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Abstract 

 Here we examine a new task to assess working memory for visual arrays in which the 

participant must judge how many items changed from a studied array to a test array.  As a clue to 

processing, on some trials in the first two experiments, participants carried out a metamemory 

judgment in which they were to decide how many items were in working memory.  Trial-to-trial 

fluctuations in these working memory storage judgments correlated with performance 

fluctuations within an individual, indicating a need to include trial-to-trial variation within 

capacity models (through either capacity fluctuation or some other attention parameter).  

Mathematical modeling of the results achieved a good fit to a complex pattern of results, 

suggesting that working memory capacity limits can apply even to judgments that involve an 

entire array rather than just a single item that may have changed, thus providing the expected 

conscious access to at least some of the contents of working memory. 
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Detection of the Number of Changes in a Display in Working Memory 

 

 In the past few years, we have seen an explosion of research on visual working memory, 

following an article by Luck and Vogel (1997) that introduced a procedure in which, on each 

trial, a briefly-studied array of objects is followed by a probe display testing memory of one or 

more features of at least one object from the studied array (see also Phillips, 1974; Sperling, 

1960).  The recent research has addressed a variety of interlocking issues, including the basis of 

individual and group differences in capacity (e.g., Cowan, Morey, AuBuchon, Zwilling, & 

Gilchrist, 2010; Gold et al., 2006; Vogel, McCollough, & Machizawa, 2005), the role of feature 

binding in working memory (e.g., Allen, Hitch, Mate, & Baddeley, 2012; Cowan, Blume, & 

Saults, 2013; Logie, Brockmole, & Jaswal, 2011; Oberauer & Eichenberger, 2013), the sharing 

of capacity between different modalities and codes (e.g., Fougnie & Marois, 2011; Morey & 

Mall, 2012; Saults & Cowan, 2007; Stevanovski & Jolicoeur, 2007; Vergauwe, Barrouillet, & 

Camos, 2010), the proper expression of capacity limits in terms of discrete items versus a 

continuous resource (e.g., Anderson, Vogel,  & Awh, 2011; Bae & Flombaum, 2013; Bays & 

Husain, 2008; Cowan, 2001; Donkin, Nosofsky, Gold, & Shiffrin, 2013; Rouder et al., 2008; 

Thiele, Pratte, & Rouder, 2011; van den Berg, Shin, Chou, George, & Ma, 2012; Zhang & Luck, 

2008), and processes that are used to manage the information in one’s working memory 

(Barrouillet, Portrat, & Camos, 2011; Camos, Mora, & Oberauer, 2011).   

 Most tests of working memory for arrays have involved memory probes with at most one 

change in an item compared to the studied array (but see Gibson, Wasserman, & Luck, 2011; 

Wilken & Ma, 2004, Experiments 4-6).  This limitation in method, however, has been for 
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convenience rather than as a reflection of what is supposedly most interesting or important in the 

world.  Many real-world comparisons of two displays do involve multiple differences between 

them; this is the case, for example, when one compares two paintings by the same artist to 

discern their similarities and differences, compares two mobile phones to determine which one 

has better features, or compares before-and-after pictures.   

As an initial foray into the topic of multi-change detection, we examine relatively small 

displays with 5, 7, or 9 objects; a real-world analogue might be the comparison of two recipes to 

estimate how many of their ingredients they have in common.  After describing our task and 

theoretical analysis of it, but before reporting data, we discuss additional background concerning 

two topics: 1) literature on change detection for scenes, and 2) literature related to auxiliary tasks 

that we used to assess some individual differences in memory and metamemory (in particular, 

awareness of one’s working memory) in the present study.  

The Present Multi-Change-Detection Task 

 Our basic procedure was as shown in Figure 1.  A probe array of N colored squares was 

presented (in Experiments 1 and 2, N=5 and 7, respectively; in Experiment 3, N=5, 7, or 9).  This 

was followed by a masking display to eliminate any contribution of lingering sensory memory 

(cf. Saults & Cowan, 2007).  The mask was sometimes accompanied by a cue for a metamemory 

task that we will discuss shortly.  Last, a test array was presented that was identical to the first or 

included 1 to N changes in color compared to the squares in the original array.  The task 

following the test array was to indicate the number of changes from the first array.  

 To analyze data from such a procedure we introduce a new method that is a spinoff of what 

has been done with change-detection procedures (Cowan, 2001; Pashler, 1988).  These 

investigators introduced mathematical models in which the participant either answers correctly 
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because the queried or changed item is present in working memory, or else guesses randomly.  

The model of Cowan (2001) is appropriate when one item is singled out for the test, and the 

model of Pashler (1988) is appropriate when all items in the original array must be compared 

with a test array for which it is not indicated which item may have changed (Rouder, Morey, 

Morey, & Cowan, 2011).  The models yield an estimate of k, the number of items held in 

working memory for a particular array size.  If these estimates approach an asymptotic level as 

the array size increases, the asymptote is said to approximate the individual’s working memory 

capacity.   

Zhang and Luck (2008) introduced a procedure from which one supposedly can estimate not 

only k, but also the precision of the working memory representation, based on a task in which a 

variable stimulus property has to be reproduced as precisely as possible (cf. Wilken & Ma, 

2004).  We, however, circumvent the need for that by using stimuli with colors that differ 

categorically, for which failure to detect a difference seems unlikely to be due to imprecision of 

the representation (Awh, Barton, & Vogel, 2007).  In this regard we also wish to emphasize that 

the difficult issue of whether capacity might be best described as a continuous resource limit that 

can be spread out among all items, rather than as a discrete item limit, will not be addressed here 

in detail, and need not be addressed, though we favor the discrete item limit.  (To read about this 

debate see, for example, Anderson et al., 2011; van den Berg, Awh, & Ma, 2014; Suchow, 

Fougnie, Brady, & Alvarez, 2014; Zhang & Luck, 2011.)  When we find that participants have X 

items in working memory, or when we find that participants think they have Y items in working 

memory, this could reflect the number of items that are remembered with a precision high 

enough to detect a change from one color to a categorically different one.  Performance for 

categorically different colors is known to be almost as high as when one tests a change from one 
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type of object, such as a face, to another type of object, such as a cube (Awh et al., 2007; Scolari, 

Vogel, & Awh, 2008); that is, almost the largest possible change, requiring minimal precision.  

Thus, one can benefit from our k measure to examine working memory in multi-change-

detection situations even if a commitment to a discrete-item capacity ultimately proves to be 

unwarranted.  Similarly, Gibson et al. (2011, p. 980) suggested the following:  “It is important to 

note that this model assumes that observers store high-quality representations of all K items and 

have no information about the remaining items…However, it is possible to avoid this assumption 

by treating K as the number of items’ worth of information stored in VSTM [visual short-term 

memory] (Vogel, Woodman, & Luck, 2001).”  

The studies with the manipulations closest to ours were conducted by Gibson et al. (2011) 

and Wilken & Ma (2004).  As in our study, anywhere between none and all of the items in an 

array could change between the studied array and the following probe array.  In these studies, 

however, the task was to determine whether there was at least one change, a task that became 

easier as the number of changes increased. Wilken & Ma also collected confidence ratings. In 

contrast, our task was to estimate how many items changed, which of course affords more 

information about the number of changes detected. We also measured awareness of one’s own 

memory with a judgment of number of array items in mind, rather than using confidence ratings. 

Multi-change Detection and Working Memory for Scenes  

 Unlike the finding of a fixed capacity measured on an item-by-item basis in single-change-

detection procedures (e.g., Anderson, Vogel, & Awh, 2011; Cowan, 2001; Luck & Vogel, 1997; 

Rouder et al., 2008), there has been other work on whole-field working memory, some of which 

suggests broad judgment in which the items are not just examined separately in working 

memory.  For example, Hollingworth (2004) presented natural scenes with a dot indicating 
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which item should be fixated.  Memory for the last few items fixated was especially good, but 

there was also a long-term memory component that did not diminish with interpolated material.  

Chong and Treisman (2005) probed memory for characteristics of the array taken as a whole, 

such as the average size of items.  Such averages can be abstracted from arrays of many items at 

once, even though capacity appears limited to just a few items.  Other work has shown that 

information about any one object in a large array is remembered in a way that is biased by the 

statistics of the ensemble (Brady & Alvarez, 2011), and Brady and Tenenbaum (2013) showed 

how it will be necessary to combine item-level information with higher-level conceptual 

structural information to explain memory for natural scenes.  

 The present work is not designed to examine scenes, but the methods developed here could 

be modified in the future to gain a better understanding of the role of item information in 

working memory for scenes. It remains possible that an item capacity limit applies to large 

ensembles; for example, the average size of an item in a large array might be abstracted not from 

all items in the scene, but from a random subsample of items or groups of items that are few 

enough to be held in working memory.  Consistent with the general suggestion that perception of 

scenes requires active encoding of elements into working memory, Cohen, Alvarez, and 

Nakayama (2011) showed that distraction during perception of a scene resulted in inattentional 

blindness for items in the scene.   

 We do not attempt to deal with scenes but note that a characteristic of scenes is that 

comparisons between them generally reveal multiple differences.  We develop methods to 

examine the role of a limited-capacity working memory in relatively small arrays of separate 

items.  Subsequent research then could seek to determine whether similar processes operate in 

the case of large arrays or scenes.  
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An Auxiliary, Metamemory Measure in the Multi-Change-Detection Task 

 Although metamemory, or knowledge of what information is in one’s own memory, has 

been extensively investigated in long-term memory procedures (e.g., Koriat & Helstrup, 2007; 

Lachman, 1979; Maki, 1999), it has hardly been investigated in working memory procedures 

(though see Bunnell, Baken, & Richards-Ward, 1999; and for subjective judgments about the 

efficacy of participants’ working memory see Kane et al., 2007).  Rademaker, Tredway, and 

Tong (2012) investigated it with confidence ratings and found that more confident ratings 

corresponded to trials with more precise memory. Instead of asking for confidence ratings, we 

sometimes asked for direct estimates of the number of items in working memory and, 

importantly, did so before rather than after an objective judgment was made. This is important 

because participants’ subjective ratings collected after an objective probe is presented could be 

influenced by the participant’s ability or inability to retrieve the information to respond to that 

probe.   

We did not know in advance whether subjective ratings would correspond to objective 

responses.  One could imagine that participants might make a judgment about the number of 

items that have changed on the basis of a holistic stance in which the array is perceived without 

individuating the items in memory.  That is, multi-item patterns and regularities might be found 

(Brady & Tenenbaum, 2013; Jiang, Chun, & Olson, 2004) and used to encode the array in such a 

way that the judged number of changes in the array would have little to do with knowledge of the 

individual items.   

We added the metamemory task on half of the trials in Experiments 1 and 2, yielding an 

auxiliary measure of working memory, namely the number of items the participant thought he or 

she had in mind during the retention interval.  On trials in which the metamemory response was 
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to be made, the masking array included a question mark as shown in Figure 1.  The participant 

was to indicate the number of items’ colors that she (or he) thought she had in mind.  There was 

a fixed time for this activity that did not lengthen the time between the original studied array and 

the test array.  The participant was then to go on to indicate how many items changed, as in the 

trials with no metamemory judgment.   

 The metamemory judgments are useful for examining several issues.  First, they can be used 

to assess whether individuals have knowledge of trial-to-trial fluctuations in the number of items 

in working memory.  There has been some suggestion that an individual’s number of items in 

working memory is not always fixed (van den Berg, Awh, & Ma, 2014) or that attention to the 

array varies between trials (Rouder et al., 2008), and this general hypothesis of variability  

would be strengthened if it could be shown that trial-to-trial fluctuation in the participant’s 

conception of how many items are known correlates with objective performance. A positive 

result would also suggest that at least some faculties used to remember arrays are open to 

introspection, as one would expect if the attention system is used for retention of information in 

one way or another (e.g., Baars & Franklin, 2003) as a number of investigators have suggested 

(e.g., Cowan, 1995, 2001; Cowan, Saults, & Blume, 2014; Barrouillet et al., 2011; Oberauer, 

2013).     

 On the other hand, an individual’s apparent failure of insight on a particular trial could occur 

for reasons other than insufficient capacity.  For example, an individual who is especially 

vulnerable to interference might have been correct that he or she had all of the array items in 

working memory during the retention interval, but might lose them due to interference from the 

probe array (cf. Wheeler & Treisman, 2013; Woodman & Luck, 2003). According to at least one 

view, visual working memory may operate on the basis of a mechanism that does not tax 
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attention as measured, in particular, by the efficiency of visual search (Woodman, Vogel, & 

Luck, 2001).  Cowan, Saults, and Blume (2014) acknowledged that information in working 

memory may be off-loaded and held outside of attention during at least part of the maintenance 

period which might result in a tenuous relationship between awareness and working memory. 

 Second, the metamemory judgments could be used to assess whether individuals know 

something about the capacity of their own working memory relative to other people.  A good 

knowledge of one’s own cognitive strengths and weaknesses, including one’s working memory 

capability, seems important because it could be relevant to career choices.  Understanding of the 

cognitive demands of a particular working memory task seems important because it is relevant to 

how one manages the task; one might choose to devote more attention control for a task that one 

expects to be more demanding.  A correlation between metamemory judgments and array 

memory across individuals would seem likely only if participants have some understanding of 

both the task demands and their own level of capability on this kind of task relative to other 

individuals in the participant pool.  Given the complex reasons why a correlation could fail, this 

issue can be examined here only for exploratory purposes.  

Modeling of working memory capacity in change-detection tasks.  One contribution of 

the present work is to show how it is possible to model capacity limits in working memory in the 

multi-change-detection task.  As a preview, the task yielded an intricate pattern of results and 

modeling of that pattern provided insight into processes that may be involved in multi-change 

detection.  

Our initial model in an earlier draft of this article was based on the assumption that a 

separate decision was made by the participant about each item in the array, based either on 

information in working memory or, for those items not included in the working memory 
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representation, on guessing.  That model did a good job of fitting the mean judged number of 

changes as a function of the actual number changed; mean responses within both the model and 

the data were at least approximately related to the number of array changes in a linear manner, 

with a slope approaching 1 as the number of items in working memory approached the number 

of items in the array.  However, this sort of model did a poor job of fitting the more detailed 

pattern of data.  Specifically, for trials with x changes out of n array items (0<x<n), the number 

of times that the participants judged that 0, 1, 2...n items changed was not well predicted. The 

obtained patterns included much more use of the extremes of the judgment scale than the model 

predicted.   

In our final models of performance, the participant is said to observe c changes and must 

make a decision about what actual states of affairs could produce this observed number of 

changes.
1
  This class of models assumes that the participant is aware of how many items he or 

she has in working memory.  The participant also is assumed to use the knowledge that, in the 

experiment, there is an equal likelihood of receiving 0, 1, 2...n changes.  As an example of why 

that assumption is important, suppose a participant with a capacity of 3 items (k=3) saw a 5-item 

array (n=5) and detected 3 changes in the comparison array (c=3).  This outcome could occur in 

several ways according to these models.  It could be that there actually were 3 changes and none 

of them was missed; 4 changes and 1 of them was missed; or 5 changes and 2 of them were 

missed (x=3, 4, or 5).  Given that there were equal numbers of trials in the experiment with each 

possible number of changes, the last possibility is most likely because it should happen on all, 

and not just some, of the 5-change trials. In contrast, for example, when there are only 4 changes 

out of 5 items, a participant with k=3 will sometimes detect only 2 changes. 

The model can take the form of either a discrete slot model or a continuous resource model.  
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For 5-item lists, a continuous resource model with variable precision fit the data well, but so did 

a discrete slots model with two assumptions added.  One was the assumption that after the 

participant implicitly computed the probabilities of various numbers of changes, the response did 

not consistently reflect the most probable case, but rather a probability match to the various 

possible cases.  Probability matching has been well supported in previous research on human 

judgment and decision-making (e.g., Shanks, Tunney, & McCarthy, 2002; Vulkan, 2000). 

Second, we allowed the estimate of the number of items in working memory to conform to a 

distribution rather than being identical across trials.  

For 7- and 9-item lists, there was an asymmetry in the data that caused an important misfit to 

even these models.  Specifically, people were a lot more willing to indicate that no or few items 

changed than they were to indicate that many or all items changed.  We were able to fit these 

data, with the added assumption that participants did not know how many items they truly had in 

working memory, but judged the number of items in working memory in a manner that was 

estimated from our metamemory judgments of the number of items in mind. When the number of 

detected changes surpassed the number of items the participant thought to be in working 

memory, the estimate was assumed to be revised upward. It might have been possible to form a 

comparable model for continuous resources based on the assumption that the distribution of 

precisions that participants think they have does not match the distribution that they actually 

have, and instead matches the metamemory results.  That endeavor, however, seemed complex 

enough to be outside of the scope of our modeling effort.  It is our aim simply to begin to make 

sense of the processes taking place in multi-change procedures, and we leave it for follow-up 

work to adjudicate between discrete and continuous models or to try out additional alternative 

possibilities.  Both discrete and continuous models predict the data by estimating the number of 



Detection of the Number of Changes, Page 13 

items that are present in working memory with enough precision to allow discrimination between 

a changed and an unchanged item.  We delay the more detailed presentation of the model until 

results from three experiments have been presented. 

Other Auxiliary Tasks  

In the first two experiments (with 5 and 7 array items, respectively), we collected two other, 

independent measures of capacity that have been useful in that they have been shown to correlate 

with one another and with array memory: the running span and operation span tasks.  Both tasks 

provide estimates in a range similar to what is obtained with array memory tasks.  They involve 

sequential presentations of verbal and symbolic items, a method quite different from the 

simultaneous presentation of nonverbal objects that occurs within visual arrays; yet they are not 

very amenable to covert verbal rehearsal (Cowan et al., 2005).  They may draw on partly 

different faculties (e.g., Shipstead, Redick, Hicks, & Engle, 2012) and correlations between them 

are based at least partly on rather general, attention-related components of working memory 

maintenance (e.g., Kane et al., 2004). We included them in order to compare array multi-change 

detection and metamemory to very different, but often-used, measures of working memory 

functioning.  In the third experiment, to allow for the inclusion of 3 set sizes (5, 7, and 9), we 

omitted the metamemory measure and the running and operation spans. 

Experiment 1:  5-Item Arrays 

Method 

 Participants.  Participants were introductory psychology students who received course 

credit for their participation.  There were 69 participants (48 female) but 9 were eliminated: 7 

because they did not make storage judgments or only made them on 1 or 2 trials, and 1 because 

of experimenter error. An additional participant always gave a storage judgment of 5 and in fact 
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performed well, with a slope of change responses across actual changes of .88. This participant 

was excluded from further analysis because it was impossible to appraise the participant’s 

awareness of fluctuations from trial to trial. The 60 participants used in the analyses included 43 

females and 17 males, and each used 3 or more of the storage judgment categories. 

Apparatus, stimuli, and procedure.  All tests were completed in a sound-attenuated booth 

with computer-controlled stimuli.  We carried out a running span procedure, an operation span 

procedure, and the array change-detection task that included storage judgments on half of the 

trials. 

Running span.  In the running span procedure (taken from Cowan et al., 2005), on every 

trial 12 to 20 spoken, digitally-compressed digits were presented through loudspeakers at the 

rapid rate of 4 digits per second.  The digits were easily intelligible.  The determination of list 

length was random so the list ended at a point that was unpredictable to the participant.  When 

the list ended, the task was to use the number keys to enter the last seven digits from the list, or 

as many of these digits as the participant believed he or she could recall, in the presented order.  

The response was right-justified so that the last digit entered by the participant was considered to 

be the recall of the final list item.  Guessing was allowed. Credit was given for the number of 

digits that were recalled in the correct serial position within the right-justified response.   

Operation span. Next, each participant completed the operation span procedure using a 

program described by Unsworth, Heitz, Schrock, and Engle (2005).  On every trial, sets of 

arithmetic equations were shown, with the correctness of each equation to be verified by the 

participant, and each equation was followed by a letter to be remembered.  After a list of 

equation-letter pairs was completed, all of the letters in the list were to be recalled.  The list 

length varied randomly between 3 and 7 equation-letter pairs, with three lists per set size.  
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Operation span was defined as the total number of letters recalled within all perfectly-recalled 

lists (the first measure described by Unsworth et al., p. 501, which is their traditional measure).   

Array memory.  Finally, each participant completed the array-memory multi-change-

detection task illustrated in Figure 1.  A special keyboard was used that only included the needed 

keys.  Participants made responses with their right hand by pressing one of 6 keys arranged in 

two rows, with the keys labeled 0, 1, 2, 3, 4, and 5. On each trial, a screen indicated whether 

there would be a storage judgment. When ready, the participant would press the Enter key to 

begin each trial. A fixation cross was presented for 1000 ms followed by the array of 5 colored 

squares for 500 ms.  A blank screen then appeared for 500 ms, followed by the mask display that 

also contained a prompt indicating whether a storage judgment should be made (?) or not (X).  

The mask and storage judgment response period lasted 4000 ms.  A probe array was then 

presented in which 0 to 5 of the items’ colors differed from those in the otherwise identical first 

array.  (The items did not change locations.)  The task was to indicate how many of the colored 

squares on the second array had changed, again by key press. Following the participant-paced 

response, two feedback screens were provided. The first indicated memory accuracy (including 

the response as well as the correct response, i.e., how many colored squares actually had 

changed). The second feedback screen provided storage judgment feedback.  It was made clear 

in the instructions that each possible color could appear only once in an array and that any 

change between the studied and probe arrays would be changes of one or more items to colors 

that had not been in the studied array. 

When a storage judgment was to be made the participant was to indicate, before the mask 

ended, the number of colors from the target array (0-5) that were still held in mind.  It was 

emphasized that it was the color, not the location, of an object that had to be remembered in 
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order for that object to be included in this judgment of the number of items in mind.  It was 

further pointed out that it was not the number of colors presented (always 5) that was to be 

reported, but the number remembered. 

The spatial arrangement of the experimental materials was as follows.  Participants were 

seated about 50 cm away from the computer screen.  The 5 squares in the target array were 

drawn on a grey background.  They were differently colored, with the square colors randomly 

drawn without replacement from the set black, white, red, blue, green, yellow, brown, cyan, 

purple, and dark-blue-green.  These colors are defined by RGB values in the in-line object 

'DefineColorsAsRGB' in the E-Prime program.  Standard RGB values for the colors in every 

experiment are shown in Table 1. The target squares were each 6 mm on a side (0.7 degrees of 

visual angle), arranged within a 74 mm wide x 56 mm high area (8.5 x 6.4 degrees of visual 

angle).  The locations of squares were restricted so that there was at least 17.5 mm between their 

centers and they were at least 17.5 mm from the center of the display area.  The mask array 

included 5 multicolored squares in the same spatial arrangement as the target array, overwriting 

the colors while preserving location information. 

The session began with 12 practice trials followed by 13 blocks of 12 test trials.  Within 

each block, 6 trials were designated as “Storage Judgment” while the rest were “No Storage 

Judgment” trials. Within the 6 trials of each designation per block, one of each of the possible 

number of changed items (0-5) was selected. Thus, each block of 12 trials consisted of exactly 

one example of all possible trial types.   

Results 

The included participants erroneously made judgments on how much information was in 

working memory on 4% of trials when they had not been instructed to do so, and they 
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erroneously omitted judgments on 6% of trials in which they had been instructed to make them.  

These trials were excluded from the analyses. 

Mean response function.  Figure 2 shows the mean number of reported changes for each 

number of actual changes.  To give a rich picture of performance, these means were calculated 

separately for the thirds of the participants with the poorest performance, intermediate 

performance, and best performance.  The figure also shows perfect or veridical performance, for 

which the slope would be 1.0.   

Performance levels.  Mean performance in terms of the discrimination slopes and 

metamnemonic judgments are shown in Table 2.  The discrimination slopes based on the mean 

judgments shown were slightly but significantly higher on trials without storage judgments 

(M=.66, SD=.16) than on trials with them (M=.62, SD=.17), F(1,56)=4.84, p<.05, ηp
2
=.08,  The 

metamnemonic judgment mean (2.71) is roughly comparable to capacity estimates from limited 

capacity models meant for single-change tasks (e.g., Cowan, 2001; Rouder et al., 2008) and from 

production tasks (Anderson et al, 2011; Luck & Vogel, 2008), typically about 3 items.  It is even 

closer to the capacity estimate for the present study (2.69) that is based on our best mathematical 

model of the results, to be described after Experiment 3.   

Trial-to-trial metamnemonic awareness.  We asked whether participants were aware of 

remembering fewer items on some trials and more items on others.  Inspection of Table 2 

informally illustrates such a trend in terms of participants with data at each possible metamemory 

storage judgment.  These data could not be analyzed statistically given that different participants 

used different judgment categories.  In order to ask whether participants were aware of 

remembering fewer items on some trials and more items on other trials, we examined the 

proportion correct for every participant separately for trials in which each metamnemonic 
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category was used.  We calculated the regression slope of discrimination slopes across the five 

categories.  A mean slope greater than zero indicates an improvement in performance across 

increasing numbers of items judged to be in working memory.  The mean regression slope 

(M=.06, SEM=.02) was indeed significantly above zero, t(59)=3.31, p<.01, indicating 

metamnemonic awareness. 

 Individual differences.  As shown in Table 3, there was a very high correlation between 

discrimination slopes obtained from trials with versus without metamemory judgments but, 

otherwise, the different indices of working memory and knowledge of it did not correlate. One 

concern with these results is that there was an outlier who had a discrimination slope near zero, 

yet had a metamemory judgment mean of nearly 4 items.  Without that misguided outlier, there 

was a significant correlation of metamemory judgments with discrimination slope on trials with 

no storage judgments, r=.44, and on trials with storage judgments, r=.40.  It appears, then, that 

many participants do have some idea of where they stand in terms of array memory information 

relative to other individuals.  Still, the absence of correlation between discrimination slope and 

the working memory composite based on other tasks persisted, suggesting that array memory 

here does not necessarily tap the same characteristics as the other working memory tasks.  This 

issue will be revisited in Experiment 2.  

Discussion 

 A priori, it might have been expected that the assessment of working memory capacity in 

terms of number of items in working memory (Cowan, 2001; Luck & Vogel, 1997; Pashler, 

1988) might be irrelevant when the judgment pertains to the entire array.  Indeed, participants 

seem able to make conjoint judgments based on the average of a feature value (e.g., size) across 

an entire array of many items (Chong & Treisman, 2005).  The present experiment shows, 
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however, that the new, multi-change-detection method of determining the used capacity of 

working memory is viable.  Our modeling result will show that it yields estimates rather 

comparable to the standard, single-change-detection method.  This result shows that the limited 

capacity of working memory appears to be an important factor in understanding responses even 

when they pertain to the entire array rather than a single item that may have changed from the 

studied array to the test array.   

One possible problem with this experiment is that participants appeared to do rather well.  A 

difference between a capacity of 4 and a perfect score might be difficult to observe.  Perhaps this 

functional ceiling limited the individual-score reliabilities, in which case the multi-change-

detection task could be more reliable with a larger set size.  Accordingly, in Experiment 2, we 

retested the multi-change-detection model with 7 items per array.    

Experiment 2:  7-item Displays 

Method  

Participants.  We ran 65 college students (36 female).  We excluded the data from 10 

participants who had incomplete data or almost always failed to make storage judgments, 2 

others who used only two storage judgment categories (described below), and 1 other who 

appears to have reversed the scale, indicating how many items stayed the same rather than how 

many changed.  The final sample of 52 included 29 females. 

  The participants who used only 2 storage judgment categories were excluded from most 

analyses because it was considered difficult to compare trial-to-trial fluctuations in memory with 

metamemory.  One of them used metamnemonic categories 2 and 3 (M=2.34) and had near-

average performance, with a slope of reported changes across actual changes of .52. The other 

used categories 3 and 4 (M=3.60) and did very well, with a slope of .93.   
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 Apparatus, stimuli, and procedure.  The method was similar to Experiment 1 (including 

the auxiliary tasks) except that, in the main task, there were 7 items in each array instead of 5, 

and the response scales were adjusted accordingly.  Participants completed a total of 160 

experimental trials:  10 blocks of 16 (with storage judgments in 8 of the 16 per block). Each of 

the possible array change values (0-7) occurred once in each block for storage-judgment trials, 

and once for no-storage-judgment trials.  The color set was expanded to include those in the 

former set of 10 except for dark-blue-green (excluded in order to split up the green category), 

and also included fluorescent green, dark green, navy, violet, and orange.   

Results  

The included participants erroneously made judgments of how much information was in 

working memory on 2% of trials when they had not been instructed to do so, and they 

erroneously omitted judgments on 3% of trials in which they had been instructed to make them.  

These trials were excluded from the analyses. 

Mean response function.  Figure 3 shows the mean response function for Experiment 2, 

separately for individuals in the bottom, middle, and top third of performance.  It can be seen that 

even the top third of the participants was further from the veridical line than was the case in 

Experiment 1 (Figure 2), indicating that increasing the set size from 5 to 7 items successfully 

removed any problem of ceiling effects in some participants.   

Performance levels. Mean performance in terms of discrimination slopes and 

metamnemonic judgments are shown in Table 4.  These means are generally similar to 

Experiment 1.  One difference is that the discrimination slope for trials with no metamnemonic 

judgment (M=.49, SD=.20) did not significantly differ from trials with a metamnemonic 

judgment (M=.46, SD=.19), F(1,51)=3.19, p=.08, ηp
2
=.06.  The metamnemonic judgment mean 
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(2.76 items) was somewhat higher than the mean number of items in working memory according 

to the winning mathematical model (2.28 items). 

Trial-to-trial metamnemonic awareness.  Once again we asked whether participants were 

aware of remembering fewer items on some trials and more items on other trials.  Inspection of 

Table 4 informally illustrates such a trend in terms of all participants who had data for each 

possible storage judgment (0-7).  Once more in a more formal measure, a mean regression slope 

across judgment categories greater than zero indicates awareness.  The mean slope (.06, 

SEM=.02) was indeed significantly above zero, t(51)=2.74, p<.01, indicating that participants 

again did show some metamnemonic awareness of their trial-to-trial knowledge, as in the other 

experiments.   

 Individual differences. The present experiment shows a stronger pattern of correlations 

(Table 4) than we obtained in Experiment 1.  Not only is there a strong correlation between the 

two measures of discrimination slope; there also are strong correlations between these measures 

of items in working memory and the working memory composite score.  Thus, there seems to be 

some evidence in favor of the need to use larger set sizes for the multi-change-detection task in 

order to obtain an ideal set of correlations, probably because of ceiling effects for some 

participants in 5-item arrays.  The change in the function of discrimination slope across storage 

judgments, indicating trial-by-trial knowledge of the contents of working memory, also was 

correlated with the working memory composite score in this experiment, so that higher-span 

individuals seem to have more knowledge of their current mental state.     

As in Experiment 1, metamemory storage judgments were not correlated with discrimination 

slope.  Unlike Experiment 1, this lack of correlation was not the result of an outlier. Instead, it 

appears that with this more difficult task, participants are unable to assess reliably how good 
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their memory capacity is overall.  

Discussion  

 The present experiment, like Experiment 1, showed that there is considerable usefulness in a 

method in which any number of items in the field can change.  The use of a larger array set size 

in the present experiment (7 instead of 5 colored items) produced results that did not suggest any 

ceiling effect, but still are similar to those of Experiment 1 in key ways.  The estimates of 

discrimination slope were similar though slightly higher in the present experiment, probably 

because there is no longer a ceiling effect for the more capable participants.  

Both experiments also produced similar evidence that participants are aware of trial-to-trial 

fluctuations in the number of items in working memory.  Specifically, in both experiments, the 

slope of performance (items in working memory) as a function of the assigned storage judgment 

was positive, indicating awareness of trial-to-trial differences.  There were mixed indications of 

the presence or absence of between-individual correlations between working memory tasks and 

metamnemonic knowledge, indicating that there was not very consistent awareness of the quality 

of one’s own working memory compared to other participants.  

Experiment 3 

 In this experiment we tested the generality of the pattern of results obtained in the first two 

experiments by examining 5-, 7-, and 9-item arrays intermixed in the same trial blocks.  In order 

to allow time for this broader set of trials in an experiment, we omitted the storage judgments 

and the auxiliary working memory tasks.  This experiment therefore should provide a pure 

measure of multi-change detection unaffected by any additional task requirements.  It also serves 

as a good basis for mathematical modeling of the results.   

Method   
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 Forty-six introductory psychology students participated (27 male, 19 female).  The stimulus 

set was expanded to 18 colors, chosen to be maximally discriminable from one another (Table 

1). In order for the objects to fit in the display, they could be separated by only 13.7 mm, 

compared to 17.5 mm in Experiments 1 and 2.  Ten practice trials were followed by 216 test 

trials, with an equal number of trials for each combination of set size and number of changes.  

Given that there were 6 trial types for 5-item trials (0-5 changes), 8 trial types for 7-item trials, 

and 10 trial types for 9-item trials, there were 24 experimental conditions.  Each condition 

occurred 3 times within a block of 72 trials, and there were 3 of these experimental trial blocks 

with breaks in between the blocks.  Because there were no storage judgments, we were able to 

reduce the retention interval from 4s previously to 1s in this experiment, decreasing the test time. 

Results and Discussion 

 The left-hand panel of Figure 4 shows the mean performance function (mean reported 

number of changes as a function of the actual number of changes) for each set size.  

Interestingly, the functions stay separate by set size up to 4 changes and then converges, 

suggesting that sensitivity to the number of changes may have a different basis after this point. 

Mathematical Models of Performance 

The usefulness of the multi-change-detection procedure may hinge in part on whether the 

appropriate model of performance in that procedure can be developed.  We do not claim to have 

the final word on that issue but have had considerable success in finding at least one model that 

appears to account for a complex pattern of results. 

So far, the results of the experiments have been presented in terms of mean reported number 

of changes for each actual number of changes (Figures 2, 3, & 4).  We have found that it is fairly 

easy for a variety of models to fit these means, whereas a more detailed pattern of responding is 
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harder to fit and provides much better discrimination between possible models.  The detailed 

pattern involves the entire distribution of responses for each actual number of changes.   

Failure of an independent-decisions model.  In the first model that fit the linear shape of 

the means rather well, but failed in modeling the detailed pattern, was one in which a decision 

was made independently for each item in the array.  The decision was made based on the item’s 

representation in working memory or, if that representation was not present, on guessing.  For a 

given set size a given change would have the same probability of being detected regardless of 

how many other items changed; thus, the reported number of changes increased as a linear 

function of the actual number of changes, the slope of the function was determined by the 

number of items in working memory, and the intercept was determined by the guessing rate.  

This kind of model failed, however, in explaining the detailed pattern of results, which is shown 

for Experiments 1 and 2 in the left-hand panels of Figure 5 and for Experiment 3 in the left 

column of panels in Figure 6.  Whereas the pattern increases at the extreme responses, the model 

just described showed a dramatic downturn at the extreme responses. 

Success of overall-decision models.  In the remaining models, which were compared more 

formally, the general shape of the detailed pattern of responses was reproduced better.  These 

models were based on the premise that performance involves several components.  First, a 

number of changes is detected. The number detected on a particular trial depends on chance but 

also on the current capacity of working memory. Second, the participant has and employs beliefs 

about what his or her working memory capability is.  Third, based on these first two components 

and some mental, undoubtedly implicit use of the laws of probability, the participant constructs a 

distribution of probabilities for the various scenarios (0 changed, 1 changed, etc.).  Fourth, a 

response is determined based on the application of a decision rule to this distribution of 
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probabilities.   

Given limitations in the amount of data per individual, we modeled group data.  In the first 

model we tried, capacity was set to a fixed number of items, k, and it was supposed that c 

changes were detected on a trial.  The participant was assumed to be aware of the k value and, 

therefore, the rules of probability yielded the likelihood of observing c changes given various 

numbers of actual changes, according to a hypergeometric distribution.  The decision rule was to 

select the most likely scenario to produce the observed number of changes.  This model failed 

badly because when all items changed, k changes were observed and the participant should 

always indicate that the most likely basis of this result was that all items changed.  Similarly, 

when no changes were detected, the most likely option should always be that no items changed.   

It can be seen in Figures 5 and 6 that participants were not so severe in their judgments. 

Formal modeling.  In Figure 5, one can see the modified models that were formally 

considered, as applied to Experiments 1 and 2.  Table 5 shows the outcomes of various models 

according to 4 fit indices:  log likelihood of the fit (Fisher, 1922), the residual sum of squares 

(Draper, 1998), AIC (Akaike, 1974), and BIC (Schwarz, 1978).  In the first model that was 

considered, the only change that was made was that capacity (k) was said to vary from trial to 

trial.  The proportion of trials with 0, 1, 2...n items in working memory were allowed to vary 

independently as parameters of the model (Nelder & Mead, 1965).  As shown in Panel B of the 

top and bottom rows of Figure 5, the result was encouraging though still a bit severe at the 

extremes.  Moreover, for the 7-item arrays of Experiment 2, there was an asymmetry in the 

results that was not picked up by the model.     

Different modifications of the model were found to overcome these two limitations.  In 

many studies of behavior, as mentioned earlier, participants do not consistently select the optimal 
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choice from a distribution, but rather probability match (Shanks et al., 2002; Vulkan, 2000). For 

example, if the participant must choose which of two responses yields a reward and Response A 

yields the reward 60% of the time in an unpredictable manner, winnings would be optimized by 

always choosing Response A but, instead, participants tend to choose Response A only about 

60% of the time.  Use of a probability-matching principle to select the response made the pattern 

of predictions much more gradual, like the actual results.   

What probability matching did not do was produce the asymmetry seen for the 7-item arrays 

in Experiment 2 (later replicated in the 7- and 9-item arrays of Experiment 3).  We found that 

what did produce the asymmetry was a situation in which the participant misjudged his or her 

own working memory capacity.  At first, we despaired because of the large number of ways in 

which capacity could be misperceived.  Then we realized that a theoretical description of that 

misperception was not needed, given that we had actual data on participants’ metamnemonic 

judgments in Experiments 1 and 2.  We assumed that the distribution of metamnemonic 

judgments reflected the distribution of perceived values of capacity.  To model Experiment 3, we 

applied the metamnemonic judgments for the same set sizes in Experiments 1 and 2.  The 

metamnemonic judgment almost never went up to 7, so to model 9-item arrays we assumed 

probabilities of 0 for believing that there were 8 or 9 items in memory, as well.   

Winning model.  Figure 5 and Table 5 show that both of these innovations, probability 

matching and metamnemonic judgments, are needed in order to produce the gradual and 

asymmetric patterns that were obtained.  For 5-item arrays the asymmetry was not very severe, 

so the use of metamnemonic judgments was not very important for them, but these judgments 

were essential for a good account of the 7- and 9-item array results.  Thus, the model depicted as 

Panel E in the top and bottom rows of Figure 5 was the winning model.  Figure 6 shows that this 
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model provides an excellent fit to the results of Experiment 3, as well. In the model, it is 

assumed that the belief about k that is used in the inferential process is generally the one yielded 

by the metamnemonic process, distributed as that process is over trials.  Whenever the detected 

number of changes is higher than the belief about k, the assumption is that the belief is modified 

upward.  (For example, one might think something like the following, implicitly or explicitly:   

“I believed that I knew only 2 of the items but I have detected three changes, so now I know that 

I must have had 3 items in working memory.”)  Appendix A provides a formal expression of this 

model.  

Discrepancies between k and the beliefs about k produce the asymmetry in the detailed 

pattern of data.  The likely reason can be gleaned from Figure 7, which depicts the distribution of 

metamemory judgments in Experiment 2 along with the theoretical distribution of items in 

working memory according to the best model.  Participants on many trials observe few or no 

changes in part because they have few opportunities to observe changes (because they only 

remember 3 items), but think they have more opportunities (because they think they remember 4 

or 5 items).  On these trials, too much weight is then placed on the absence of detected changes, 

and the inference is made that there must have been few or no items that changed. The converse 

is not true because the model is based on the assumption that items must be in working memory 

in order for a change to be observed; detecting few no-changes (i.e., many changes) presumably 

happens only with a large number of items in working memory, but there are rarely more than 4 

items in working memory according to the model.   

Precision-based models.  It is also possible to account for some key aspects of the results 

under the assumption that all of the array items are represented in working memory, but that 

some of them are represented at a level that is too imprecise to allow the participant to notice a 
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change from one color to another (e.g., Bays & Husain, 2008; van den Berg et al., 2012).  As 

explained in Appendix A, the two parameters of that model determine a probability distribution 

of precisions for various items in the arrays, assuming a gamma distribution.  This kind of 

approach elegantly produces the gradually changing patterns that we have observed.  If the 

precision model is allowed to use a probability-matching rule rather than always choosing the 

optimal response within the confines of the observed changes in the array, the fit generally 

improves further (see Table 5 and the rightmost two panels of both rows in Figure 5).   

What the precision approach cannot easily do is produce the asymmetry that we see in the 

data, especially at the larger set sizes.  In the slot models, we have not used a theoretical 

principle to create the discrepancy between the actual and assumed number of items in working 

memory; we have used the metamnemonic judgments.  To implement a precision approach with 

this discrepancy included, it would be necessary to make an assumption about the believed 

distribution of precisions that differs from the real distribution.  That would be possible and 

might well produce the desired result, but we see little point in carrying out the exercise.  If we 

failed to find a satisfactory solution we would still wonder whether we had just not hit upon the 

best distribution, so in any case we cannot claim that the slot approach outweighs the precision 

approach for these data. We claim only to have found a reasonable account of the data making 

explicit the inferential process, based on the number of items in working memory; the account 

could be modified to be based on the number of items in working memory with sufficient 

precision.    

General Discussion 

Our new multi-change-detection procedure addresses a question that at least potentially is 

ecologically different from the more conventional one of single-change detection, reflecting a 
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different collection of real-world concerns.  For example, the single-change-detection procedure 

might be like comparing a set list of objects on a table, such as wares to be sold, to the same set a 

moment later to make sure that no item has been moved or stolen and there has been no 

substitution. In contrast, the multi-change-detection procedure might be like comparing one 

peddler’s collection of goods on display to another’s, to decide which one to do business with.  

The data from three experiments show that participants carry out multiple-change detection as if 

they base their responses on a limited memory for some of the items in the array.  Figures 4-6 

show that the results are similar to a simple model based on the notion of comparing the number 

of detected changes to the different scenarios that could result in that kind of detection and 

responding with probability matching between the observed and to-be-expected probabilities.  It 

is unclear if the same psychological processes would operate for arrays of a very large numbers 

of items, as in the comparison of photographs of scenes from a geographic setting before and 

after a natural disaster has hit.   

 Despite task differences, both tasks can be assessed to determine whether they display the 

properties desired of working memory tasks.  Previous results indicate that array change-

detection task results correlate well with other measures of working memory, including the 

presently-used operation span and running span measures (Cowan et al., 2005).  It is true of the 

new multi-change-detection procedure also, but only if the number of items in the array is 

sufficiently beyond the capacity limit.  The correlations between performance and composite 

working memory scores were substantial in Experiment 2, in which 7-item arrays were used, but 

not in Experiment 1 with its 5-item arrays.   

 We also collected informative data on participants’ knowledge of their own working 

memories.  It is theoretically important that we found metamemory that correlates with actual 
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memory in terms of trial-to-trial fluctuations.  Participants appear to know something about how 

good or bad their working memory contents are on a particular trial, as one would predict, for 

example, if the relevant contents of working memory were at least partly held in the focus of 

attention (Cowan, 1988, 1995). If it turns out that all items are in working memory but just not at 

sufficient precision, the metamemory judgments still tell us about participants’ manner of 

converting their precision to a likely number of items usefully precise for the task. 

Regardless of the reason for the correlation between working memory performance and 

metamemory, it provides evidence of trial-to-trial fluctuations that are due not to chance, but to 

variation in memory or attention from trial to trial that can be indexed to some extent by the 

storage judgment response.  This fluctuation does not occur in most extant models, though it has 

been included as a fluctuation in memory resources (van den Berg et al., 2012) or attention 

(Rouder et al., 2008).  Most importantly, the metamnemonic results proved to be important in 

providing a possible reason for the asymmetries in the detailed pattern of responding especially 

for the large (7- and 9-item) arrays; participants often overestimated the items in working 

memory according to the model, and this discrepancy accounted for the asymmetries. 

It has been difficult in the working memory literature to discriminate between slots and 

resources as a basis for working memory, in our opinion, because alternative assumptions can 

make either model viable. A parallel exists in the literature on multi-object tracking. Tripathy, 

Narasimham, and Barrett (2007) varied the number of moving dots that changed direction and 

found that the ability to determine whether they turned clockwise or counter-clockwise varied 

with the angle of the change. Ma and Huang (2009) found that these data were best fit with a 

model in which there is no attentional capacity limit, but rather a fluid resource that monitors all 

dots.  We note that the slots model might have an improved fit, though, if attention is shifted at 
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least once during the display period and smaller angles of change require more time for a change 

to be noticed. According to this revised limited-slots explanation, participants may sample 

certain dots and then shift to other dots, sometimes shifting too soon to observe small-angle 

changes. Alternative versions of models will undoubtedly likewise prove relevant to finding the 

best account of multi-object-change detection in working memory. 

 In sum, the present results and analyses generalize the notion of same-different comparisons 

based on working memory, to situations in which the extent of change in an array is to be 

assessed. It remains to be seen how the model suggested here might be modified to account for 

more complex data sets (e.g., objects that can change in more than one feature), and whether the 

model can be applied in any form to very large set sizes or natural scenes.  The research also 

combines objective and subjective measures of working memory as a way to understand the 

capacity of working memory and the processing of its contents.  Finally, the study illustrates the 

importance of examining converging measures across working memory tasks, which induce 

different processing biases and require different theoretical models.  
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Footnote 

1
We are indebted to Wei Ji Ma, who made us aware of this possible basis of modeling and 

formulated both the basic model that assumes continuous resources and the rudimentary slots 

model upon which we elaborated (by adding probability matching and a perceived k distribution 

based on the metamemory results) to form what we term the winning model.  
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Appendix A 

Definitions of the Models 

Slots Models  

The losing slots models form the basis of the winning slots model, so the losing model will 

be described first, followed by the final adjustment that creates the winning model out of the 

losing model. The slot models assume that on each trial, a participant loads k items from the 

sample array into WM. Therefore, k represents the number of items in WM on a given trial, not 

an asymptotic capacity for items. We assume that k follows some distribution, but we do not 

specify a shape for the distribution but rather freely estimate the proportion of time that k took on 

each value from 0 to the array size. Due to limited data at the individual participant level, the k 

were estimated based on the data from all participants, so it is impossible to tell whether the 

distribution of k represents within-participant variability, between-participant variability, or some 

combination of the two. When the test array is shown, the participant compares the k items 

that are in WM to the corresponding items in the test array, with the correspondence determined 

by item location. In this comparison process, all of the k items that are in WM that changed from 

sample to test will be detected, resulting in the participant knowing that there were D detected 

changes. It is natural to use a hypergeometric distribution to describe this process. The 

hypergeometric distribution applies to a case in which there is a finite population, the members 

of which have one of two possible states, and a sample is taken from that population and the 

number of sampled items with each of the states counted. In our case, the finite population is the 

array of items, with size N, the sample is the contents of WM, with size k, and D is the number of 

changes detected in the sample. Because changes are detected without error, we can speak as 

though the N members of the population are changes or non-changes, k of which are sampled. 
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 At this point, a participant has all of the information they are able to obtain. They know how 

many changes they have observed, but now they must make an inference about the number of 

changes in the population in order to make their response. This can be done by hypothesizing 

various numbers of changes in the population, denoted C, and using the hypergeometric 

distribution to calculate the probability of having observed D changes out of k sampled items 

from a population of size N for each hypothesized C. The resulting distribution gives the relative 

probability of each C having given rise to the observed number of changes. For example, if N=5, 

k=3, and D=2, the participant would hypothesize that there were 0 to 5 changes in the population. 

Because 2 changes were detected, both C=0 and C=1 are impossible, so they have 0 probability. 

Similarly, 1 non-change was detected, so C=5 is impossible. Finally, by the hypergeometric 

distribution, the probability of 2, 3, or 4 changes are 0.2, 0.4, and 0.4, respectively.  

 In a rudimentary model that was unsuccessful, we assumed that the most likely response 

would be used, in this case the participant makes a random choice between 3 and 4 changes. This 

model was clearly inadequate (Figure 5, top-B and bottom-B) so, in a subsequent model that still 

is not the winning model, the participant was said to assume a  probability match (Figure 5-C).  

In our example, they would respond that 2, 3, or 4 changes occurred with probability 0.2, .0.4, 

and 0.4, respectively.  

A final adjustment to the model allows us to incorporate the metamemory judgments and 

reach the winning slots model (when applied along with probability matching as in Figure 5, top 

and bottom Panel E, and in Figure 6). Instead of assuming that participants know that they have k 

items in mind, we will have the model say that participants have a subjective belief about how 

many items they have in mind (in a task that occurred on some trials, before the probe array), 

denoted B. In this version of the model, when calculating the probability of each true number of 
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changes, the participant uses B instead of k. On each trial, B is initially sampled from the 

distribution of metamemory judgments given by participants, with the probability of sampling 

each B dependent of how often participants endorsed the belief that they had that amount of 

information in WM. That B is independent of k and D, with one exception. It was assumed that a 

participant who observed more changes than the initially-believed number of items in working 

memory would adjust their belief upward, resulting in B=D on those trials. In this version of the 

model, it must be assumed that participants do not detect non-changes, as otherwise they would 

know k exactly by adding up the number of detected changes and non-changes. There is previous 

evidence of this asymmetry in which participants dwell on changes in a change-detection task 

(Gilchrist & Cowan, 2014; Hyun, Woodman, Vogel, Hollingworth, & Luck, 2009).   

Variable Precision Models 

The variable precision models take a different approach. They assume that all of the items in 

the sample array are encoded with some variable precision. Each item in the array is either a non-

change, in which case it has a true value of 0, or a change, in which case it has a true value of 1. 

The participant observes these true values for all of the items in the array, but with error. This 

error is assumed to follow a normal distribution with mean 0 and variance equal to the inverse of 

the precision. The precision of measurement (i.e. the inverse of how much error there is in the 

measurement) is assumed to follow a gamma distribution parameterized as having a mean and a 

scale. In this model, only two parameters are estimated: the mean and scale of the gamma 

distribution of precisions, which are assumed to be the same across all participants and trials. 

This was done because we had limited data per participant, not because we believe that all 

participants and trials are the same. 

 Given that participants have measured the change state of each of the items in the array, they 
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must then decide how many changes they believe to have occurred. If they measured the items 

without error, this would be trivial because they have information about all of the items. 

However, because of the measurement error, they are not easily able to come to an unambiguous 

decision about how many changes they believe to have occurred. Like the slots models, in the 

variable precision model, the participants are assumed to hypothesize a true number of changes, 

C, which varies from 0 to N. For each C, each possible configuration of which items could have 

changed is enumerated and the observed measurements are compared with each possible 

configuration. The likelihood of obtaining the observed measurements given each configuration 

and knowledge of the precision of each measurement is calculated by the participant. Note that it 

is assumed that participants know on an item-by-item basis the precision with which that item’s 

state was measured. These likelihoods are then averaged across all configurations that have the 

same number of changes. This results in a distribution of belief about the probability of each 

number of changes producing the observed measurements.  

In one version (Figure 5, top and bottom F), participants always choose the most likely 

response.  In a further version of the model that proved to be slightly superior (Figure 5, top and 

bottom G), participants were assumed to probability-match rather than choosing the optimal 

solution.  They were assumed to respond that each number of changes occurred with some 

probability that depended on the distribution of probabilities.  

The parameters of the models were estimated using the Nelder-Mead simplex (Nelder and 

Mead, 1965), a numerical search algorithm, as implemented by the “optim” function in R (R 

Core Team, 2014). The R code is available from the authors.  
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Table 1 

Names and RGB Values of the Colors Used in the Arrays in Each Experiment 

___________________________________________________ 

Color    RGB Values    Experiments 

___________________________________________________ 

brown*     204,102,0    1 

dark-blue-green*  0,102,102    1 

black     0,0,0     1,2,3 

white     255,255,255    1,2,3 

red      255,0,0     1,2,3 

lime     0,255,0     1,2,3 

blue     0,0,255     1,2,3 

magenta    255,0,255    1,2,3 

yellow     255,255,0    1,2,3 

cyan     0,255,255    1,2,3 

fluorescent green*  0,230,115    2  

orange*     255,128,0    2 

navy    0,0,128     2,3 

purple     128,0,128    2,3 

dark green    0,100,0     2,3 

saddle brown   139,69,19    2,3 

light pink    255,182,193    3  

burly wood    222,184,135    3 

dark orange    255,140,0    3 

silver     192,192,192    3 

olive drab    107,142,35    3 

teal     0,128,128    3 

___________________________________________________ 

Note.  All color names are standard in HTML code except for the ones marked with an asterisk.
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Table 2 

Number of Participants (N), Mean Performance Levels, and Standard Errors of the Mean (SEM) 

for Various Measures in Experiment 1 (5-item Arrays)  

_________________________________________________________________________ 

    

         N Mean SEM  

 

Trials with no Metamemory Judgment Task       

 

 Judged changes when 0 changed 60 0.84  0.11 

 Judged changes when 1 changed 60 1.53  0.08 

 Judged changes when 2 changed 60 2.19  0.06 

 Judged changes when 3 changed 60 2.88  0.07 

 Judged changes when 4 changed 60 3.45  0.06  

 Judged changes when 5 changed 60 3.93  0.07 

 

Trials with Metamemory Judgment Task         

  

Judged Items Stored    60 2.71  0.08 

  

Judged changes when 0 changed 60 1.06  0.11 

 Judged changes when 1 changed 60 1.82  0.09 

 Judged changes when 2 changed 60 2.49  0.08 

 Judged changes when 3 changed 60 2.96  0.07 

 Judged changes when 4 changed 60 3.57  0.08  

 Judged changes when 5 changed 60 3.97  0.08 

  

 Slope with storage judgment 0  15 .47  .17   

 Slope with storage judgment 1  47 .45  .05 

 Slope with storage judgment 2  54 .56  .04 

 Slope with storage judgment 3  60 .62  .03  

 Slope with storage judgment 4  48 .59  .05 

 Slope with storage judgment 5  29 .66  .07 

    

Auxiliary Tasks       

 Operation Span Score    60 39.47 2.15  

 Running Span Score    60 2.70  0.12 

 

Note.  Slope refers to increases in the reported number of changes in the array as a function of 

increases in the actual number of changes.  The estimate of items in working memory based on 

the winning model, summed over the probabilities of different numbers of items in working 

memory, was 2.69.  The proportions of trials with 0 through 5 items in working memory 

according to the model are .03, .08, .18, .58, .13, and .00, respectively.    
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Table 3 

Summary of Correlation and Results  

_________________________________________________________________________ 

                       Measure   

Measure           1  2  3  4  5 

1. Discrim. slope (with no metamemory judgment) ---  .81*  .14  .10  .16 

2. Discrim. slope (with metamemory judgment)  .82*  ---  .09  .03  .06 

3. metamemory judgment       -.17  -.04  ---  -.01  .16 

4. Change in d. slope across metamemory judgments .16  .12  -.15  ---  .04 

5. working memory composite      .31*  .37*  .04  .28*  --- 

_________________________________________________________________________ 

Note.  In the table, the correlations shown above the diagonal are from Experiment 1 (5-item 

arrays); below the diagonal, from Experiment 2 (7-item arrays). Discrimination (or d.) slope 

refers to increases in the reported number of changes in the array as a function of increases in the 

actual number of changes.  Working memory composite based on running span and operation 

span scores.   

*p<.05.   
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Table 4 

Number of Participants (N), Mean Performance Levels, and Standard Errors of the Mean (SEM) 

for Various Measures in Experiment 2 (7-item Arrays)  

_________________________________________________________________________  

          N Mean SEM  

Trials with no Metamemory Judgment Task       

  

Judged changes when 0 changed  52 1.31  0.11 

Judged changes when 1 changed  52 1.89  0.08 

Judged changes when 2 changed  52 2.33  0.08 

Judged changes when 3 changed  52 2.96  0.11 

Judged changes when 4 changed  52 3.36  0.12 

Judged changes when 5 changed  52 3.97  0.10 

Judged changes when 6 changed  52 4.32  0.13 

Judged changes when 7 changed  52 4.66  0.14 

  

Trials with Metamemory Judgment Task         

  Judged Items Stored    52 2.76  0.09  

 

Judged changes when 0 changed  52 1.56  0.12 

Judged changes when 1 changed  52 2.07  0.13 

Judged changes when 2 changed  52 2.61  0.11 

Judged changes when 3 changed  52 2.97  0.11 

Judged changes when 4 changed  52 3.43  0.10 

Judged changes when 5 changed  52 3.92  0.11 

Judged changes when 6 changed  52 4.33  0.13 

Judged changes when 7 changed  52 4.81  0.14 

 

Slope with storage judgment 0  11 .40  .17 

Slope with storage judgment 1  38 .41  .05 

Slope with storage judgment 2  50 .41  .04 

Slope with storage judgment 3  52 .50  .04 

Slope with storage judgment 4  44 .48  .04 

Slope with storage judgment 5  12 .57  .16 

Slope with storage judgment 6  4 .67  .22 

Slope with storage judgment 7  3 .00  .00 

  

Auxiliary Tasks       

 Operation Span Score     52 41.81 2.34  

 Running Span Score     52 3.13  0.09 

 

Note.  Slope refers to increases in the reported number of changes in the array as a function of 

increases in the actual number of changes.  The estimate of items in working memory based on 

the winning model, summed over the probabilities of different numbers of items in working 

memory, was 2.28.  The proportions of trials with 0 through 7 items in working memory 

according to the model are .04, .04, .51, .40, .00, .00, .00, and .00, respectively.   
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Table 5 

Parameters of each mathematical model tested 

   

Expt. Premise Items Rule Meta Proportion of Trials with Number of Items in Working Memory As Shown (slot models) Precision Scale LL ssResid BIC AIC

-- -- -- -- -- 0 1 2 3 4 5 6 7 8 9 -- -- -- -- -- --

1 slots 5 optimal virtual 0.52 0.00 0.21 0.05 0.16 0.06 -- -- -- -- -- -- -830.46 0.10 1678.83 1670.92

1 slots 5 match virtual 0.17 0.17 0.29 0.27 0.07 0.04 -- -- -- -- -- -- -238.27 0.04 494.47 486.55

1 slots 5 optimal actual 0.02 0.05 0.31 0.62 0.00 0.00 -- -- -- -- -- -- -3709.68 0.56 7437.27 7429.35

1 slots 5 match actual 0.03 0.08 0.18 0.58 0.13 0.00 -- -- -- -- -- -- -383.94 0.04 785.80 777.88

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

2 slots 7 optimal virtual 0.71 0.00 0.09 0.09 0.00 0.10 0.02 0.00 -- -- -- -- -1216.97 0.18 2463.06 2447.95

2 slots 7 match virtual 0.24 0.24 0.24 0.24 0.06 0.00 0.00 0.00 -- -- -- -- -656.97 0.11 1343.05 1327.94

2 slots 7 optimal actual 0.01 0.14 0.26 0.56 0.00 0.00 0.02 0.00 -- -- -- -- -5491.84 1.13 11012.80 10997.69

2 slots 7 match actual 0.04 0.04 0.51 0.40 0.00 0.00 0.00 0.00 -- -- -- -- -543.54 0.07 1116.19 1101.07

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

3 slots 5 optimal virtual 0.38 0.00 0.33 0.14 0.13 0.02 -- -- -- -- -- -- -290.05 0.11 598.01 590.09

3 slots 5 match virtual 0.05 0.18 0.34 0.33 0.09 0.00 -- -- -- -- -- -- -160.70 0.09 339.32 331.41

3 slots 5 optimal actual 0.01 0.02 0.25 0.66 0.07 0.00 -- -- -- -- -- -- -684.02 0.34 1385.95 1378.04

3 slots 5 match actual 0.03 0.04 0.22 0.33 0.38 0.01 -- -- -- -- -- -- -114.85 0.04 247.63 239.71

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

3 slots 7 optimal virtual 0.61 0.00 0.10 0.11 0.12 0.04 0.03 0.00 -- -- -- -- -620.94 0.25 1270.99 1255.88

3 slots 7 match virtual 0.02 0.35 0.35 0.15 0.12 0.00 0.00 0.00 -- -- -- -- -350.45 0.17 730.01 714.90

3 slots 7 optimal actual 0.00 0.08 0.41 0.41 0.10 0.00 0.00 0.00 -- -- -- -- -1686.92 0.90 3402.96 3387.84

3 slots 7 match actual 0.01 0.05 0.47 0.47 0.00 0.00 0.00 0.00 -- -- -- -- -261.01 0.08 551.12 536.01

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

3 slots 9 optimal virtual 0.68 0.00 0.10 0.06 0.10 0.00 0.06 0.00 0.00 0.00 -- -- -898.94 0.30 1839.32 1815.87

3 slots 9 match virtual 0.06 0.47 0.00 0.47 0.00 0.00 0.00 0.00 0.00 0.00 -- -- -679.79 0.25 1401.02 1377.57

3 slots 9 optimal actual 0.00 0.20 0.41 0.16 0.18 0.00 0.05 0.00 0.00 0.00 -- -- -2800.86 1.40 5643.16 5619.72

3 slots 9 match actual 0.02 0.00 0.82 0.16 0.00 0.00 0.00 0.00 0.00 0.00 -- -- -470.84 0.14 983.12 959.68

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

1 precision 5 optimal virtual -- -- -- -- -- -- -- -- -- -- 2.25 0.78 -789.06 0.16 1585.28 1582.12

1 precision 5 match virtual -- -- -- -- -- -- -- -- -- -- 2.95 1.32 -298.11 0.05 603.39 600.23

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

2 precision 7 optimal virtual -- -- -- -- -- -- -- -- -- -- 1.79 1.26 -2049.80 0.56 4107.91 4103.59

2 precision 7 match virtual -- -- -- -- -- -- -- -- -- -- 1.45 1.47 -650.65 0.11 1309.62 1305.30

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

3 precision 5 optimal virtual -- -- -- -- -- -- -- -- -- -- 2.42 0.84 -163.20 0.07 333.56 330.39

3 precision 5 match virtual -- -- -- -- -- -- -- -- -- -- 3.22 0.30 -162.53 0.09 332.22 329.05

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

3 precision 7 optimal virtual -- -- -- -- -- -- -- -- -- -- 1.80 0.98 -663.51 0.47 1335.33 1331.01

3 precision 7 match virtual -- -- -- -- -- -- -- -- -- -- 2.04 1.23 -361.13 0.17 730.57 726.25

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

3 precision 9 optimal virtual -- -- -- -- -- -- -- -- -- -- 1.43 1.75 -1245.28 0.79 2499.78 2494.57

3 precision 9 match virtual -- -- -- -- -- -- -- -- -- -- 1.39 1.34 -683.02 0.25 1375.26 1370.05
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Note.  Optimal refers to the decision that reflects the maximum likelihood scenario, whereas 

match refers to a probability-matching decision policy.  Virtual refers to the assumption that the 

participant knows what is in working memory, whereas actual refers to an atheoretical 

estimation of what the participant knows about what is in working memory based on the 

metamnemonic judgments.  Precision refers to mean precision and scale refers to theta, two 

parameters of a gamma distribution of precisions such that precision/scale=shape.  LL=log 

likelihood. In bold:  the best model for each of four fit parameters for each comparison.  Notice 

that, except for Experiment 1, the winning model was consistently the slots model with 

probability matching and actual metamnemonic data forming decision policy.  This finding 

should not be taken as evidence for the slots model because it might be possible to construct a 

model in which the metamnemonic judgments are converted to an assumed distribution of 

precisions.       
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Figure 1.  Schematic illustration of the method of Experiment 1.  Patterns shown on the squares 

represent colors in the actual experiment.  The participant responds to the question mark 

within the display of multicolored masks by estimating by keypress the number of items 

stored in mind.  The response to the probe in this experiment is to indicate by keypress how 

many items changed color from the original array.  In this example, 2 items changed; across 

trials, from 0 to all 5 items could change.  In half the trials, the question mark seen here was 

replaced by an X and no storage judgment was to be made.   

?
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Figure 2.  For performance thirds of the sample in Experiment 1, the mean reported number of 

changes in the array for each number of actual changes in the array.  The functions 

approximate straight lines and the reported slopes are the average individual slopes for these 

performance thirds.  Error bars are standard errors.  Veridical performance (thick line) 

would yield a slope of 1.0.    
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Figure 3. For performance thirds of the sample in Experiment 2, the mean reported number of 

changes in the array for each number of actual changes in the array.  The functions 

approximate straight lines and the reported slopes are the average individual slopes for these 

performance thirds.  Error bars are standard errors.  Veridical performance (thick line) 

would yield a slope of 1.0.    
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Figure 4.  In Experiment 3, the mean number of reported changes for each number of actual 

changes, separately for each set size (graph parameter).  Veridical performance (thick line) 

would yield a slope of 1.0.  Left panel, actual data (error bars are standard errors); right 

panel, winning model.   
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Figure 5.  Pattern of responding in Experiment 1 (top left figure) and Experiment 2 (bottom left 

figure) along with the predictions of a number of viable or nearly-viable models.  Each panel 

shows the proportion of responses with each reported number of changes (x axis) for each actual 

number of changes (graph parameter).  The models differ in whether they are based on limited 

slots (B-E) or precision (F-G), whether the decision basis is optimal (B, D, F) or according to 

probability matching (C, E, G), and whether the belief about the number or precision of items in 

working memory is virtual (B, C, F, G) or based on the metamnemonic judgments (D, E).  We 

did not develop precision models with an alternative belief so the results do not rule out precision 

models. For the data, the maximum standard error of the mean for any one data point shown is 

0.02 in Experiment 1 (top left panel) and 0.03 in Experiment 2 (bottom left panel). 
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Figure 6. In Experiment 3, the proportion of trials yielding each reported number of changes (x 

axis) for each actual number of changes (graph parameter).  Left panels, data; right panels, 

winning model.  The top, middle, and bottom rows of panels represent arrays with 5, 7, and 9 

items, respectively. The maximum standard error of the mean for any given data point shown 

(left-hand panels) is 0.04, with the same maximum found for each set size examined separately.  
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Figure 7. For Experiment 2, the distribution of metamemory judgments in the data (error bars 

are standard errors) and the distribution of items in working memory according to the best 

model. 
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