With a considerable amount of effort, we then proceed

in section 4.5.2 to complete the dictionary. The key to this derivation is the technical

observation that the rational factorisations Q|L,0〉 may be written as a cone of very simple

polynomial factorisations as presented in (4.62). It is then possible to devise an inductive

– 3 –
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proof that ultimately leads to the closed formula (4.76) for the rational factorisations Q|L,`〉.
While some elements of the derivation await a rigorous mathematical proof, we provide

strong evidence that this is indeed the correct identification, including the highly non-trivial

consistency check of the effects of truncation for finite levels k of the Kazama-Suzuki models

as presented in section 4.6.

We have collected some of the more technical steps in the appendix.

2 Matrix factorisations and variable transformation interfaces

In this section we introduce the description of B-type boundary conditions in Landau-

Ginzburg models as matrix factorisations. We then review the construction of variable

transformation interfaces, and discuss in detail the interface between the SU(3)/U(2)

Kazama-Suzuki model and the product of two minimal models.

2.1 Matrix factorisations in Landau-Ginzburg models

B-type boundary conditions in N = (2, 2) supersymmetric Landau Ginzburg models can

be described by matrix factorisations Q of the superpotential W (see [7, 15–18]). We want

to consider a polynomial superpotential W (x1, . . . , xn), and the factorisation Q is then a

polynomial square matrix of the form

Q =

(
0 Q(1)

Q(0) 0

)
(2.1)

such that

Q2 = W · 1 . (2.2)

The spectrum of chiral primary boundary fields is encoded in terms of morphisms between

matrix factorisations. Let Q1 and Q2 be two matrix factorisations of size 2q1 and 2q2,

respectively. Qi implements an endomorphism on R2qi , where R = C[x1, . . . , xn] is the

polynomial ring in the variables x1, . . . , xn. There is a natural Z2 grading on these free

modules, R2qi = Rqi ⊕Rqi , such that Qi defines an odd map. Also morphisms φn between

Q1 and Q2 come with a Z2 degree n. They are given by even (n = 0) or odd (n = 1)

homomorphisms from R2q1 to R2q2 that satisfy the closure condition

Q2 φn − (−1)nφnQ1 = 0 . (2.3)

In addition, two morphisms that differ by an exact morphism of the form

φ̃n = Q2 ψ + (−1)nψQ1 (2.4)

are identified.

If for two matrix factorisations Q1, Q2 there is a homomorphism φ0 between Q1 and

Q2, and a homomorphism ψ0 between Q2 and Q1, such that φ0 ◦ ψ0 and ψ0 ◦ φ0 coincide

with the identity up to exact terms (2.4), then we say that these two matrix factorisations

are equivalent.
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In particular if the factorisations Q1 and Q2 are of the same size and are related by a

similarity transformation U ,

Q2 = U ·Q1 · U−1 , (2.5)

then Q1 and Q2 are equivalent with φ0 = U and ψ0 = U−1.

Given two factorisations Q1 and Q2 and an odd morphism φ1 from Q1 to Q2, one can

build a new factorisation C(Q1, Q2;φ1) by the so-called cone construction that is related

to the process of tachyon condensation (see e.g. [19, 20]),

C(Q1, Q2;φ1) =

(
Q1 0

φ1 Q2

)
. (2.6)

2.2 Variable transformation interfaces

We can describe B-type interfaces between Landau-Ginzburg models with superpotentials

W y(y1, . . . , yn) and W x(x1, . . . , xm) by matrix factorisations of the difference W y −W x of

the superpotentials [21] (see also [22, 23]). They can be fused to other matrix factorisations

by means of the tensor product of matrix factorisations [23, 24].

If the two superpotentials are related to each other by a variable transformation,

yj 7→ Yj(x1, . . . , xm) , (2.7)

that expresses the yj as polynomials in the variables xi, such that

W x(x1, . . . , xm) = W y(Y1(x1, . . . , xm), . . . , Yn(x1, . . . , xm)) , (2.8)

there is a particular variable transformation interface yIx that we introduced in [14]. It is

closely related to the identity defect yIy in the Landau-Ginzburg model with superpotential

W y, which is given by a particular factorisation(
yIy(y1, . . . , yn; y′1, . . . , y

′
n)
)2

= W y(y1, . . . , yn)−W y(y′1, . . . , y
′
n) (2.9)

whose effect on other factorisations by fusion is trivial. Concrete formulas can be found

e.g. in [25]. In the case of a two-variable potential the identity defect can be described by

the factorisation

yIy =


0 0 y1 − y′1 y2 − y′2
0 0 −W y(y′1,y2)−W y(y′1,y

′
2)

y2−y′2
W y(y1,y2)−W y(y′1,y2)

y1−y′1
W y(y1,y2)−W y(y′1,y2)

y1−y′1
−(y2 − y′2) 0 0

W y(y′1,y2)−W y(y′1,y
′
2)

y2−y′2
y1 − y′1 0 0

 . (2.10)

The variable transformation interface yIx is obtained from the identity defect by replacing

the variables y′j by Yj(x): this results in a factorisation of W y(y1, . . . , yn)−W x(x1, . . . , xm).

The fusion of this interface to other matrix factorisations can be described in a simple way

as we will review in the following.

– 5 –
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If we denote the polynomial rings in xi and yi variables by S and R, respectively, the

variable transformation (2.7) defines a ring homomorphism Y ,

Y : R→ S , Y : p(y1, . . . , yn) 7→ p(Y1(x1, . . . , xm), . . . , Yn(x1, . . . , xm)) . (2.11)

Using this homomorphism we can view S as an (S,R)-bimodule SSR or as an (R,S)-

bimodule RSS . This defines two functors, the extension of scalars Y ∗ maps R-modules to

S-modules by tensoring with SSR, and the restriction of scalars Y∗ maps S- to R-modules

by tensoring with RSS .

Let us discuss the first one, Y ∗, more explicitly. First we observe that this functor

maps finite rank free R-modules to finite rank free S-modules of the same rank,

SSR ⊗R
(
RR⊕ · · · ⊕ RR

) ∼= SS ⊕ · · · ⊕ SS . (2.12)

A homomorphism between finite rank free R-modules, which can be viewed as a matrix

with polynomial entries in the variables yi, is mapped to the homomorphism between S-

modules that is obtained by replacing all variables yi by the polynomials Yi(x1, . . . , xm).

So it acts by replacement of variables: it takes polynomial matrices in variables yj and

maps them to polynomial matrices in variables xi.

The second one, Y∗, maps an S-module to an R-module by tensoring it with RSS ,

SM 7→ RSS ⊗S SM . (2.13)

This is in general not a finite rank free R-module, even if SM was a finite rank free S-

module. If on the other hand RS as an R-module is free and of finite rank,

ρ : RR
⊕r ∼−→ RS , (2.14)

with ρ an R-module isomorphism, then a free S-module SM of rank d is mapped to a free

R-module of rank r·d. In this case, its action on homomorphisms can also be described very

concretely: given any homomorphism φ of free S-modules of finite rank, we can represent

it by a matrix whose entries φij are polynomials in S. The homomorphism between the

images of the modules under Y∗ is then described by the matrix that is obtained by replacing

each entry φij by a r× r-block that describes the map ρ−1 ◦ φij ◦ ρ. Therefore the functor

Y∗ maps matrices in the variables xi to (in general larger) matrices in the variables yj .

To summarise, we have introduced two functors that on polynomial entries act as

Y ∗(p(y1, . . . , yn)) = p
(
Y1(x1, . . . , xm), . . . , Yn(x1, . . . , xm)

)
(2.15)

Y∗(p(x1, . . . , xm)) = ρ−1 ◦ p ◦ ρ . (2.16)

These two functors describe the fusion of the variable transformation interface yIx: fusing

it to the left onto a factorisation Qy of −W y, it acts by replacement of variables (Qy 7→
Y ∗(Qy)); fusing it to the right onto a factorisation Qx of W x, it acts as Qx 7→ Y∗(Qx).

Similarly, we can define an interface xIy whose fusion to the right is described by Y ∗, and

whose fusion to the left is described by Y∗.

– 6 –
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The simplest example of a variable transformation interface is obtained if the rings are

the same, S = R, and the map Y = σ is an automorphism of R. In this case, Y ∗ acts by

replacing variables according to Y , whereas the action of Y∗ is given by the inverse Y −1.

In case the two superpotentials are the same, and σ is a symmetry of W , these interfaces

are also known as group-like defects or symmetry defects [21, 25, 26].

2.3 Kazama-Suzuki models

We now come to our key example, which will be important for the rest of this paper. These

are the Grassmannian Kazama-Suzuki models SU(n+1)/U(n), where we will be interested

in particular in the case n = 2.

For general n ≥ 1, we consider the superpotential

W x
n;k(x1, . . . , xn) = xk+n+1

1 + · · ·+ xk+n+1
n , (2.17)

where n, k ≥ 1 are integers. As W x is completely symmetric in x1, . . . , xn, we can express

it in terms of the elementary symmetric polynomials

Yj(x1, . . . , xn) =
∑

1≤i1<···<ij≤n
xi1 · · · · · xij , j = 1, . . . , n , (2.18)

to obtain a superpotential W y in variables y1, . . . , yn such that

W y
n;k(Y1(x1, . . . , xn), . . . , Yn(x1, . . . , xn)) = W x

n;k(x1, . . . , xn) . (2.19)

The superpotential W x describes the tensor product of n minimal models, whereas W y

describes the SU(n+ 1)/U(n) Kazama-Suzuki model (see [5, 27]). We are now precisely in

the setup of the previous subsection, and we can define a variable transformation interface

yIx between these models. For n = 2, it is given by the factorisation

yIx =
0 0 y1 − x1 − x2 y2 − x1x2

0 0 −W y(x1+x2,y2)−Wx(x1,x2)
y2−x1x2

W y(y1,y2)−W y(x1+x2,y2)
y1−x1−x2

W y(y1,y2)−W y(x1+x2,y2)
y1−x1−x2

−(y2 − x1x2) 0 0
W y(x1+x2,y2)−Wx(x1,x2)

y2−x1x2
y1 − x1 − x2 0 0

.
(2.20)

It acts on the left just by replacing the variables yj by Yj(x1, . . . , xn). To understand

its behaviour on the right, i.e. its action on the x-variables, we have to understand the

structure of S = C[x1, . . . , xn] as a module over R = C[y1, . . . , yn]. In the following we

want to restrict to the case n = 2. We choose the explicit R-module isomorphism ρ

between R⊕R and RS as

ρ :
(
p1(y1, y2), p2(y1, y2)

)
7→ p1(x1 + x2, x1x2) + (x1 − x2)p2(x1 + x2, x1x2) . (2.21)

The inverse is then given by

ρ−1 : p(x1, x2) 7→
(
pS(x1, x2)

∣∣∣
y
,

1

x1 − x2
pA(x1, x2)

∣∣∣
y

)
, (2.22)

– 7 –
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where

pS/A(x1, x2) =
1

2

(
p(x1, x2)± p(x2, x1)

)
, (2.23)

and for a symmetric polynomial q(x1, x2) we denote by q(x1, x2)|y the polynomial in y-

variables from which one obtains q(x1, x2) when one replaces yi by Yi(x1, x2).

The functor Y∗ sends an S-module of rank r to an R-module of rank 2r. On homo-

morphisms it acts by replacing each polynomial entry by a 2× 2 matrix. With the explicit

isomorphism ρ given above, the action of Y∗ on a polynomial p(x1, x2) can be determined

from (2.16), and it is given by

Y∗ : p 7→
(

pS
∣∣
y

(x1 − x2)pA
∣∣
y

pA
x1−x2

∣∣
y

pS
∣∣
y

)
. (2.24)

This variable transformation interface can then be used to relate defects and boundary

conditions in Kazama-Suzuki models to those in minimal models. It lies at the heart of

the constructions in this paper.

3 Boundaries and defects in Kazama-Suzuki models

In this section we review the construction of rational boundary conditions in Grassmannian

Kazama-Suzuki model with emphasis on the model based on the coset SU(3)/U(2). We

also discuss renormalisation group flows of boundary conditions, and topological defects

and their fusion to boundaries.

3.1 Bulk theory

Kazama-Suzuki models [3, 4] are rational N = (2, 2) superconformal field theories that are

constructed as cosets
Gk × SO(d)1

H
, (3.1)

where d is the difference between the dimension of the simple Lie group G and the dimension

of its regularly embedded subgroup H. The integer k is the level, and for N = (2, 2)

supersymmetry, the geometric space G/H has to be Kähler. A particularly interesting

class of such models are the Grassmannian models based on G = SU(n+1) and H = U(n),

and in this work we specify the model further by considering the case n = 2.

In the following we briefly review the spectrum of the SU(3)/U(2) model. More details

can be found e.g. in [13]. The primary fields (w.r.t. the bosonic subalgebra of the chiral

symmetry algebra) are labelled by tuples (Λ,Σ;λ, µ) where

• Λ = (Λ1,Λ2) is an su(3) highest weight (Λ1,Λ2 being the non-negative integer Dynkin

labels) satisfying Λ1 + Λ2 ≤ k, and it labels a (unitary irreducible) representation of

the affine Lie algebra su(3)k,

• Σ ∈ {0, v, s, c} labels representations of so(4)1 (with the corresponding representa-

tions being the trivial representation, vector, spinor and conjugate spinor),
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• λ is a highest weight of su(2), with 0 ≤ λ ≤ k + 1 labelling a representation of the

affine su(2)k+1,

• µ is an integer modulo 6(k + 3) labelling representations of u(1)6(k+3).

There is a selection rule on the allowed labels that reads

Λ1 + 2Λ2

3
+
|Σ|
2
− λ

2
+
µ

6
∈ Z , (3.2)

where |Σ| = 0 for Σ = 0, v and |Σ| = 1 for Σ = s, c. Finally, tuples are identified

according to

((Λ1,Λ2),Σ;λ, µ) ∼ ((k − Λ1 − Λ2,Λ1), v × Σ; k + 1− λ, µ+ (k + 3)) , (3.3)

where v × · denotes the fusion with the vector representation, which exchanges on the one

hand 0 and v, and on the other hand s and c.

In the spectrum there are chiral primary fields corresponding to the tuples

((Λ1,Λ2), 0; Λ1,Λ1 + 2Λ2) , (3.4)

and they can be labelled by representations (Λ1,Λ2) of su(3).

3.2 Boundary conditions

According to how the supercurrents are glued at the boundary of the world-sheet we

distinguish between A-type and B-type gluing conditions [28]. Here we are only interested

in B-type gluing conditions. Rational boundary conditions can be constructed following the

Cardy construction [29]. In the diagonal SU(3)/U(2) coset model, maximally symmetric

B-type boundary states |L, S; `〉 are labelled by two integers L, ` with 0 ≤ L ≤ bk2c,
0 ≤ ` ≤ k + 1, and an so(4)1 representation S (see e.g. [13], and also [30] for a general

discussion of twisted boundary states in Kazama-Suzuki models). Here, bxc denotes the

greatest integer smaller or equal x. Choosing a particular sign in the gluing condition for

the supercurrents, we can restrict to S = 0, v. We introduce the notation

|L, `〉 := |L, 0; `〉 and |L, `〉 := |L, v; `〉 . (3.5)

Because of field identifications and selection rules, we have to identify

|L, `〉 ≡ |L, k + 1− `〉 . (3.6)

The boundary spectrum is given by (q = e2πiτ , q̃ = e−2πi/τ )

〈L, `|q 1
2

(L0+L̄0)− c
24 |L′, `′〉

=
∑

[Λ,Σ;λ,µ]

nΛL
L′
(
N

(k+1)
λ`

`′δΣ,0 +N
(k+1)
λ(k+1−`)

`′δΣ,v

)
χ(Λ,Σ;λ,µ)(q̃) . (3.7)

Here, the sum only goes over equivalence classes of bulk labels, and N (k+1) denotes the

fusion rules of su(2)k+1, N so the fusion rules of so(4)1, and

nΛL
L′ =

∑
λ

bΛλ

(
N

(k+1)
λL

L′ −N (k+1)
(k+1−λ)L

L′
)

(3.8)
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are twisted fusion rules of su(3)k (see e.g. [31]). In the last expression the branching rules

bΛλ of the decomposition of su(3) representations Λ = (Λ1,Λ2) into representations λ of

its regularly embedded subalgebra su(2) appear. We will later need the branching rules

that describe how an su(3) representation (Λ1,Λ2) decomposes into representations (λ;µ)

of su(2)⊕ u(1),

(Λ1,Λ2)→
⊕
λ,µ

bΛ(λ;µ)(λ;µ) =

Λ1⊕
γ1=0

Λ2⊕
γ2=0

(
γ1 + γ2; 3(γ1 − γ2) + 2(Λ2 − Λ1)

)
. (3.9)

From this we directly read off the branching needed in (3.8) by ignoring the u(1) label µ.

3.3 Boundary renormalisation group flows

When relevant boundary fields are present, one can study the boundary renormalisation

group flows induced by those fields. Such boundary flows have been studied in general

cosets in the limit of large levels [32–34]. There is one class of flows that is conjectured to

be present at all levels [35–37], which we will briefly describe here.

Applied to the SU(3)/U(2) Kazama-Suzuki models, the rule of [35, 36] predicts the

following renormalisation group flows:∑
λ,`′

bΛ
+

λ N
(k+1)
λ`

`′ |L, `′〉 −→
∑
L′

nΛL
L′ |L′, `〉 , (3.10)

where Λ = (Λ1,Λ2) is an arbitrary highest weight with Λ1 + Λ2 ≤ k labelling a repre-

sentation of su(3)k, and Λ+ = (Λ2,Λ1) is the conjugate representation. bΛλ denotes the

branching of the su(3) representation Λ into su(2) representations λ (see (3.9)). The field

that induces this flow is a linear combination of fields labelled by ((0, 0), 0; 1,±3).

A simple example of such a flow is given by Λ = (1, 0), and it reads

|L, `− 1〉+ |L, `〉+ |L, `+ 1〉 −→
{
|L− 1, `〉+ |L, `〉+ |L+ 1, `〉 for L 6= k

2

|L− 1, `〉 for L = k
2 .

(3.11)

If a label happens to lie outside the allowed range, the corresponding boundary state has

to be omitted (e.g. for ` = 0 the first state on the left hand side can be left out).

A nice outcome of this flow rule is that one can obtain all boundary states from a

subset of states by perturbing suitable superpositions of boundary states. Successively

using the flow (3.11) one can e.g. start from the states |0, `〉 and obtain all others.

3.4 Defects and fusion

We can also study topological defects in these models, and here we will focus on defects

with B-type gluing conditions for the supercurrents. The rational defects carry the same

labels as the bulk fields, D[Λ,Σ;λ,µ] [38], and as defect operators on the bulk Hilbert space

– 10 –
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they are given as

D[Λ,Σ;λ,µ] =
∑

[Λ′,Σ′;λ′,µ′]

S
SU(3)/U(2)
[Λ,Σ;λ,µ][Λ′,Σ′;λ′,µ′]

S
SU(3)/U(2)
[0,0;0,0][Λ′,Σ′;λ′,µ′]

P[Λ′,Σ′;λ′,µ′]⊗[Λ′,Σ′;λ′,µ′] (3.12)

=
∑

[Λ′,Σ′;λ′,µ′]

S
SU(3)
ΛΛ′ S

SO(4)
ΣΣ′ S

SU(2)
λλ′ S

U(1)
µµ′

S
SU(3)
0Λ′ S

SO(4)
0Σ′ S

SU(2)
0λ′ S

U(1)
0µ′

P[Λ′,Σ′;λ′,µ′]⊗[Λ′,Σ′;λ′,µ′] , (3.13)

where SSU(3)/U(2) is the modular S-matrix of the model, which can be expressed in terms

of the modular S-matrices SSU(3), SSO(4), SSU(2) and SU(1) of the constituents. Concrete

formulae can be found e.g. in the appendix of [39]. P[Λ′,Σ′;λ′,µ′]⊗[Λ′,Σ′;λ′,µ′] is the projection

operator onto the corresponding bulk sector. By fixing the sign in the gluing condition for

the supercurrents we can restrict the set of defects to those with Σ = 0, v.

Topological defects can be fused to boundaries [38, 40]. Using a B-type defect, a B-type

boundary condition is transformed into a superposition of B-type boundary conditions,

D[Λ,0;λ,µ]|L, `〉 =
∑

nΛL
L′ N

(k+1)
λ`

`′ |L′, `′〉 . (3.14)

Defects that only differ in the label µ have an identical effect on B-type boundary condi-

tions.

As an example consider the defect D[(0,0),0;1,3], which is given explicitly by

D[(0,0),0;1,3] =
∑

[Λ′,Σ′;λ′,µ′]

sin 2π(λ′+1)
k+3

sin π(λ′+1)
k+3

e
iπ
k+3

µ′ P[Λ′,Σ′;λ′,µ′]⊗[Λ′,Σ′;λ′,µ′] . (3.15)

Fusing this defect to boundary conditions is described by

D[(0,0),0;1,3]|L, `〉 = |L, `+ 1〉+ |L, `− 1〉 , (3.16)

where the last boundary condition is omitted if ` = 0. Therefore, starting from |L, 0〉 one

can generate all other boundary conditions by fusing D[(0,0),0;1,3].

4 Matrix factorisations for rational boundary conditions

In this section we want to discuss matrix factorisations of the Landau-Ginzburg superpo-

tential W y
2;k that leads to the SU(3)/U(2) Kazama-Suzuki model. In particular we want

to identify those factorisations that correspond to rational boundary conditions in the

conformal field theory.

We first review the identification of some of the rational boundary conditions as poly-

nomial factorisations (i.e. where the matrix factorisations Q are 2 × 2-matrices) [13], and

how one can obtain some higher factorisations via the cone construction. Then we will dis-

cuss how one can employ defects for a systematic construction of all matrix factorisations

corresponding to rational boundary conditions.
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4.1 Polynomial factorisations

The superpotential of the SU(3)/U(2) Kazama-Suzuki model is given by

W y
2;k(y1, y2) =

(
xk+3

1 + xk+3
2

)∣∣∣
x1+x2 7→ y1

x1x2 7→ y2

=
k+2∏
j=0

(
x1 − η2j+1x2

)∣∣∣
x1+x2 7→ y1

x1x2 7→ y2

=

b k+1
2
c∏

j=0

(y2
1 − δjy2) ·

{
y1 for k even

1 for k odd ,
(4.1)

where

η = eiπ/(k+3) , δj =

(
1 + η2j+1

)2
η2j+1

. (4.2)

The product form of the superpotential allows us to easily write down factorisations Q(1) ·
Q(0) = W y

2;k with polynomials Q(1) and Q(0). Among those polynomial factorisations we

could identify in [13] those that correspond to rational boundary conditions. One class that

can be identified in this way consists of the boundary conditions |L, 0〉, and the associated

factorisations are

Q|L,0〉 =

(
0 J|L,0〉
J|L,0〉 0

)
, (4.3)

with

J|L,0〉 =

L∏
j=0

Jj , Jj = y2
1 − δjy2 , J|L,0〉 =

W y
2;k

J|L,0〉
. (4.4)

The identification in [13] is based on the comparison of the spectra of chiral primary fields,

and of the RR-charges.

For even k there is another class of rational boundary conditions that have a description

in terms of polynomial factorisations. These are the boundary conditions |k2 , `〉 — details

can be found in [13].

In section 2.3 we introduced the variable transformation interface yIx between the

SU(3)/U(2) Kazama-Suzuki model and two copies of minimal models at level k+ 1. Let us

briefly discuss how one can obtain the factorisations Q|L,0〉 in the Kazama-Suzuki model

from factorisations in the product of minimal models by interface fusion. The simplest

factorisations in the product of two minimal models are the polynomial factorisations, which

are called permutation factorisations [10] (see also [41, 42]). A subset of those corresponds

to rational boundary states, namely the permutation boundary states |L,M〉perm, which

are labelled by two numbers, L = 0, · · · , k + 1 and M being an integer identified modulo
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2k + 6, such that L+M is even. In [10] these have been identified with the factorisations

Q|L,M〉perm
=

(
0 Q

(1)
|L,M〉perm

Q
(0)
|L,M〉perm

0

)

=


0

−M−L
2
−1∏

j=−M+L
2
−1

(
x1 − η2j+1x2

)
k+1−M+L

2∏
−M−L

2

(
x1 − η2j+1x2

)
0


. (4.5)

Let us now fuse the interface yIx onto the factorisation Q|2L,0〉perm
. We first note that we

can rewrite the product that appears in Q
(1)
|2L,0〉perm

as

Q
(1)
|2L,0〉perm

=
(
x1 − η−2L−1x2

) L−1∏
j=0

Jj(y1, y2)
∣∣∣
y1 7→ x1+x2

y2 7→ x1x2

. (4.6)

The effect of fusing yIx is given by the functor Y∗ defined in (2.24). When we apply it to

Q
(1)
|2L,0〉perm

, we obtain

Y∗
(
Q

(1)
|2L,0〉perm

)
=

L−1∏
j=0

Jj(y1, y2) ·
(

1
2

(
1− η−L−1

)
y1

1
2

(
1 + η−L−1

)(
y2

1 − 4y2

)
1
2

(
1 + η−L−1

)
1
2

(
1− η−L−1

)
y1

)

→
(∏L

j=0 Jj(y1, y2) 0

0
∏L−1
j=0 Jj(y1, y2)

)
, (4.7)

where we performed a similarity transformation in the second step. We thus see that

yIx ⊗Q|2L,0〉perm
∼= Y∗(Q|2L,0〉perm

) ∼= Q|L,0〉 ⊕Q|L−1,0〉 , (4.8)

where it is understood that Q|L−1,0〉 is absent when L = 0.

4.2 RR-charges

The interface yIx between the SU(3)/U(2) Kazama-Suzuki model and the two minimal

models can also be used to relate correlators in these theories. As a simple example

we study the RR-charge, which can be considered as a disc one-point function of the

corresponding RR-field.

The chiral primaries in the SU(3)/U(2) Kazama-Suzuki model are labelled by SU(3)

representations with Dynkin labels (Λ1,Λ2) (see (3.4)) and can be expressed as polynomials

in the variables y1, y2 (see e.g. [13]),

Φ(Λ1,Λ2)(y1, y2) =

bΛ1/2c∑
r=0

(−1)r
(

Λ1 − r
r

)
yΛ1−2r

1 yΛ2+r
2 . (4.9)

– 13 –



J
H
E
P
0
5
(
2
0
1
5
)
0
5
5

The chiral primary fields are related to the Ramond ground states by spectral flow. Only

the Ramond ground states with zero U(1)R-charge have non-trivial one-point functions

in the presence of a B-type boundary condition. The corresponding chiral primary fields

are given by Φ(k−2j,j) with j = 0, . . . , bk2c. The one-point function in the presence of the

factorisation Q|L,0〉 can be derived using the Kapustin-Li formula [18, 43], and it is given

by (see [13])1

〈Φ(k−2j,j)〉|L,0〉 = −
L∑
i=0

(
η(2i+1)(j+1) + η−(2i+1)(j+1)

)
. (4.10)

On the other hand in the minimal models, the chiral primary fields corresponding to

chargeless Ramond ground states are labelled by

Ψj(x1, x2) = xj1x
k+1−j
2 . (4.11)

In the presence of a boundary given by the factorisation Q|L,M〉perm
, one can straightfor-

wardly compute the RR one-point function using again the Kapustin-Li formula [18, 43],

and one finds

〈Ψj〉|L,M〉perm
=

−M−L
2
−1∑

i=−M+L
2
−1

η(2i+1)(j+1) . (4.12)

What is the relation between the RR-charges in the two theories? We observed before

(see (4.8)) that the interface yIx maps |2L, 0〉perm to |L, 0〉 ⊕ |L − 1, 0〉. We can therefore

interpret the disc one-point function of Φ(k−2j,j) in the presence of the boundary condition

|L, 0〉⊕ |L− 1, 0〉 as a limit of the disc correlator with one insertion of Φ(k−2j,j) surrounded

by the interface yIx and with the minimal model boundary condition |2L, 0〉perm at the

boundary of the disc. We can take the opposite limit of shrinking the interface around the

bulk insertion, this will produce some minimal model field Φ̃(k−2j,j). We conclude that2

〈Φ(k−2j,j)〉|L,0〉⊕|L−1,0〉 = 〈Φ̃(k−2j,j)〉|2L,0〉perm
. (4.13)

This is illustrated in figure 1. To check this relation we need to determine the field Φ̃(k−2j,j).

In [46, 47] it has been worked out how an interface acts on a bulk field. Applying these

methods one can see that the action of a variable transformation interface xIy on a field

Φ(yj) is in general given by3

Φ̃(xi) = det

(
∂Yr
∂xs

)
Φ
(
Yj(xi)

)
. (4.14)

1Notice that the expression here differs from the one in [13] by a sign, which is only a matter of convention

regarding the definition of the one-point function.
2Similar computations have appeared for (generalised) orbifolds of Landau-Ginzburg models in [44, 45].
3This result is obtained by applying formula (1.4) of [46] and making use of the fact that the variable

transformation interface is obtained from the identity defect yIy by replacing one set of y-variables by the

corresponding expression in x-variables.
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Φ

|2L, 0〉perm

yIx →
Φ

|L− 1, 0〉 ⊕ |L, 0〉

↑

Φ

|2L, 0〉perm

yIx

theory with W = W (y1, y2)

theory with W̃ = W̃ (x1, x2)

Φ ≡ Φ(k−2j,2)

Φ̃ ≡ Φ̃(k−2j,2)

↓

Φ

|2L, 0〉perm
yIx →

Φ̃

|2L, 0〉perm

Figure 1. Consider a disc correlator with a bulk field Φ inserted at the centre, and the interface yIx
inserted around it (see the central illustration to the left). Then we can either shrink the interface

around the insertion to produce a field insertion by a field Φ̃, or we let the interface cycle grow

until it hits the boundary to produce a new boundary condition. In this way we can relate two bulk

one-point functions on the disc.

In our case we obtain

Φ̃(k−2j,j)(x1, x2) = (x1 − x2) · Φ(k−2j,j)(x1 + x2, x1x2)

= (x1 − x2)

k−2j∑
i=0

xi+j1 xk−i−j2

= xk−j+1
1 xj2 − xj1xk−j+1

2

= Ψk−j+1(x1, x2)−Ψj(x1, x2) . (4.15)
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Therefore the right hand side of (4.13) evaluates to

〈Φ̃(k−2j,j)〉|2L,0〉perm
=

L−1∑
i=−L−1

(
η(2i+1)(k+2−j) − η(2i+1)(j+1)

)
=−

L−1∑
i=−L−1

(
η−(2i+1)(j+1) + η(2i+1)(j+1)

)
(4.16)

=−
L−1∑
i=0

(
η(2i+1)(j+1) + η−(2i+1)(j+1)

)
−

L∑
i=0

(
η(2i+1)(j+1) + η−(2i+1)(j+1)

)
,

which precisely equals the left hand side of (4.13).

4.3 Higher factorisations from cones

To construct matrix factorisations for other rational boundary conditions, one can make

use of the known flows between different boundary states [13], which we will review in

this subsection. It turns out that this method seems not to be suitable to obtain all those

factorisations, but it leads to a precise construction for the factorisations corresponding to

the boundary states |L, 1〉. These in turn constitute the starting point for the identification

of a defect factorisation in section 4.4 which will be our main tool to generate factorisations

for all rational boundary states in this article.

Evaluating the flow (3.11) for ` = 0, we obtain

|L, 0〉+ |L, 1〉 −→ |L− 1, 0〉+ |L, 0〉+ |L+ 1, 0〉 . (4.17)

An analogous statement in terms of matrix factorisations entails that the factorisation

corresponding to the right hand side can be obtained as a cone from the two factorisations

that correspond to the left hand side of the flow (4.17). In other words, Q|L,1〉 can be

obtained as a cone from Q|L,0〉 and the superposition Q|L−1,0〉 ⊕Q|L,0〉 ⊕Q|L+1,0〉. This in

turn can be rewritten [13] as a cone of Q|L,0〉 and the factorisation

Q̃L =

(
0 JL+1J|L−1,0〉

JLJ|L+1,0〉 0

)
. (4.18)

Explicitly we find

Q|L,1〉 = C

(
Q|L,0〉, Q̃L, y1

(
0 J|L−1,0〉

−J|L+1,0〉 0

))
, (4.19)

such that

Q
(1)
|L,1〉 =

(
JL 0

y1 JL+1

)
J|L−1,0〉 (4.20a)

Q
(0)
|L,1〉 =

(
JL+1 0

−y1 JL

)
J|L+1,0〉 . (4.20b)
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This factorisation is the basic input that we need to identify the defect D[0,0;1,3] in the

subsequent subsection, from which we will generate factorisations for all other rational

boundary states. In the remainder of this subsection, we discuss why it seems difficult

to continue the strategy of building cones to construct factorisations for boundary states

|L, `〉 with ` ≥ 2 directly.

There are two obstacles in this approach, one of a technical nature, the other one being

a conceptual problem. On the technical side one faces the problem that the factorisations

in question become larger and larger, and the computations are feasible only by means of

a computer program. In fact, the flow rule (4.17) leads to a realisation of Q|L,1〉 as an 8×8

matrix (that can then be reduced to the 4 × 4 matrix that we saw above), and similarly

the general flow rule (3.11) leads to an ansatz where the Q|L,2〉 factorisations are already

32×32 matrices, and the Q|L,3〉 are of size 128×128. Even with the help of rather efficient

SINGULAR codes and considerable amounts of computer processing power, the authors

were not able to push this type of search much beyond the Q|L,2〉 type factorisations, with

only a few sporadic matches for Q|L,3〉, and the codes not being executable due to memory

limitations already for the Q|L,4〉 type factorisations.

There is also a conceptual problem in this approach. For the |L, 1〉 boundary states,

one can uniquely identify the field that is responsible for the flow by its U(1)R-charge,

and therefore one is led to a unique ansatz for the cone. This is in general not true for

|L, 2〉 and beyond. This problem is also reflected by the presence of marginal boundary

fields for the |L, 2〉 boundary condition (if L 6= k/2): it can be smoothly deformed to other

boundary states. Correspondingly, the associated matrix factorisations can be deformed,

and within this continuous family of |L, 2〉-like factorisations it is hard to identify the one

that corresponds precisely to |L, 2〉.
This is why we look for a different approach to obtain the higher factorisations, which

will be based on special operator-like defects in the theory as we will discuss in the following.

4.4 Higher factorisations from defect fusion

Besides the cone construction, which we employed in the last subsection, we can also use

fusion of defects or interfaces to generate new factorisations. We have seen in section 4.1

that we can generate the |L, 0〉 factorisations from permutation factorisations in minimal

models by fusing the variable transformation interface yIx, namely

yIx ⊗Q|2L,0〉perm
∼= Y∗(Q|2L,0〉perm

) ∼= Q|L−1,0〉 ⊕Q|L,0〉 . (4.21)

What happens if we tensor yIx to other permutation factorisations? Let us look at the

factorisations corresponding to the permutation boundary states |2L+1, 1〉perm. From (4.5)

we see that the upper right entry is

Q
(1)
|2L+1,1〉perm

= (x1 − η−2L−3x2)(x1 − η−2L−1x2)

L−1∏
j=0

Jj(y1, y2)
∣∣∣
y1 7→ x1+x2

y2 7→ x1x2

. (4.22)
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Fusing the variable transformation interface to this factorisation, i.e. applying the functor

Y∗, we obtain

Y∗
(
Q

(1)
|2L+1,1〉perm

)
=

L−1∏
j=0

Jj(y1, y2)×

×
(

1+η−4L−4

2 y2
1 − (1− η−2L−1)(1− η−2L−3) 1−η−2L−4

2 y1(y2
1 − 4y2)

1−η−2L−4

2 y1
1+η−4L−4

2 y2
1 − (1− η−2L−1)(1− η−2L−3)

)

→
(
JL 0

y1 JL+1

)
J|L−1,0〉 , (4.23)

where we performed a similarity transformation in the last step. This is precisely Q
(1)
|L,1〉

(see (4.20a)), so that we find

Y∗
(
Q|2L+1,1〉perm

) ∼= Q|L,1〉 . (4.24)

We found again that a rational boundary condition is mapped to a rational one by the

variable transformation interface.

There is, however, much more that we can conclude from this finding. In fact we expect

from the rational conformal field theory description that there is a defect D[(0,0),0;1,3] that

maps |L, 0〉 to |L, 1〉. A natural ansatz would be to look for a rational defect D̃ in the

minimal model theory, and then fusing it from the left with yIx and from the right with

xIy to obtain a defect in the Kazama-Suzuki model,

D[(0,0),0;1,3] = yIx ⊗ D̃ ⊗ xIy . (4.25)

We know that under fusion with D[(0,0),0;1,3] the factorisation Q|L,0〉 should be mapped to

Q|L,1〉. Fusing the variable transformation interface onto Q|L,0〉 leads to the factorisation

Q|2L+1,−1〉perm
. On the other hand we just derived that Q|2L+1,1〉perm

is mapped to Q|L,1〉
when we fuse yIx. Therefore we demand that the defect D̃ maps |2L+ 1,−1〉perm to |2L+

1, 1〉perm. In fact there is a symmetry defect, Q{1} ⊗Q{η2} that acts as the identity defect

in the first minimal model factor, and as the symmetry defect realising the automorphism

ση2 : x2 → η2x2 in the second minimal model. We therefore conjecture that

D̃ = Q{1} ⊗Q{η2} . (4.26)

This is again a simple example of a variable transformation interface, whose fusion is

described by the functor σ∗η2 that acts trivially on the variable x1 and replaces the variable

x2 by η2x2. The fusion of the defect D[(0,0),0;1,3] can then be described by the functor

D(1) = Y∗ ◦ σ∗η2 ◦ Y ∗ . (4.27)

We have thus identified a candidate for a defect in the Landau-Ginzburg theory whose

action on the boundary conditions Q|L,0〉 coincides precisely with what we expect from the

fusion of the defect D[(0,0),0;1,3] on the boundary condition |L, 0〉. This is of course not a
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proof that we identified the defect correctly in the Landau-Ginzburg model, and we briefly

want to discuss two obvious ways how one could try to modify the proposal. Firstly we

might modify the proposal by choosing instead of Q{1} ⊗Qη2 the symmetry defect

Q{η2m} ⊗Q{η2(m+1)} , (4.28)

which would lead to the same action on boundary conditions Q|L,0〉. To decide which choice

is the correct one, we have to act with the defect on other defects. From the conformal

field theory we expect the fusion

D[(0,0),0;1,3] ∗D[(0,0),0;1,3] = D[(0,0),0;2,6] ⊕D[(0,0),0;0,6] . (4.29)

The second defect is a symmetry defect that corresponds to the phase shifts

y1 7→ η2y1 , y2 7→ η4y2 , (4.30)

which means that we know its identification on the Landau-Ginzburg side. By looking at

the above fusion of the defect D[(0,0),0;1,3] with itself in the Landau-Ginzburg theory (which

we will present in [48]), we can therefore confirm that we made the correct choice.

The second obvious question one should investigate is whether there are any smooth

deformations of this defect, so that there would be a whole family of defects with similar

properties. As one can show from a computation of the conformal field theory spectrum,

we do not expect any fermionic morphisms of the corresponding matrix factorisations, and

therefore no deformations. This provides further evidence that we have identified the defect

correctly.

Having identified D[(0,0),0;1,3] in the Landau-Ginzburg model, one can then use it to

construct higher factorisations, which we will do in the following subsection.

4.5 Matrix factorisations for all rational boundary conditions

With the help of the defect D[(0,0),0;1,3] we can in principle determine all matrix factorisa-

tions corresponding to rational boundary conditions. In fact, we know from the conformal

field theory that (see (3.16))

D[(0,0),0;1,3]|L, `〉 = |L, `− 1〉+ |L, `+ 1〉 , (4.31)

where it is understood that the first boundary condition on the right is not present for

` = 0. For the factorisations this means that

D(1)

(
Q|L,`〉

) ∼= Q|L,`−1〉 ⊕Q|L,`+1〉 . (4.32)

Starting from Q|L,0〉 one can generate all Q|L,`〉 by successively applying D(1). The tech-

nical challenge that remains is to decompose the fusion result into the direct sum of two

factorisations.
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4.5.1 A closed formula for rational matrix factorisations Q|0,`〉

We now want to investigate this problem for the factorisations of type Q|0,`〉. They are

generated from the factorisation Q|0,0〉 which is a 2×2 matrix whose upper right block Q
(1)
|0,0〉

is the polynomial J0 (see (4.3)). Applying D(1) once we obtain a matrix factorisation for

|0, 1〉 whose upper right block (after a similarity transformation) is given by (see (4.20a))

D(1)(J0) ∼= Q
(1)
|0,1〉 =

(
J0 0

y1 J1

)
. (4.33)

We see the polynomial factors Jn appearing on the diagonal. In the full matrix factorisation

Q|0,1〉 they appear as part of the matrix factorisation blocks

Qn =

(
0 Jn
J̄n 0

)
(4.34)

with J̄n = W y
2;k/Jn.

When we want to apply D(1) once more, we first have to understand its action on

these blocks Qn. We will need later a result not only for Q0 and Q1, but for a general

factorisation Qn. Introducing the notation

πp =
1

2

(
1 + ηp

)
µp =

1

2

(
1− ηp

)
, (4.35)

the factor Jn (see (4.4)) can be expressed as

Jn = y2
1µ2n+1µ−2n−1 + λ2

1π2n+1π−2n−1 , (4.36)

where

λ2
1 := y2

1 − 4y2 = (x1 − x2)2
∣∣∣
x1+x2 7→ y1

x1x2 7→ y2

. (4.37)

Applying D(1) (given in (4.27)) to Qn we find for the upper right block Q
(1)
n = Jn

D(1)

(
Jn
)

= Y∗
(

(x1 + η2x2)2µ2n+1µ−2n−1 + (x1 − η2x2)2π2n+1π−2n−1

)
(4.38)

=

(
y2

1µ2n+3µ−2n+1 + λ2
1π2n+3π−2n+1 2y1λ

2
1µ2π2

2y1µ2π2 y2
1µ2n+3µ−2n+1 + λ2

1π2n+3π−2n+1

)
(4.39)

= (U (0)
n )−1 · Jn(1) · U (1)

n (4.40)

with

Jn(1) =

(
Jn−1 0

y1 Jn+1

)
. (4.41)

In the last step we performed a similarity transformation to define a convenient form Qn(1)

for the factorisation D(1)(Qn),

Qn(1) = Un ·
(
D(1)(Qn)

)
·
(
Un
)−1

, (4.42)
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where the transformation Un := 1Unis defined by

rUn := Urow×

(
r + 1;

1

µ4

)
· Urow×

(
r;
π2n−1

π2n+3

)
· Ucol×

(
r + 1;µ4

π−2n−3

π−2n+1

)
·

· Ucol

(
r, r + 1;−y1µ2n+3

π2n+3

)
· Urow

(
r + 1, r;

y1µ2n−1

π2n−1

)
. (4.43)

Here, Urow×(r;α) (Ucol×(r;α)) has the effect of multiplying row r (column r) of the upper

right block Q(1) of a matrix factorisation with the constant α. Ucol(r, s;α) (Urow(r, s;α)) has

the effect on the block Q(1) of adding row r (column r) multiplied by α to row s (column

s). The precise conventions and explicit formulae for the similarity transformations are

summarised in appendix A.

Let us now apply D(1) on Qn(1). The upper right block Q
(1)
n(1) = Jn(1) is given in (4.41),

and it has the factors Jn−1 and Jn+1 on the diagonal, which will be mapped to D(1)(Jn±1).

We then directly apply the similarity transformations to bring those to the form Jn±1(1),

D(1)(Jn(1)) =

(
D(1)(Jn−1) 0

D(1)(y1) D(1)(Jn+1)

)
(4.44)

=

(
U (0)
n−1 0

0 U (0)
n+1

)−1

·
(
Jn−1(1) 0

D̃(1)(y1)
n
Jn+1(1)

)
·
(
U (1)
n−1 0

0 U (1)
n+1

)
(4.45)

with

D̃(1)(y1)
n

= U (0)
n+1 ·D(1)(y1) · (U (1)

n−1)−1 (4.46)

=

(
y1π2n+3

π2n+5

Jnµ2µ4

π2n+5π−2n+3
1

2π2

y1π−2n+1

π−2n+3

)
. (4.47)

The effect of the similarity transformation is summarised in the transformation

Uan(1) := 3Un+1 · 1Un−1 , (4.48)

where the left superscript j on jUm denotes the row and column where the corresponding

2× 2-block Um starts (in accordance with the definition in (4.43)).

We can perform further similarity transformations to bring D(1)(Qn(1)) into a conve-

nient form:

D(1)

(
Jn(1)

)
=
(
U b(0)
n(1) · U

a(0)
n(1)

)−1 ·


Jn−2 0 0 0

y1 Jn 0 0

0 − Jn
2π2χ(n)

Jn 0
1

2π2
0 y1 Jn+2

 · U b(1)
n(1) · U

a(1)
n(1)

=
(
Uc(0)
n(1) · U

b(0)
n(1) · U

a(0)
n(1)

)−1 ·


Jn−2 0 0 0

y1 0 Jn 0

0 Jn 0 0

χ(n) 0 y1 Jn+2

 · U c(1)
n(1) · U

b(1)
n(1) · U

a(1)
n(1) .

(4.49)
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Here, the transformation U bn(1) is a simple row and column operation that deletes the entries

∝ y1,

U bn(1) = 2Un(1) ,
rUn(1) := Ucol

(
r + 1, r;−π−2n+1

π−2n+3

)
· Urow

(
r, r + 1;−π2n+3

π2n+5

)
, (4.50)

while the transformation Ucn(1) is defined as

Ucn(1) = 2
c̃Un(1) · 2cUn(1)

r
cUn(1) := Ucol

(
r, r + 1; 2π2χ(n)

)
· Urow

(
r + 1, r; 2π2χ(n)

)
r
c̃Un(1) := Urow×

(
r − 1;

1

2π2χ(n)

)
· Ucol×

(
r − 1; 2π2χ(n)

)
· Urow×

(
r;

1

2π2χ(n)

)
· Ucol×

(
r;−2π2χ(n)

)
.

(4.51)

For convenience we introduced the quantities

χ(p) :=
π−2p+3 π2p+5

4π2
2 π−2p+1 π2p+3

. (4.52)

Looking at (4.49) we see that the matrix factorisations can be split into the factorisation

Qn and a new factorisation Qn(2) whose upper right block Q
(1)
n(2) = Jn(2) is

Jn(2) =

Jn−2 0 0

y1 Jn 0

χ(n) y1 Jn+2

 . (4.53)

In particular, we can identify the factorisation for the boundary state |0, 2〉 as Q
(1)
|0,2〉 = J0(2).

One can now go on and apply D(1) again. We will show in appendix B that in this

way one generates a family of factorisations Qn(m) with the property

D(1)(Qn(m)) ∼= Qn(m−1) ⊕Qn(m+1) . (4.54)

The upper right block Jn(m) ≡ Q(1)
n(m) of Qn(m) is given by

Jn(m) =



Jn−m 0 · · ·
y1 Jn−m+2 0 · · ·

χ(n−m+2) y1 Jn−m+4 0 · · ·
0 χ(n−m+4) y1 Jn−m+6 0 · · ·
...

. . .
. . .

. . .
. . .

. . .

0 χ(n+m−2) y1 Jn+m


. (4.55)

This formula applies for odd level k for all m ≤ k + 2, whereas for even level k it applies

for m+ |n| ≤ k/2.
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In particular one therefore has found matrix factorisations

Q|0,`〉 = Q0(`) (4.56)

for the rational boundary states |0, `〉! For odd k this covers all boundary states of this

type, whereas for even k we have the restriction ` ≤ k/2. Note however that (see (3.6))

|L, `〉 = |L, k + 1− `〉 , (4.57)

therefore boundary states with ` ≥ k/2 + 1 can be related to boundary states with smaller

label. The operation of taking the anti-boundary state corresponds in the matrix factori-

sation to an exchange of the blocks Q(0) and Q(1). Therefore we have found factorisations

for all boundary states of the form |0, `〉.
As presented in appendix E, it is possible to find a very compact alternative closed

expression for the form of both the Jn(m) ≡ Q
(1)
n(m) block as well as of the En(m) ≡ Q

(0)
n(m)

block of the matrix factorisations Qn(m). Referring to the appendix for the computational

details, we would just like to mention here that the derivation is based on two major steps.

In the first step, the structure of the En(m) blocks is inductively derived from the explicit

formula (4.55) for Jn(m) via the basic equation

Q2
n(m) = W · 1 ⇔ En(m) = W ·

(
Jn(m)

)−1
. (4.58)

The second step consists in applying a series of row and column operations on the Jn(m)

block in order to “clear out” all rows and columns that intersect at a constant entry.

According to (4.55), this leaves a 2×2 non-trivial block Ĵn(m) in direct sum with m−1 trivial

matrix factorisation blocks Jtriv. Upon closer inspection, the aforementioned similarity

transformations induce operations on the En(m) block that leave the 2 × 2 subblock Ên(m)

formed from the overlap of the last two lines and the first two columns of En(m) invariant.

But since Ên(m) is thus just a subblock of En(m), in contrast to Ĵn(m) we already know an

explicit formula for Ên(m), and thus in turn also for Ĵn(m):

Ên(m) =

(
Ψn−1(m−1) Ψn(m−2)

Ψn(m) Ψn+1(m−1)

)
,

Ĵn(m) = W Ê−1
n(m) =

1

W

∏m
j=0 Jn−m+2j∏m−1
j=1 χ(n−m+2j)

(
Ψn+1(m−1) −Ψn(m−2)

−Ψn(m) Ψn−1(m−1)

)
.

(4.59)

The explicit formula for the entries Ψn(m) is given in (E.20) in appendix E.

4.5.2 A closed formula for all rational matrix factorisations

To obtain expressions for all rational matrix factorisations, we start from the factorisations

Q|L,0〉 and apply D(1) successively to generate factorisations for the boundary states |L, `〉,

D(1)

(
Q|L,`〉

) ∼= Q|L,`−1〉 ⊕Q|L,`+1〉 . (4.60)

The biggest computational problem is then the decomposition into the elementary factori-

sations on the right hand side. This was already tedious for L = 0 where we started from
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a degree 2 polynomial J0, so a priori, it appears hopeless to find a closed formula for the

factorisations Q|L,`〉 with ` > 1, where the starting polynomial

J|L,0〉 =

L∏
i=0

Ji (4.61)

is of degree 2(L + 1). We may however rewrite the higher polynomial factorisations as

cones of the elementary polynomial factorisations (see e.g. [13]), such that (we will again

only write the upper right block of the matrix factorisations)

J|L,0〉 =
L∏
i=0

Ji ∼=



J0 0 · · ·
1 J1 0 · · ·
0 1 J2 0 · · ·
...

. . .
. . .

. . .

0 1 JL−1 0

0 1 JL


. (4.62)

Each of the diagonal entries of the cone is simply a polynomial factor Jn of degree 2.

When we now apply D(1) successively, we can in principle use our results of the previous

subsection to obtain factorisations with blocks Jn(m) on the diagonal.

The difficulty in this approach is that the similarity transformations that are used to

arrive at the blocks Jn(m) will also affect the morphisms. When we apply D(1) in the first

step its action on the morphisms 1 is trivial,

D(1)(1) = 1 , (4.63)

but the similarity transformations will produce non-trivial entries. As an example consider

the matrix

Jp,q =

(
Jp 0

1 Jq

)
. (4.64)

When we apply D(1) on it and transform the diagonal blocks D(1)

(
Jn
)

into the form Jn(1)

(see (4.41)) via the similarity transformations Un (see (4.42)), we obtain

D(1)

(
Jp,q

) ∼=

Jp−1 0 0 0

y1 Jp+1 0 0
π2q−1

π2q+3

y1µ4µ2q−2p−4

π2q+3π−2p+1
Jq−1 0

0
π−2p−3

π−2p+1
y1 Jq+1

 . (4.65)

While now the diagonal blocks are in the right form to apply our inductive mechanism

for finding the result of applying D(1) to them, we observe that since now the morphisms

between the Qn(1)-type blocks have an entry of polynomial degree > 0 (∝ y1), each time

we apply D(1) we will generate consecutively higher degree polynomial morphism entries,

thus leading to an extremely complex morphism structure.

We have instead to look for an alternative standard form for the Jn(m) that is obtained

by using similarity transformations that leave the morphisms (the identity matrices) un-

changed. A prototype of such a transformation is one that
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• does not depend on n, and

• has identical diagonal blocks, U (0) = U (1).

Then the morphism entries are unaffected,

U (0) · 1 ·
(
U (1)

)−1
= 1 . (4.66)

Our strategy, however, was to allow for all similarity transformations a priori, and then

make sure at the end that all morphisms are again identity matrices. We conjecture that

it is enough to use transformations with the two properties described above, but it is not

guaranteed from our analysis.

To describe the alternative standard form we found in this way, we have to introduce

some notation. First let us define a generalisation of the functor D(1),

D̃0,m := Y∗ ◦ σ∗η2m ◦ Y ∗ , (4.67)

i.e. we first express the variables yi through the xj , then map x2 7→ η2mx2, and then apply

the functor Y∗ to again obtain a matrix in the variables yi. For m = 1 we have D(1) = D̃0,1

(see (4.27)). The action of D̃0,m on an elementary polynomial factor Jn is given by4

D̃0,m

(
Jn
)

=
(
y2

1µ2m+2n+1µ2m−2n−1 + λ2
1π2m+2n+1π2m−2n−1

)
· 1 + 2y1λ1µ2mπ2mΛ ,

Λ :=

(
0 λ1
1
λ1

0

)
. (4.68)

It is worthwhile to note the origin of the two elementary matrices 1 and Λ in this formula,

which is simply the application of the “symmetrisation fusion functor” Y∗ onto y1 ≡ x1 +x2

and λ1 ≡ x1 − x2 (i.e. to y1 upon embedding into the polynomial ring C[x1, x2], and to λ1

considered as an element of C[x1, x2]):

Y∗(y1) = y11 , Y∗(λ1) = λ1Λ . (4.69)

The crucial feature of (4.68) is the fact that the off-diagonal entries of D̃0,m

(
Jn
)

do not

depend on n, i.e. on the label of the elementary polynomial Jn.

For later convenience, we will also define the symbol ˜̃D0,m

(
Jn
)

to denote the following

form for D̃0,m

(
Jn
)
, which is obtained via a similarity transformation that rescales the

off-diagonal entries:5

˜̃D0,m

(
Jn
)

:= ˜̃U (0)
m,n ·

(
D̃0,m

(
Jn
))
· ˜̃U (1)−1

m,n

=
(
y2

1µ2m+2n+1µ2m−2n−1 + λ2
1π2m+2n+1π2m−2n−1

)
1

+

(
0 4µ2

2mπ
2
2my1λ

2
1

y1 0

)
˜̃Um,n := Ucol× (2; 2µ2mπ2m) · Urow×

(
2;

1

2µ2mπ2m

)
.

(4.70)

4Note that the entries of Λ as well as λ1 are not elements of the polynomial ring C[y1, y2], but that the

combination λ1Λ that appears in the formulae has entries that can be written as polynomials in y1, y2.
5This similarity transformation is independent of n and has identical diagonal blocks, so it satisfies the

two criteria specified above.
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We want to take this as our new standard form for Jn(1), so we define

J̃n(1) := ˜̃D0,1

(
Jn
)
. (4.71)

We can immediately conclude that

D(1)

(
J|L,0〉

) ∼=


J̃0(1) 0 · · ·
1 J̃1(1) 0 · · ·
0 1 J̃2(1) 0 · · ·
...

. . .
. . .

. . .

0 1 J̃L−1(1) 0

0 1 J̃L(1)


. (4.72)

Now we have to look for similar expressions for Jn(m) for m ≥ 2. A tedious computation

(some ideas of which are presented in appendix C) leads to the following claim: we have

found an alternative form of Qn(m) that we call Q̃n(m) (related by a similarity transforma-

tion) and that satisfies the following property: denote by C(p1, . . . , pr;m) the cone whose

upper right block is given by

C(p1, . . . , pr;m)(1) =



J̃p1(m) 0 · · ·
1 J̃p2(m) 0 · · ·
0 1 J̃p3(m) 0 · · ·
...

. . .
. . .

. . .

0 1 J̃pr−1(m) 0

0 1 J̃pr(m)


, (4.73)

where as usual J̃n(m) is the upper right block of Q̃n(m). Then

D(1)

(
C(p1, . . . , pr;m)

) ∼= C(p1, . . . , pr;m− 1)⊕ C(p1, . . . , pr;m+ 1) (4.74)

for generic p1, . . . , pr. The alternative standard form J̃n(m) is given by

for even m:

J̃n(m) =


η2mJn 0 ···

η2m−4Ψ0,2 η2m−4 ˜̃D0,2

(
Jn
)

0 ···
0 η2m−8Ψ2,4 η2m−8 ˜̃D0,4

(
Jn
)

0 ···
...

. . .
. . .

. . .
. . .

0 Ψm−2,m
˜̃D0,m

(
Jn
)

 (4.75a)

for odd m:

J̃n(m) =


η2m−2 ˜̃D0,1

(
Jn
)

0 ···
η2m−6Ψ1,3 η2m−6 ˜̃D0,3

(
Jn
)

0 ···
0 η2m−10Ψ3,5 η2m−10 ˜̃D0,5

(
Jn
)

0 ···
...

. . .
. . .

. . .
. . .

0 Ψm−2,m
˜̃D0,m

(
Jn
)

 .

(4.75b)
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This formula is obtained by an extrapolation of the pattern one observes for small values

m. We expect it to be correct for m ≤ k+2 if k is odd, whereas for k even we can from our

derivation only conclude that it should be valid for m + |pi| ≤ k/2 (see the discussion in

appendix D). On the other hand, we have reasons to believe that it is valid for a larger set

of values for m: we conjectured above that the decomposition in (4.74) can also be done

purely by using similarity transformations that satisfy the two properties formulated above,

i.e. by blockwise transformations independent of the label pi. If this is true, then also the

constraint should not depend on the label pi and we could conclude that the formula is

valid for all m ≤ k/2.

We can then finally write down a matrix factorisation for a general rational boundary

state |L, `〉 in the form

J|L,`〉 ∼=



J̃0(`) 0 · · ·
1 J̃1(`) 0 · · ·
0 1 J̃2(`) 0 · · ·
...

. . .
. . .

. . .

0 1 J̃L−1(`) 0

0 1 J̃L(`)


. (4.76)

For odd k this formula should hold for all L and `, whereas for even k we have constraints.

From the discussion above we conclude that it should be valid at least for L+ ` ≤ k/2, but

if our conjecture on the similarity transformation is correct, it should hold for all ` ≤ k/2.

If this is true then using the identification

|L, `〉 = |L, k + 1− `〉 (4.77)

one can get a factorisation for every rational boundary state also for even k.

Up to this issue of the constraints due to the level k, we have formulated a complete

dictionary between matrix factorisations and rational boundary states for the Kazama-

Suzuki model of type SU(3)k/U(2).

4.6 Effects of finite levels

For a finite level k there are only finitely many rational boundary states, so that if we

continue to apply D(1) we should see dependencies between the factorisations that arise

due to the identity

ηk+3 = −1 . (4.78)

Checking the dependencies is then another test that we identified the correct matrix fac-

torisation.

When we successively determine factorisations by applying the fusion functor D(1) on
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factorisations Q|L,`〉 we expect our first interesting effect for the special value ` = bk+1
2 c:

k ∈ 2Z D(1)

(
Q∣∣L,k2〉) ∼= Q∣∣L,k2−1

〉 ⊕Q∣∣L,k2 +1
〉︸ ︷︷ ︸

=Q∣∣L,k2〉
(4.79)

k ∈ 2Z + 1 D(1)

(
Q∣∣L,k+1

2

〉) ∼= Q∣∣L,k−1
2

〉 ⊕ Q∣∣L,k+3
2

〉︸ ︷︷ ︸
=Q∣∣L,k−1

2

〉
. (4.80)

We notice a crucial difference in the cases k odd and k even, respectively:6 for k even, there

exists one special irreducible factor of the superpotential W y
2;k as defined in (4.1), namely

the factor Jk
2

= y1. We will thus have to discuss the two cases separately.

For the case k odd, all the irreducible factors Ji of the superpotential W y
2;k are of the

generic form (4.36), so the only effect of the special label ` = k+1
2 consists in a number

of identifications. For concreteness, consider the case of the rational matrix factorisations

Q|0,`〉, for which we found earlier the formula (see (4.55))

J0(`) =



J−` 0 · · ·
y1 J−`+2 0 · · ·

χ(−`+2) y1 J−`+4 0 · · ·
0 χ(−`+4) y1 J−`+6 0 · · ·
...

. . .
. . .

. . .
. . .

. . .

0 χ(`−2) y1 J`


, (4.81)

with χ(p) defined in (4.52). Using the obvious identification of labels

J−n = y2
1µ−2n+1µ2n−1 + λ2

1π−2n+1π2n−1 = Jn−1 , (4.82)

we observe that the negative labels in (4.81) are mapped to positive labels in such a way

that for ` = k+1
2 the list of diagonal entries of J|0,`〉 exhausts the list of all irreducible

factors (which are labelled J0,J1, . . . ,Jk+1
2

for k odd). It may be checked that (unlike in

the case of k even, which will be discussed below) no special relations play a role when

applying D(1) to Q|0, k+1
2 〉

, i.e. we obtain our usual result

D(1)

(
Q∣∣0, k+1

2

〉) ∼= Q∣∣0, k−1
2

〉 ⊕Q∣∣0, k+3
2

〉 . (4.83)

The only structural speciality in Q∣∣0, k+3
2

〉 stems from the fact that

J−k+3
2

= Jk+1
2

= Jk+3
2
, (4.84)

which may be checked by inspecting (4.36). In addition, the relation

χ(−m) = χ(m−1) , (4.85)

6See also figure 1 of [13] for illustration.
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which follows immediately from the definition (4.52) of χ(m), may be employed to convert

every constant χ(m) with negative label into one with positive label. Additional arguments

for proving the second part of the claim, i.e. that Q|L, k+3
2
〉
∼= Q|L, k−1

2
〉, are introduced

below when we discuss the case of even k, but we refrain from carrying out the explicit

computations for brevity, since they are entirely analogous to those necessary in the more

interesting case of k even.

For the case k even, we encounter the problem that the formula (4.81) for J0(`) is

only valid for ` ≤ k
2 . Therefore when we want to check (4.79), we cannot directly use the

formula (4.81) for Q|0, k
2

+1〉. The problem occurs when D(1) hits the polynomial factor Jp
with highest p (p = k/2) on the diagonal of J0(k/2). We then have (see (4.68))

D(1)

(
Jk/2

)
=
(
y2

1µk+3µ−k+1 + λ2
1πk+3π−k+1

)
· 1 + y1λ1µ4Λ

= π−2k−2y
2
11 + µ−2k−2y1λ1Λ .

(4.86)

It is now a straightforward computation to demonstrate that via the similarity transfor-

mations

Û(k) := Ucol×

(
1;

1

µ−2k−2

)
· Urow× (1;µ2k+2) ·

· Ucol

(
1, 2,

y1π2k+2

µ2k+2

)
· Urow

(
1, 2,

y1π2k+2

µ2k+2

) (4.87)

we may realise the isomorphism

D(1)

(
Jk/2

) ∼= ( 0 y1

(
π2k+2π−2k−2y

2
1 + µ2k+2µ−2k−2λ

2
1

)
y1 0

)

=

(
0 y1J k

2
−1

y1 0

)
.

(4.88)

Here, we have made use of the fact that

πp = µp+k+3 . (4.89)

We are now in the position to determine J0( k2 +1) that occurs in the relation (4.79) for

L = 0,

k ∈ 2Z : D(1) ◦Q|0, k
2
〉
∼= Q|0, k

2
−1〉 ⊕Q|0, k

2
+1〉

!∼= Q|0, k
2
−1〉 ⊕Q|0, k

2
〉 . (4.90)

We start from the explicit formula (4.81) for the factorisation Q|0,`〉, which reads using the

relations (4.82) and (4.85):

J0(`) =



J`−1 0 · · ·
y1 J`−3 0 · · ·

χ(`−3) y1 J`−5 0 · · ·
0 χ(`−5) y1 J`−7 0 · · ·
...

. . .
. . .

. . .
. . .

. . .

0 χ(`−2) y1 J`


. (4.91)
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Here, the entries on the diagonal run from J`−1 to J`−m∗ in steps of two, where

m∗ :=

{
` ` odd

`− 1 ` even.

Then, if m∗ = `, the next diagonal entries after J0 read J1,J3, . . .. Otherwise, we have

that J`−m∗ = J1, after which the next entries read J0,J2,J4, . . ..

At k = 2 we obtain

J|0,1〉 =

(
J−1 0

y1 J1

)
, (4.92)

and we immediately compute

D(1)

(
J|0,1〉

)∣∣∣∣
k=2

=

(
D(1)

(
J−1

)
0

D(1)[y1] D(1)

(
J1

))

(4.86)
=


(
y2

1µ1µ3 + λ2
1π1π3

)
y1λ

2
1µ4 0 0

y1µ4

(
y2

1µ1µ3 + λ2
1π1π3

)
0 0

y1π2 λ2
1µ2 y2

1µ−1 y1λ
2
1π−1

µ2 y1π2 y1π−1 y2
1µ−1

 . (4.93)

Applying the transformation Ûk (see (4.87)) to the lower right block, and the standard

transformation 1U−1 (given in (4.43)) to the upper left block, we obtain the intermediate

result

D(1)

(
J|0,1〉

)∣∣∣∣
k=2

∼=


J1 0 0 0

y1 J0 0 0

y1π3 J0
µ1π1

µ−1
0 y1J0

2µ1π1 y1
π1π−1

π3
y1 0



∼=


J1 0 0 0

y1 J0 0 0

0 J0

(
µ1π1

µ−1
− π3

)
0 y1J0

2µ1π1 0 y1 0



∼=


J1 0 0 0

y1 0 0 y1J0

0 J0 0 0

1 0 y1 0

 .

(4.94)

It is then immediately obvious that this result can be transformed into the form

D(1)

(
J|0,1〉

)∣∣∣∣
k=2

∼=


0 0 y1J1 0

0 0 −y2
1 y1J0

0 J0 0 0

1 0 0 0

 = Jtriv ⊕ J|0,0〉 ⊕ J|0,1〉 , (4.95)

which provides an explicit check of the relation (4.90) for k = 2.
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Using the same tools as introduced in the computation of the explicit formula for the

rational factorisations Q|0,`〉, we can compute for example the next two cases for the level k:

D(1)

(
J|0,2〉

)∣∣∣∣
k=4

∼= J|0,1〉 ⊕


J−3 0 0 0

y1 J−1 0 0

χ(−1) y1 0 y1J1

0 1 y1 0



D(1)

(
J|0,3〉

)∣∣∣∣
k=6

∼= J|0,2〉 ⊕


J−4 0 0 0 0

y1 J−2 0 0 0

χ(−2) y1 J0 0 0

0 χ(0) y1 0 y1J2

0 0 1 y1 0

 .

(4.96)

We observe that the largest part of the factorisation Q|0, k
2

+1〉 is of the form of an ordinary

factorisation Q|0,`〉. From the first three even k examples, we conjecture the formula

J|0, k
2

+1〉 =



J− k
2
−1 0 · · ·

y1 J− k
2

+1 0 · · ·
χ(− k

2
+1) y1 J− k

2
+3 0 · · ·

0 χ(− k
2

+3) y1 J− k
2

+5 0 · · ·
...

. . .
. . .

. . .
. . .

. . .

y1 J k
2
−3 0 0

χ( k
2
−3) y1 0 y1J k

2
−1

0 1 y1 0



. (4.97)

It remains to check that

Q|0, k
2

+1〉
∼= Q|0, k

2
〉 , (4.98)

or in other words that the upper right block J|0, k
2

+1〉 of Q|0, k
2

+1〉 can be transformed to

the lower left block E|0, k
2
〉 of the factorisation Q|0, k

2
+1〉 by elementary row and column

operations.

Let us consider the example k = 4. Note that J|0,3〉 has two constant entries that we

can use to remove all other entries in their rows and columns, and we obtain

J|0,3〉
∣∣∣∣
k=4

=


J2 0 0 0

y1 J0 0 0

χ(0) y1 0 y1J1

0 1 y1 0



∼=


0 0 −y2

1J2 y1J2J1

0 0 y1

(
y2

1 − J0χ(0)

)
−y2

1J1

0 1 0 0

1 0 0 0

 .

(4.99)

– 31 –



J
H
E
P
0
5
(
2
0
1
5
)
0
5
5

The upper right block of this last form coincides with Ê0(2) given in (E.35), which therefore

proves the relation (4.98) in this case. Similarly we have verified (4.98) explicitly also for

k = 6. We take this as another convincing check that we identified the correct matrix

factorisations.

5 Conclusion and outlook

In this article we have constructed matrix factorisations for rational boundary conditions

in the SU(3)/U(2) Kazama-Suzuki models. For the construction it was essential to identify

the rational defect D[(0,0),0;1,3] in the Landau-Ginzburg description. Fusing this defect to

boundary conditions |L, 0〉, one can generate all boundary conditions |L, `〉. Therefore by

fusing the defect in the Landau-Ginzburg description to the matrix factorisations describing

|L, 0〉, we can obtain all others.

To actually construct these matrix factorisations, it is important to have an efficient

way of computing the fusion. We found an operator-like description for the fusion of the de-

fect factorisation corresponding to D[(0,0),0;,1,3] to another factorisation (see (4.27)), which

is given by a specific operation on each entry of the factorisation. In this way we worked

out the matrix factorisations for all rational boundary conditions |L, `〉, and hence have

obtained a conjecture for a complete dictionary between the Landau-Ginzburg formula-

tion and the rational conformal field theory description of the SU(3)/U(2) Kazama-Suzuki

models. More precisely, we proved our formula (4.55) (and the alternative compact ver-

sion (4.59)) for the matrix factorisations Q|0,`〉 explicitly, while for the Q|L,`〉 factorisations

with L > 0 we have extrapolated the pattern we have observed for small values of L to

derive the conjecture for their explicit form (see (4.76)). Additional support for our conjec-

ture comes from a detailed discussion of the effects of finite levels k, which are consistent

with the expectations from the conformal field theory side of the dictionary. We will report

in [48] a number of further structural arguments in favor of our conjecture.

Operator-like defects turn out to be very important for explicit computations. The

process of fusing a defect factorisation of W (x) −W (x̃) to some matrix factorisation of

W (x̃) is described by the tensor product, resulting in a factorisation of W (x). This tensor

product still contains the variables x̃. To eliminate these auxiliary variables can be a

complicated task, though there are some strategies and algorithms known how this can be

done [21, 49]. For operator-like defects such as D(1), this step does not have to be performed

— the process of fusing it to another factorisation is implemented by a functor that acts on

the category of modules over a polynomial ring.7 In this functorial language one can also

realise the morphisms of operator-like defects as morphisms between the corresponding

functors, and in this way one can even define cones of functors in certain situations. This

will be presented in [50].

For the SU(3)/U(2) Kazama-Suzuki models it turns out that all rational B-type defects

can be realised as operator-like defects with corresponding fusion functors [48]. This then

7Of course, tensoring a defect matrix factorisation D always defines a functor in the category of matrix

factorisations. The functors we are considering, however, act on the category of ring modules, and their

action on a matrix factorisation Q is simply given by applying D on Q seen as a ring module homomorphism.

– 32 –



J
H
E
P
0
5
(
2
0
1
5
)
0
5
5

opens the possibility to study the fusion semi-ring of these defects. The fusion of rational

defects is given by the rational fusion rules, and with the functorial description one can

then identify the rational semi-ring structure also in the Landau-Ginzburg description. We

will report on this in an upcoming publication [48].

After having the SU(3)/U(2) model under control, one may ask whether a similar

strategy also works for the higher rank models. Also in this case there exists a variable

transformation interface to a product of minimal models [14], and the natural ansatz would

be to study the effect of fusing it to known factorisations in the minimal models, maybe to

the permutation factorisations of [11]. Although it is far from obvious, one might be lucky

and generate in this way factorisations for rational boundary conditions or defects.
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A Similarity transformations

For convenience we summarise here our conventions for the basic row and column trans-

formations. For a matrix factorisation Q of matrix size 2d of the form

Q =

(
0 Q(1)

Q(0) 0

)
(A.1)

with the two d× d blocks Q(0) and Q(1), similarity transformations are given by invertible

2d× 2d matrices U of the form

U =

(
U (0) 0

0 U (1)

)
. (A.2)

They act on Q as

Q 7→ U ·Q · U−1 =

(
0 U (0) ·Q(1) · (U (1))−1

U (1) ·Q(0) · (U (0))−1 0

)
. (A.3)

The group of similarity transformations can be generated by elementary row and column

transformations on Q(1) (which induce corresponding elementary column and row trans-

formations on Q(0)). For the basic operations we take

Urow(r, s; p)ij := δi,j + p δi,sδj,r (p any polynomial) (A.4a)

adds row r multiplied by p to row s in Q(1)

adds column s multiplied by −p to column r in Q(0)
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Urow×(r;α)ij := δij(1 + δi,r(α− 1)) (α ∈ C) (A.4b)

multiplies row r with α in Q(1)

multiplies column r with 1/α in Q(0)

Ucol(r, s; p)ij := δi,j − p δi,r+dδj,s+d (p any polynomial) (A.4c)

adds column r multiplied by p to column s in Q(1)

adds row s multiplied by −p to row r in Q(0)

Ucol×(r;α)ij := δij

(
1 + δi,d+r

(
1

α
− 1)

))
(α ∈ C) (A.4d)

multiplies column r with α in Q(1)

multiplies row r with 1/α in Q(0).

B Multiple defect action on polynomial factorisations

In this appendix we want to prove that the factorisations Qn(m) with upper right block

Q
(1)
n(m) = Jn(m) =



Jn−m 0 · · ·
y1 Jn−m+2 0 · · ·

χ(n−m+2) y1 Jn−m+4 0 · · ·
0 χ(n−m+4) y1 Jn−m+6 0 · · ·
...

. . .
. . .

. . .
. . .

. . .

0 χ(n+m−2) y1 Jn+m


(B.1)

have the following behaviour when we apply the fusion functor D(1):

D(1)Qn(m)
∼= Qn(m−1) ⊕Qn(m+1) , (B.2)

where it is understood that Qn(−1) is omitted for m = 0. We have proven this relation

for m = 0 and m = 1 already in the main text. From the form (B.1) we see that the

factorisations Qn(m) contain the factorisations Qn−m, . . . , Qn+m as building blocks. For

Qn we have shown (see (4.42)) that

D(1)(Qn(0)) = U−1
n ·Qn(1) · Un . (B.3)
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When we apply D(1) on Qn(m), we will apply the similarity transformations Uj on each

block D(1)(Qj) that appears. We find

Ua(0)
n(m) ·D(1)(Jn(m)) · (Ua(1)

n(m))
−1 (B.4)

=



Jn−m(1) 0 · · ·
ΦA
n−m+1 Jn−m+2(1) 0 · · ·

ΦB
n−m+2 ΦA

n−m+3 Jn−m+4(1) 0 · · ·
0 ΦB

n−m+4 ΦA
n−m+5 Jn−m+6(1) 0 · · ·

...
. . .

. . .
. . .

. . .
. . .

0 ΦB
n+m−2 ΦA

n+m−1 Jn+m(1)


with the similarity transformation Uan(m) given by

Uan(m) =
m∏
j=0

1+2jUn−m+2j . (B.5)

Here the left upper index on the Un indicates on which row or column the transformation

acts (see (4.43)). The blocks Φ
A/B
j are given by

ΦA
j = U (0)

j+1 ·D(1)(y1) · (U (1)
j−1)−1 =

(
y1

π2j+3

π2j+5
Jj µ2 µ4

π2j+5 π−2j+3
1

2π2
y1

π−2j+1

π−2j+3

)
, (B.6)

and

ΦB
j = U (0)

j+2 ·D(1)(χ(j)) · (U (1)
j−2)−1 =

( π2j+5 π−2j+3

4π2
2 π−2j+1 π2j+7

−y1
µ4 µ−4 π2j+5 π−2j+3

4π2
2 π2j+7 π−2j+5 π2j−1 π−2j−3

0
π2j+5 π−2j+3

4π2
2 π2j+3 π−2j+5

)
. (B.7)

We now reorganise the result (B.4) into the block form

Ua(0)
n(m) ·D(1)(Jn(m)) · (Ua(1)

n(m))
−1

=



Jn−m−1 0 · · ·
ΨA,a Ma

n−m+1 0 · · ·
ΨB,a
n−m+1 ΨC,a

n−m+2 Ma
n−m+3 0 · · ·

0 ΨD,a
n−m+3 ΨC,a

n−m+4 Ma
n−m+5 0

...
. . .

. . .
. . .

. . .

0 ΨD,a
n+m−3 ΨC,a

n+m−2 M
a
n+m−1 0

0 ΨB′,a
n+m−1 ΨA′,a Jn+m+1


(B.8)
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with

Ma
p =

(
Jp 0

µ2 µ4

π2p+5 π−2p+3
Jp Jp

)
row: p− n+m+ 1

column: p− n+m+ 1
(B.9a)

(p = n−m− 1 + 2r, r = 1, . . . ,m)

ΨA,a = y1

(
1

π2n−2m+5

π2n−2m+7

)
row: 2

column: 1
(B.9b)

ΨA′,a = y1

(
π2n−2m+5

π2n−2m+7
1
) row: 2m+ 2

column: 2m
(B.9c)

ΨB,a
n−m+1 =

(
1

2π2
π2n−2m+9 π−2n+2m−1

4π2
2 π−2n+2m−3 π2n−2m+11

)
row: 4

column: 1
(B.9d)

ΨB′,a
n+m−1 =

(
π2n+2m+1 π−2n−2m+7

4π2
2 π2n+2m−1 π−2n−2m+9

1
2π2

) row: 2m+ 2

column: 2m− 2
(B.9e)

ΨC,a
p = y1

( π−2p+3

π−2p+5
1

− µ4 µ−4 π2p+5 π−2p+3

4π2
2π2p+7 π−2p+5 π2p−1 π−2p−3

π2p+5

π2p+7

)
row: p− n+m+ 2

column: p− n+m
(B.9f)

(p = n−m+ 2r, r = 1, . . . ,m− 1)

ΨD,a
p =

( π2p+3 π−2p+5

4π2
2 π2p+1 π−2p+7

1
2π2

0
π2p+7 π−2p+1

4π2
2 π−2p−1 π2p+9

)
row: p− n+m+ 3

column: p− n+m− 1 .
(B.9g)

(p = n−m+ 2r + 1, r = 1, . . . ,m− 2)

Here we always stated the row and column number of the upper left entry of the given block.

Our strategy is now to eliminate all diagonal terms in the blocks M,ΨC and ΨD by

similarity transformations (and the bottom/left entries in ψA,ΨB/ΨA′ ,ΨB′). If we can

achieve this, the factorisation will split into a direct sum of two factorisations.

We start with the blocks ΨC . The similarity transformations

U bn(m) =
m∏
j=1

2jUn−m+2j−1(1) (B.10)

(see (4.50)) eliminate their diagonal entries,

ΨC,b
p = p−n+m+2U (0)

p+1(1) ·Ψ
C,a
p ·

(
p−n+mU (1)

p−1

)−1
(B.11)

= U (0)
row

(
1, 2;−π2p+5

π2p+7

)
· y1

( π−2p+3

π−2p+5
1

− µ4 µ−4 π2p+5 π−2p+3

4π2
2 π2p+7 π−2p+5 π2p−1 π−2p−3

π2p+5

π2p+7

)

·
(
U (1)

col

(
2, 1;−π−2p+3

π−2p+5

))−1

(B.12)

= y1

(
0 1

κp 0

)
, (B.13)
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with

κp :=
δ

4π2
2 χ(p−1)χ(p+1)

(B.14)

δ := − 1

4π2π−2
= − η2

(1 + η2)2
. (B.15)

Also one of the entries in ΨA and ΨA′ is eliminated,

ΨA,b =

(
y1

0

)
ΨA′,b =

(
0 y1

)
. (B.16)

The effect on the other blocks is

M b
p =

(
Jp 0

− 1
2π2χ(p)

Jp Jp

)
(B.17a)

ΨB,b
n−m+1 =

(
1

2π2

κn−m+2χ(n−m+1)

)
ΨB′,b
n+m−1 =

(
κn+m−2χ(n+m−1)

1
2π2

)
(B.17b)

ΨD,b
p =

(
κp−1χ(p)

1
2π2

0 κp+1χ(p)

)
. (B.17c)

We then turn to the blocks M and apply the transformation

Ucn(m) =

m∏
j=1

2j
cUn−m+2j−1(1) (B.18)

(see (4.51)), whose effect on the blocks Mp is

M c
p = U (0)

row

(
2, 1; 2π2χ(p)

)
·
(

Jp 0

− 1
2π2χ(p)

Jp Jp

)
·
(
U (1)

col

(
1, 2; 2π2χ(p)

))−1
(B.19)

=

(
0 2π2χ(p)Jp

− 1
2π2χ(p)

Jp 0

)
. (B.20)

We then rescale the entries by a further similarity transformation given by

Udn(m) =
m∏
j=1

{
Urow×

(
2j;

m−j∏
l=0

1

2π2χ(n+m−2l−1)

)
Urow×

(
2j − 1;

m−j∏
l=0

1

2π2χ(n+m−2l−1)

)

· Ucol×

(
2j;

m−j∏
l=0

2π2χ(n+m−2l−1)

)
Ucol×

(
2j − 1;

m−j∏
l=0

2π2χ(n+m−2l−1)

)}
, (B.21)

– 37 –



J
H
E
P
0
5
(
2
0
1
5
)
0
5
5

and the blocks read after this transformation

Md
p =

(
0 Jp
−Jp 0

)
(B.22a)

ΨA,d =

(
y1

0

)
ΨA′,d =

(
0 y1

)
(B.22b)

ΨB,d
n−m+1 = χ(n−m+1)

(
1 + δ

δ

)
ΨB′,d
n+m−1 = χ(n+m−1)

(
δ 1 + δ

)
(B.22c)

ΨC,d
p = y1

(
δ 1 + δ

δ δ

)
(B.22d)

ΨD,d
p = χ(p)

(
δ 1 + 2δ

0 δ

)
. (B.22e)

For the next step we introduce another symbol, ∆p, that we define recursively by

∆p+1 = 1 +
δ

∆p
, ∆1 = 1 . (B.23)

We now want to eliminate the lower right entries of ΨC and ΨD, and we perform the

similarity transformations

Uen(m) :=

m−1∏
r=1

Urc
(

2r + 2, 2r + 3;− δ

∆r∆r+1

)
(B.24)

Urc (r, s; p) := Ucol (r, s; p) · Urow (r, s; p) . (B.25)

Because we do the same transformation on the rows and on the columns, the blocks Md
p

will be left unchanged, M e
p = Md

p . The other blocks transform to

ΨA,e =

(
y1

0

)
ΨA′,e =

(
0 y1

)
(B.26a)

ΨB,e
n−m+1 = χ(n−m+1)

(
1 + δ

0

)
ΨB′,e
n+m−1 = χ(n+m−1)

(
δ ∆m

)
(B.26b)

ΨC,e
n−m+2r = y1

(
δ ∆r+1
δ

∆r+1
0

)
(B.26c)

ΨD,e
n−m+2r+1 = χ(n−m+2r+1)

(
δ ∆r+1∆r+2

− δ2

∆r+1∆r+2
0

)
. (B.26d)

To formulate our final similarity transformation we introduce the quantity γp,q defined as

γp,q :=

(
q∏
i=1

∆p+i

∆i

)
. (B.27)
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It has the properties

γp,q = γq,p (B.28a)

γ0,q = γp,0 = 1 (B.28b)

γ1,q = ∆q+1 (B.28c)

γp,q−1 =
∆q

∆p
γp−1,q (B.28d)

γp,q = 1 +
δ

∆p∆q
(p, q ≥ 1) . (B.28e)

Whereas the first properties are obvious from the definition of γp,q, we present the proof

of the last one:

We prove (B.28e) by induction. We first note that it is satisfied for p = 1,

γ1,q = ∆q+1 = 1 +
δ

∆q
= 1 +

δ

∆1∆q
, (B.29)

where we used the recursive definition of ∆q+1 (see (B.23)). Now assume that (B.28e)

holds for some p ≥ 1. Then

γp+1,q =
∆q+1

∆p+1
γp,q+1 (B.30)

=
∆q+1

∆p+1

(
1 +

δ

∆p∆q+1

)
(B.31)

=
1

∆p+1

(
∆q+1 +

δ

∆p

)
(B.32)

=
1

∆p+1

(
δ

∆q
+ ∆p+1

)
(B.33)

= 1 +
δ

∆p+1∆q
. � (B.34)

We can finally formulate the transformation that will remove the remaining diagonal entry

in ΨC and ΨD, which is given by

Ufn(m) :=
m−1∏
r=1

Urc
(

2r + 1, 2r;− δ

∆r+1γr+1,m−r−1

)
. (B.35)
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We obtain

Mf
p =

(
0 Jp
−Jp 0

)
(B.36a)

ΨA,f =

(
y1

0

)
ΨA′,f =

(
0 y1

)
(B.36b)

ΨB,f
n−m+1 = χ(n−m+1)

(
1 + δ

0

)
ΨB′,f
n+m−1 = χ(n+m−1)

(
0 ∆m

)
(B.36c)

ΨC,f
n−m+2r = y1

(
0 ∆r+1
δ

∆r+1
0

)
(B.36d)

ΨD,f
n−m+2r+1 = χ(n−m+2r+1)

(
0 ∆r+1∆r+2

− δ2

∆r+1∆r+2
0

)
. (B.36e)

We have thus achieved our goal to eliminate all diagonal terms in the blocks, and the

factorisation can now be decomposed into two (see table 1 on page 41). Up to remaining

multiplicative transformations of rows and columns, these two factorisations are precisely

Qn(m−1) and Qn(m+1). This proves our claim. �

C Deriving the alternative standard form

In this section we want to sketch how we arrived at the alternative standard form Q̃n(m)

given in (4.75). Recall that we want to successively apply D(1) on cones of polynomial

factorisations with one elementary factor Jpi and decompose the result using similarity

transformations that leave the morphisms unchanged.

It turns out that to arrive at the alternative standard form, it is enough to look at

cones of three polynomial factorisations,

Jp,q,r :=

Jp 0 0

1 Jq 0

0 1 Jr

 (p, q, r pairwise different) . (C.1)

If we now apply D(1) successively, the morphism entries 1 will be mapped to identity

matrices. We then perform similarity transformations and make sure that at the end the

identity matrices are untouched.

In the first step we find

D(1)

(
Jp,q,r

)
=

D(1)

(
Jp
)

0 0

1 D(1)

(
Jq
)

0

0 1 D(1)

(
Jr
)
 . (C.2)

We then blockwise transform D(1)

(
Jn
)

to ˜̃D0,m

(
Jn
)

as in (4.70) to obtain

D(1)

(
Jp,q,r

) ∼=


˜̃D0,1

(
Jp
)

0 0

1 ˜̃D0,1

(
Jq
)

0

0 1 ˜̃D0,1

(
Jr
)
 . (C.3)
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D
(1

)

( J n(
m

)

) ∼ =
                   

J
n
−
m
−

1
0

0
0

0
0

0
··
·

y
1

0
J
n
−
m

+
1

0
0

0
0

··
·

0
−
J
n
−
m

+
1

0
0

0
0

0
··
·

χ
(n
−
m

+
1
)
(1

+
δ)

0
y

1
∆

2
0

J
n
−
m

+
3

0
0

··
·

0
y

1
δ

∆
2

0
−
J
n
−
m

+
3

0
0

0
··
·

0
0

χ
(n
−
m

+
3
)
∆

2
∆

3
0

y
1
∆

3
0

J
n
−
m

+
5
··
·

0
−
χ

(n
−
m

+
3
)

δ
2

∆
2
∆

3
0

y
1
δ

∆
3

0
−
J
n
−
m

+
5

0
··
·

0
0

0
0

χ
(n
−
m

+
5
)
∆

3
∆

4
0

y
1
∆

4
··
·

0
0

0
−
χ

(n
−
m

+
5
)

δ
2

∆
3
∆

4
0

y
1
δ

∆
4

0
··
·

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. .

.

. .
.

. . .
. . .

. . .
. . .

. . .
. . .

. . .

··
·

0
J
n

+
m
−

5
0

0
0

0
0

··
·

−
J
n

+
m
−

5
0

0
0

0
0

0

··
·

0
y

1
∆
m
−

1
0

J
n

+
m
−

3
0

0
0

··
·

y
1

δ
∆

m
−

1
0

−
J
n

+
m
−

3
0

0
0

0

··
·

0
χ

(n
+
m
−

3
)
∆
m
−

1
∆
m

0
y

1
∆
m

0
J
n

+
m
−

1
0

··
·
−
χ

(n
+
m
−

3
)

δ
2

∆
m

−
1
∆

m
0

y
1

δ
∆

m
0

−
J
n

+
m
−

1
0

0

··
·

0
0

0
χ

(n
+
m
−

1
)
∆
m

0
y

1
J
n

+
m

+
1

              

Table 1. The upper right block of the matrix factorisation D(1)

(
Qn(m)

)
after the similarity trans-

formations Uf
n(m) · · · Ua

n(m) — it can be decomposed into two parts: one (denoted in black) contains

all entries in even lines (and in the first one) and in odd columns (and in the last one), and the

other one (denoted in blue) consists of the complement.
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When we now apply D(1) again, we already should have an idea, which form we want to

obtain for each block. As ingredients we take the blocks D̃0,m

(
Jn
)

that have the nice

property that their off-diagonal elements do not depend on n (see (4.68)).

In the standard form Jn(m) introduced in section 4.5.1 we have on the diagonal the

factors Jn′ with n′ going monotonically from n − m to n + m. We now have to reorder

these entries, such that we can rewrite the expression in terms of the blocks D̃0,m′
(
Jn
)
,

which can be written as a cone of Jn+m′ and Jn−m′ in either direction,

D̃0,m

(
Jn
)

= U (0)−1

m;n ·
(
Jn−m 0

y1 Jn+m

)
· U (1)

m;n

= U (0)†
−1

m;n ·
(
Jn+m 0

y1 Jn−m

)
· U (1)†

m;n

(C.4)

where

Um;n := U×
(

2, 2;
1

2µ2mπ2m
, 2µ2mπ2m

)
· U×

(
1, 2;

π2n−2m+1

π2n+2m+1
,
π−2m−2n−1

π2m−2n−1

)
·

· Ucol

(
1, 2;−y1µ2n+2m+1

π2n+2m+1

)
· Urow

(
2, 1;

y1µ2n−2m+1

π2n−2m+1

)
U†m;n := U×

(
2, 2;

1

2µ2mπ2m
, 2µ2mπ2m

)
· U×

(
1, 2;

π−2m−2n−1

π2m−2n−1
,
π2n−2m+1

π2n+2m+1

)
·

· Ucol

(
1, 2;

y1µ2n−2m+1

π2n−2m+1

)
· Urow

(
2, 1;−y1µ2n+2m+1

π2n+2m+1

)
U×(r, c;α, β) := Ucol×(c;β) · Urow×(r;α) . (C.5)

In particular, these transformations allow us to “swap” the positions of any adjacent poly-

nomial factors in our general formula for Jn(m). Focusing only on the diagonal and first

lower sub-diagonal entries of Jn(m) for a moment, we can thus generate from Jn(m) fac-

torisations with the (sub-)diagonal entry structure (the other lower diagonals have non-

trivial entries)

Jn(m) =



Jn−m
y1 Jn−m+2

y1 Jn−m+4

. . .

Jn+m−2

y1 Jn+m


(C.6)

an alternative form, in which the (sub-)diagonal entries read (again the other lower diago-
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nals have non-trivial entries)

J̌n(m) =





Jn
y1 Jn−2

y1 Jn+2

. . .

Jn−m
y1 Jn+m


for m ∈ 2Z



Jn−1

y1 Jn+1

y1 Jn−3

y1 Jn+3

. . .

Jn−m
y1 Jn+m


for m ∈ 2Z + 1

(C.7)

and which may be obtained via suitable combinations of the aforementioned similarity

transformations. Unfortunately, in each intermediate step, after an application of two

similarity transformations of the types listed in (C.5), we need to apply additional multi-

plicative transformations in order to ensure that the entries on the sub-diagonal all read y1

(i.e. with constant prefactor 1). Postponing the resolution of this computational problem

for the moment, we observe that once we have transformed Qn(m) into the form Q̌n(m), we

can formulate yet another set of transformations (namely suitable inverse transformations

of type (C.5)) to express all diagonal blocks in the form D̃0,p

(
Jn
)

to obtain (note that

again the lower non-diagonal blocks are non-trivial)

J n(m) :=




Jn

D̃0,2

(
Jn
)

. . .

D̃0,m

(
Jn
)

 for m ∈ 2Z


D̃0,1

(
Jn
)
D̃0,3

(
Jn
)

. . .

D̃0,m

(
Jn
)

 for m ∈ 2Z + 1.

(C.8)

Having described the general strategy, we can now go into the concrete computations. The

first step consists of computing D(1)

(
D(1)

(
Jp,q,r

))
explicitly, that is via applying D(1) to

D(1)

(
Jp,q,r

)
in the form (C.3). Omitting the details of the rather tedious computation (the

computation can be done in the framework of concatenations of fusion functors and will

be presented in a more general setting in [48]), we obtain the decomposition

D(1)

(
D(1)

(
Qp,q,r

)) ∼= Qp,q,r ⊕Qp,q,r(2) , (C.9)
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where the summand Qp,q,r(2) is given by

Jp,q,r(2) =



η4Jp 0 0 0 0 0

Ψ0,2
˜̃D0,2

(
Jp
)

0 0 0 0

1 0 η4Jq 0 0 0

0 12×2 Ψ0,2
˜̃D0,2

(
Jq
)

0 0

0 0 1 0 η4Jr 0

0 0 0 12×2 Ψ0,2
˜̃D0,2

(
Jr
)


, Ψ0,2 =

(
y1
1

4π2
2π4

)
. (C.10)

We have thus achieved our goal of finding a new standard form J̃n(2) for the three diagonal

blocks,

J̃n(2) =

(
η4Jn 0

Ψ0,2
˜̃D0,2

(
Jn
)) . (C.11)

In a similar fashion, using the similarity transformations of type (C.5), we can determine

the explicit formulae for Jp,q,r(3) and Jp,q,r(4) by means of a long computation,8 with the

result that we find new standard forms J̃n(m) for the diagonal subblocks such that the

morphisms between these subblocks are simply unit matrices of size (m + 1) × (m + 1).

The results we find for m = 3 and m = 4 fit into the following inductive structure:

m = 1 : J̃n(1) = ˜̃D0,1

(
Jn
)

m = 2 : J̃n(2) =

(
η4Jn 0

Ψ0,2
˜̃D0,2

(
Jn
)) , Ψ0,2 =

(
y1
1

4π2
2π4

)

m = 3 : J̃n(3) =

(
η4J̃n(1) 0

Ψ1,3
˜̃D0,3

(
Jn
)) , Ψ1,3 =

(
1

4π4π−2π2
y1

0 1
4π4π2π6

)

m = 4 : J̃n(4) =

(
η4J̃n(2) 0

02×1Ψ2,4
˜̃D0,4

(
Jn
)) , Ψ2,4 =

(
1

4π6π−2π4
y1

0 1
4π6π2π8

)
...

m = p : J̃n(p) =

(
η4J̃n(p−2) 0

02×(p−3) Ψp−2,p
˜̃D0,p

(
Jn
)) ,

Ψp−2,p =

(
1

4π2p−2π−2π2p−4
y1

0 1
4π2p−2π2π2p

)
, (C.12)

where for m = 4 and in the last expression for J̃n(p) we spelled out the size of the zero-block

in the lower left for clarity.

We conjecture that this structure holds for all m up to a possible truncation due to

the finiteness of the level k. As we will discuss in the following appendix D we expect the

formula to be valid for m+ |n| ≤ k/2 if k is even, and for m ≤ k + 2 if k is odd.

8The main complication which makes these computations difficult in practice is not so much the part of

the transformations necessary to transform each diagonal subblock of type Jn(m), but rather to find those

transformation necessary in addition to bring the relative morphisms into the simple form of (m + 1) ×
(m + 1) unit matrices. In particular, one encounters the proliferation of rather complicated combinations

of elementary constants in the relative morphism entries.
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D Constraints at finite level

We have to pay attention that all similarity transformations that we perform are well-

defined and that we do not accidentally divide by zero. The coefficients we use, πp, µp,

χ(p), ∆p and γp,q are generically neither zero or infinite, but there might be special values

where they lead to divergent expressions in the similarity transformations.

The coefficients πp and µp (defined in (4.35)) are always finite, but they can be zero:

π(2z+1)(k+3) = 0 (z ∈ Z) , µ2z(k+3) = 0 (z ∈ Z) . (D.1)

The coefficients χ(p) defined in (4.52) can vanish,

χ(p) = 0 for p =

(
k + 2

2
± 2

)
+ z(k + 3) (z ∈ Z) , (D.2)

and they can also diverge,

χ(p) =∞ for p =

(
k + 2

2
± 1

)
+ z(k + 3) (z ∈ Z) . (D.3)

Note that χ(p) is always regular and non-zero for odd level k.

The coefficients ∆p defined in (B.23) can also vanish,

∆p = 0 for p = k + 2 + z(k + 3) (z ∈ Z) , (D.4)

or diverge,

∆p =∞ for p = z(k + 3) (z ∈ Z) . (D.5)

The analysis for γp,q is a bit more complicated, but one can show that it is regular and

non-vanishing as long as

p, q ≥ 0 and p+ q ≤ k + 1 . (D.6)

We are now in the position to analyse when the similarity transformations Ua, . . . ,Uf used

in appendix B to decompose

D(1)

(
Qn(m)

) ∼= Qn(m−1) ⊕Qn(m+1) (D.7)

are well-defined.

The transformations Ue and Uf are independent of the label n (see (B.24) and (B.35)).

They contain the inverse of ∆r for r = 1, . . . ,m and also the inverse of γr+1,m−r−1 for

r = 1, . . . ,m − 1. From the considerations above one finds that these quantities are well

defined for m ≤ k + 1.

The transformations Ua, . . . ,Ud contain inverses of π2p+1 and of χ(p). One can observe

immediately that they can never be singular for odd level k. For even k, however, we

have to analyse the situation more carefully. As an example look at the transformation Ud
(defined in (B.21)). It contains inverses of χ(p) for p = n+m−2l−1 where l = 0, . . . ,m−1.

For m ≥ 0 the label p satisfies |p| ≤ m+ |n| − 1. We have seen before that χ(p) is regular

and finite for |p| ≤ k
2 − 2, therefore all similarity transformations are certainly regular for
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m+ |n|+ 1 ≤ k
2 . One can show that this condition suffices to guarantee that also the other

transformations Ua, U b and Uc are regular.

We conclude that the formula for Qn(m+1) that we obtained from the decomposition

is valid if
m+ 1 + |n| ≤ k

2 for k even

m+ 1 ≤ k + 2 for k odd.
(D.8)

Similarly we can ask what the restrictions are on the alternative standard form J̃n(m) that

is used for the factorisation corresponding to a general boundary state |L, `〉. Because we

use amongst others the transformation to the the first standard form Jn(m), we expect the

constraint m + |n| ≤ k/2 for even k and m ≤ k + 2 for odd k. One can check that also

the additional transformations like the transformations (C.5) to swap the entries on the

diagonal are well-defined if these conditions are satisfied. As the factorisation for |L, `〉 is

built from cones of J̃0(`), . . . , J̃L(`) we expect no constraints for k odd (because ` ≤ k + 1

for all boundary conditions), but for even k we get the constraint L + ` ≤ k/2. On the

other hand we have the suspicion that one can also arrive at the alternative standard form

J̃n(m) by blockwise similarity transformations that do not depend on the label n. If this

is true, then the constraint could also not depend on the label n, and for even k we would

simply obtain the constraint m ≤ k/2. In that case the formula for the factorisation for

|L, `〉 would be correct for all ` ≤ k/2.

E A closed 2× 2 form for En(m) and Jn(m)

In the main text we only considered the upper right block Q(1) (that we often denote by

J ) of the matrix factorisations. The other block Q(0) (that we often denote by E) can be

reconstructed from Q(1) by

Q(0) = W2;k ·
(
Q(1)

)−1
. (E.1)

Since the matrix factorisations Q
(1)
n(m) have a simple triangular structure, it is a straight-

forward recursive problem to determine the inverse that we describe in the following.

We start by writing explicitly the matrix elements of Jn(m),

Ji
j ≡

(
Jn(m)

)
i
j = δijJn−m+2(i−1) + δi−1,jy1 + δi−2,jχ(n−m+2j) , (E.2)

where we introduced the shorthand notation Jij for the components of Jn(m) for notational

brevity in the ensuing computations. The indices i, j run from 1 to m+ 1.

Introducing the additional shorthand notation

Ei
j ≡

(
En(m)

)
i
j , (E.3)

we thus obtain an equation from which we can recursively determine the structure of En(m)

(we write here and in the following W ≡W y
2;k for brevity):

Jn(m) · En(m) = W1

⇔ Ji
kEk

j =
(
δik Jn−m+2(k−1) + δi−1,k y1 + δi−2,k χ(n−m+2k)

)
Ek

j = Wδij .
(E.4)
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Obviously, En(m) is of lower triangular form,

Ei
i+p = 0 for p > 0 . (E.5)

The first non-trivial set of equations (for i = j) is

Jn−m+2(i−1)Ei
i + δi−1,k y1Ek

i + δi−2,k χ(n−m+2k)Ek
i = W

⇔ Ei
i =

W

Jn−m+2(i−1)
,

(E.6)

where we used in the second line that δi−1,k Eki = δi−2,k Eki = 0. The next special case is

i = j + 1, for which we obtain:

(
δj+1,k Jn−m+2(k−1) + δj,k y1 + δj−1,k χ(n−m+2k)

)
Ek

j = 0

⇔ Ej+1
j = − y1W

Jn−m+2(j−1)Jn−m+2j
,

(E.7)

where we made use of the result δj−1,k Ekj = 0 yet again.

For i = j + 2 + p (with p ∈ Z≥0), we obtain a double recursion relation

(
δ(j+2+p),k Jn−m+2(j+p+1) + δj+p+1,k y1 + δj+p,k χ(n−m+2(j+p))

)
Ek

j = 0

⇔ Ej+p+2
j = − 1

Jn−m+2(j+p+1)

(
y1Ej+p+1

j + χ(n−m+2(j+p))Ej+p
j
)
,

(E.8)

which relates the entries in the p + 2nd lower diagonal to the entries in the two diagonals

above. Besides the dependence on the recursion parameter p, the factors in the recursion

relation only depend on the combination n −m + 2j, so we introduce the notation Ψl(p)

for the entries Eij of En(m) defined by

Ψn−m+2j+p−2 (p+2) :=
(
En(m)

)
j+p+2

j . (E.9)

The recursion relation then reads

Ψl(p) = − 1

Jl+p
(
y1Ψl−1(p−1) + χ(l+p−2)Ψl−2(p−2)

)
, (E.10)

with

Ψl(1) = −y1
W

Jl−1Jl+1
, Ψl(0) = El :=

W

Jl
. (E.11)
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The first few solutions for En(m) are given by

En(0) = E1
1|m=0,n=n = En =

W

Jn
(E.12)

En(1) =

(
En−1 0

Ψn(1) En+1

)
⇒ Ψn(1) = E2

1|m=1,n=n = − y1W

Jn−1Jn+1
(E.13)

En(2) =

 En−2 0 0

Ψn−1(1) En 0

Ψn(2) Ψn+1(1) En+2


⇒ Ψn(2) = E3

1|m=2,n=n = − 1

Jn+2

(
y1E2

1 + χ(n)E1
1
)
|m=2,n=n

= − 1

Jn+2

(
y1

(
− y1W

Jn−2Jn

)
+ χ(n)

W

Jn−2

)
= − 1

Jn+2

(
y1Ψn−1(1) + χ(n)En−2

)
=

W

Jn−2JnJn+2

(
y2

1 − χ(n)Jn
)

(E.14)

En(3) =


En−3 0 0 0

Ψn−2(1) En−1 0 0

Ψn−1(2) Ψn(1) En+1 0

Ψn(3) Ψn+1(2) Ψn+2(1) En+3


⇒ Ψn(3) = E4

1|m=3,n=n = − 1

Jn+3

(
y1E3

1 + χ(n+1)E2
1
)
|m=3,n=n

= − 1

Jn+3

(
y1Ψn−1(2) + χ(n+1)Ψn−2(1)

)
= − y1W

Jn−3Jn−1Jn+1Jn+3

(
y2

1 − χ(n−1)Jn−1 − χ(n+1)Jn+1

)
(E.15)

...

We want to obtain the general solution to the recursion relation (E.10). We observe that in

each recursion step for Ψl(p) we either go one step down in p and pick up a factor −y1/Jl+p
or we go two steps down in p and pick up a factor

− 1

Jl+p
χ(l+p−2) = − 1

Jl+pJl+p−2
χ(l+p−2)Jl+p−2 . (E.16)

The recursion ends when we reach p = 0. Therefore we can have at most bp/2c factors of

χ in Ψl(p). We call Ψ
(r)
l(p) the contribution to Ψl(p) with r factors of χ, such that

Ψl(p) =

bp/2c∑
r=0

Ψ
(r)
l(p) . (E.17)
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When we go down always along the one-step recursion we have no factor of χ and we get

the contribution

Ψ
(0)
l(p) =

p−1∏
j=0

(
− y1

Jl+p−2j

)
W

Jl−p
= W

p∏
j=0

1

Jl+p−2j
(−y1)p . (E.18)

When at one point we perform a two-step jump we get two factors of y1 less and instead

a factor of −χ(l−p+2m1)Jl−p+2m1 with m1 = 1, . . . , p − 1 depending on where we do the

two-step jump, so the contribution Ψ
(1)
l(p) is

Ψ
(1)
l(p) = W

p∏
j=0

1

Jl+p−2j
(−y1)p−2

p−1∑
m1=1

(−χ(l−p+2m1)Jl−p+2m1) . (E.19)

When we follow a two-step jump twice, we get again two factors of y1 less, and instead a

factor of χ(l−p+2m2)Jl−p+2m2 more. Note, however that the difference of m1 and m2 has

to be at least 2 because of course in a two-step jump we went two steps down. These

arguments can easily be generalised to arbitrary numbers r of factors of χ and we find in

total the result

Ψl(p) = W

p∏
j=0

1

Jl+p−2j

bp/2c∑
r=0

(−y1)p−2r (−1)r
∑

m1,...,mr
mi+1<mi+1
1≤mi≤p−1

r∏
i=1

χ(l−p+2mi)Jl−p+2mi . (E.20)

As an aside we mention a graphical way of organising the different contributions. Introduce

the analogue of a vacuum state for a spin chain, i.e. a state |0〉h with h “holes”, represented

graphically as

|0〉h =̂ ◦1 ◦2 · · · ◦h−1 ◦h . (E.21)

Then define the “creation” and “annihilation” operators g+
i and g−i via

g+
i · · · ∗i · · · :=

 · · · •i · · · if ∗i = ◦i
0 else

(E.22)

g−i · · · ∗i · · · :=

 · · · ◦i · · · if ∗i = •i
0 else.

(E.23)

Also, we need to implement the rule that we may never have two neighbouring “excita-

tions” •p•p+1. Together with the preceding definitions, we may compactly express these

requirements as (∀i)

g+
i ◦ g+

i = g−i ◦ g−i = 0

g+
i ◦ g−i = g−i ◦ g+

i = id

g+
i ◦ g−j = g−j ◦ g+

i (i 6= j)

g+
i ◦ g+

i+1 = g+
i+1 ◦ g+

i = 0

g+
i ◦ g+

i+2+p = g+
i+2+p ◦ g+

i (p ≥ 0) .

(E.24)
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We may now define the operator G as

G = G1 +G2 , G1 :=

bh+1
2 c∑
i=1

g+
2i−1 , G2 :=

h−1∑
i=1

Ri , (E.25)

where

Ri := g−i ◦ g+
i+1 (E.26)

is the operator that moves an “excitation” •i one position to the right (unless of course

if we have another “excitation” sitting at position i + 2, in which case Ri annihilates the

given state). This allows us finally to generate all possible states |Ψ〉h via repeated action

of the operator G on the “vacuum” state |0〉h — to this end, take the sum over arbitrary

numbers of applications of G (i.e. over Gn) applied to |0〉h, and discard the multiplicities

in this sum,9

Ph :=

( ∞∑
n=0

Gn|0〉h
)∣∣∣∣

discard multiplicities

=
∑
m

|Ψm〉h , (E.27)

where |Ψm〉h denotes the inequivalent “excited” states. We will also need the operator N

which measures the number of “excitations” in a given state,

N(|Ψm〉h) ≡ N
(
g+
m1
◦ g+

m2
◦ . . . ◦ g+

mp |0〉h
)

:= |{m1,m2, . . . }| = p , (E.28)

with | . . . | denoting the cardinality of the set {m1,m2, . . . }. Finally, we define the evaluation

operator

evn (|0〉h) := 1

evn (|Ψm〉h) ≡ evn
(
g+
m1
◦ g+

m2
◦ . . . ◦ g+

mp |0〉h
)

:=

p∏
j=1

χ(n−h−1+2mj)Jn−h−1+2mj (p > 0) .

(E.29)

We can then rewrite the solution to Ψl(p) as

Ψl(p) = W

p∏
j=0

1

Jl+p−2j

bp/2c∑
r=0

(−y1)p−2r (−1)r rlMp−1 (E.30)

with
r
nMh =

∑
N(|Ψm〉h)=r

evn (|Ψm〉h) . (E.31)

For example, the graphical representation of the set of states with two “excitations” (i.e.

N = 2) at h = 6 (together with the various possibilities to generate the set {|Ψm〉h |
N (|Ψm〉h) = 2} from one of its representatives is depicted in figure 2, while figure 3

represents the case h = 7 and N = 3.

9It is obvious that only finitely many non-zero states can arise in this sum, since we only have finitely

many sites in a given state |0〉h, and thus we obtain only finitely many possibilities to excite a given vacuum

state.
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The results above allow us actually to derive a compact 2× 2 realisation of En(m) and

Jn(m). Consider the structure for Jn(m) as presented in (4.55). We may obviously choose

to apply a number of row and column operations on Jn(m) in such a way that all rows

and columns that intersect at a constant entry χ(p) are “cleared out”, to leave ultimately

a form for Jn(m) of the form

Jn(m)
∼=



0 0 · · · 0 Ĵn(m)11
Ĵn(m)12

0 0 0 · · · 0 Ĵn(m)21
Ĵn(m)22

χ(n−m+2) 0 0 0 · · · 0 0 0

0 χ(n−m+4) 0 0 0 · · · ...
...

...
...

. . .
. . .

. . .
. . .

. . .

0 χ(n+m−2) 0 0


(E.32)

∼= (Jtriv)⊕(m−1) ⊕ Ĵn(m) . (E.33)

Now, the structure of Ĵn(m) will generically become very complicated for large values of

m, but we claim that

Ĵn(m)Ên(m) = W · 12×2 (E.34)

where Ên(m) is the lower left 2× 2 subblock of En(m),

Ên(m) :=

(
Ψn−1(m−1) Ψn(m−2)

Ψn(m) Ψn+1(m−1)

)
. (E.35)

We will prove this statement below. This result also allows us to give an explicit result for

the 2× 2 matrix Ĵn(m) as

Ĵn(m) = W
(
Ên(m)

)−1
=

W

det Ên(m)

(
Ψn+1(m−1) −Ψn(m−2)

−Ψn(m) Ψn−1(m−1)

)
. (E.36)

The determinant of Ên(m) can be obtained as follows. From the form of Jn(m) in (4.55) it

is obvious that

detJn(m) =

m∏
j=0

Jn−m+2j . (E.37)

When we perform the column and row manipulations to obtain the form (E.32), we do not

change the determinant,10 so from (E.32) we see that

detJn(m) = det Ĵn(m) ·
m−1∏
j=1

χn−m+2j . (E.38)

10Note that to arrive at (E.32) we only performed transformations where we added multiples of rows

(colums) to other rows (columns) and we did not rescale any row (column), so that the determinant

remains unchanged.
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•1 ◦2 •3 ◦4 ◦5 ◦6 h = 6 , N (|Ψm〉h) = 2

•1 ◦2 ◦3 •4 ◦5 ◦6

◦1 •2 ◦3 •4 ◦5 ◦6 •1 ◦2 ◦3 ◦4 •5 ◦6

◦1 •2 ◦3 ◦4 •5 ◦6 •1 ◦2 ◦3 ◦4 ◦5 •6

◦1 ◦2 •3 ◦4 •5 ◦6 ◦1 •2 ◦3 ◦4 ◦5 •6

◦1 ◦2 •3 ◦4 ◦5 •6

◦1 ◦2 ◦3 •4 ◦5 •6

R3

R1 R4

R4 R1 R5

R2 R5 R1

R5 R2

R3

Figure 2. The case h = 6 and N = 2.

On the other hand, according to (E.34)

det Ĵn(m) · det Ên(m) = W 2 , (E.39)

which leads to
W

det Ên(m)

=
1

W

∏m
j=0 Jn−m+2j∏m−1
j=1 χ(n−m+2j)

. (E.40)

Our final result for Ĵn(m) is then

Ĵn(m) =
1

W

∏m
j=0 Jn−m+2j∏m−1
j=1 χ(n−m+2j)

(
Ψn+1(m−1) −Ψn(m−2)

−Ψn(m) Ψn−1(m−1)

)
. (E.41)

It remains to prove the claim (E.34). To this end, consider the induced effect of a given

row or column transformation of the J -block on the E-block of a matrix factorisation Q.

According to (A.4), performing e.g. a similarity transformation which adds row r times a

polynomial p to row s of the J -block leads to a transformation of the E-block in which the
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•1 ◦2 •3 ◦4 •5 ◦6 ◦7 h = 7 , N (|Ψm〉h) = 3

•1 ◦2 •3 ◦4 ◦5 •6 ◦7

•1 ◦2 ◦3 •4 ◦5 •6 ◦7 •1 ◦2 •3 ◦4 ◦5 ◦6 •7

◦1 •2 ◦3 •4 ◦5 •6 ◦7 •1 ◦2 ◦3 •4 ◦5 ◦6 •7

◦1 •2 ◦3 •4 ◦5 ◦6 •7 •1 ◦2 ◦3 ◦4 •5 ◦6 •7

◦1 •2 ◦3 ◦4 •5 ◦6 •7

◦1 ◦2 •3 ◦4 •5 ◦6 •7

R5

R3 R6

R1 R6 R3

R6 R1 R4

R4 R1

R2

Figure 3. The case h = 7 and N = 3.

column s multiplied by −p is added to the column r of the E-block. If we now choose to start

constructing the transformation from the form Jn(m) to the form Ĵn(m) by “clearing out”

the entries above the constant entries χ(p) with a number of row operations, we first of all

observe that the subblock of En(m) that corresponds to Ên(m) remains unaltered. Similarly,

afterwards performing a number of column operations on the Jn(m) block, inducing row

transformations on the En(m) block, will not affect the Ên(m) subblock. In summary, what

we have obtained so far is that one may find a set of similarity transformations that brings

the Jn(m) block into the form Ĵn(m) without affecting the Ên(m) subblock of the En(m)

block. Now, due to the fact that

Jn(m)
∼= Ĵn(m) ⊕ J ⊕m−1

triv , (E.42)

we automatically must have

En(m)
∼= Ên(m) ⊕ E⊕m−1

triv , (E.43)

which concludes the proof.
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