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Abstract
Very little is known about how vector-borne pathogens interact within their vector and how

this impacts transmission. Here we show that mosquitoes can accumulate mixed strain

malaria infections after feeding on multiple hosts. We found that parasites have a greater

chance of establishing and reach higher densities if another strain is already present in a

mosquito. Mixed infections contained more parasites but these larger populations did not

have a detectable impact on vector survival. Together these results suggest that mosqui-

toes taking multiple infective bites may disproportionally contribute to malaria transmission.

This will increase rates of mixed infections in vertebrate hosts, with implications for the

evolution of parasite virulence and the spread of drug-resistant strains. Moreover, control

measures that reduce parasite prevalence in vertebrate hosts will reduce the likelihood of

mosquitoes taking multiple infective feeds, and thus disproportionally reduce transmission.

More generally, our study shows that the types of strain interactions detected in vertebrate

hosts cannot necessarily be extrapolated to vectors.

Author Summary

Very little is known about how malaria parasite strains interact with each other inside
mosquitoes. In this study we show that mosquitoes that have already been infected with
one strain of malaria parasites are more likely to become infected with a new strain. More-
over, the presence of an existing infection enhances the replication of malaria parasites
with no obvious impact on mosquito survival. Our results illustrate that interactions
between strains are important factors in parasite survival and transmission across the
whole of their life cycle.
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Introduction
Interactions between pathogen strains within hosts can be profound and affect many aspects of
infectious disease biology, including disease severity and infectiousness, as well as the evolution
of virulence and the spread of drug resistance [1–7]. Yet for medically important vector-borne
diseases, very little is known about the nature and implications of strain interactions within the
vector. This is in striking contrast to what is known about strain interactions in the vertebrate
host.

For example, malaria parasites in mixed strain infections experience significant competitive
suppression within the vertebrate host [8–17]. Whether competitive suppression also occurs in
their mosquito host is unknown. The progression through the vector is relatively long and
complex [18] and involves severe population bottlenecks [19]. Parasite density also influences
both the development of the parasite and the probability of the vector surviving for long
enough to infect a new host [20–22]. Therefore, strain interactions that increase or decrease
parasite density are likely to alter the probability of transmission to a new vertebrate host.

Mixed strain (genotype) infections in mosquitoes are common [23,24] and there are three
distinct but non-exclusive routes by which they could arise. First, multiple parasite strains
could be taken up from a host during a single blood meal. Mixed strain infections are the norm
in areas of high transmission [25], and multiple parasite strains can be transmitted to a vector
from a single infective feed [26]. Second, mosquitoes that are disturbed during feeding may
move to a new host, resulting in multiple hosts contributing blood to one feeding cycle [27–
29]. Finally, mosquitoes could feed on different hosts in successive blood feeding cycles. Studies
on human and bird malaria parasites have suggested that mosquitoes that take multiple infec-
tive feeds have higher oocyst burdens and parasites at different stages of development, which is
suggestive of the accumulation of infections over multiple feeding cycles [30–33]. What impact
this has on parasite development or on vector survival not been previously tested. If secondary
infections are equally likely to be acquired, then of the mosquitoes surviving to become infec-
tious, up to ~40% of infectious mosquitoes could have oocysts, and up to ~17% could have spo-
rozoites originating from multiple feeds (Fig A in S1 Text). The possibility that mosquitoes can
acquire mixed infections from multiple feeds is interesting in its own right, but experimentally,
infection from successive blood meals would also provide a way to analyse the competitive
interactions between strains without the confounding problems of strain recombination. Para-
sites in the same blood meal freely recombine in the mosquito gut. There can be no recombina-
tion between strains acquired in different feeding cycles because zygotes are formed within a
few minutes of a blood meal. When a successive meal takes place several days later, all gametes
from the first meal are gone [34].

Here we show that mosquitoes can accumulate mixed strain infections from feeding on
multiple hosts, and that the presence of oocysts from an existing parasite infection make subse-
quent infections more likely and more productive. Additionally, we show that vector mortality
was no higher for double infections than for infections with a single parasite strain.

Results

Mosquitoes can accumulate infections from multiple feeds
An initial study (experiment 1) was conducted to test whether it is possible for mosquitoes to
pick up multiple infections from multiple bloodmeals. Six cages, each containing ~100 three to
five day old Anopheles stephensi female mosquitoes were used. Half of the cages fed on mice
infected with the rodent malaria parasite Plasmodium chabaudi (strain ER), and half received
an uninfected blood meal (control). Four days after their initial feed, all cages of mosquitoes
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received a second blood meal containing P. chabaudi strain AJ parasites. This 4 day schedule
corresponds to the preferred blood-feeding frequency for female mosquitoes [35–37]. Seven
days after the second blood meal (experimental day 11) when parasites from the second feed
were expected to have established as mature oocysts, ~30 mosquitoes per cage were removed,
dissected and tested for the presence and density of each of the parasite strains by genotype
specific PCR on infected midguts (see Table 1 for treatment groups and sample sizes). A com-
parison with mosquitoes dissected four days earlier confirmed that our ability to detect infec-
tions from the first feed did not decline over this time period (S1 Fig).

We found that mosquitoes become doubly infected with parasites from successive blood
meals. A total of 31%(±5.3 SEM) of mosquitoes became infected with ER parasites during their
first feed and of these infected mosquitoes 50%(±10.4 SEM) additionally became infected with
AJ parasites during their second feed (Fig 1).

We then conducted a second larger study (experiment 2) with 21 cages, again each containing
~100 female mosquitoes. Six cages received two infective blood meals with one each of our two
parasite strains (3 x AJ-ER and 3 x ER-AJ), six cages received an infective blood meal only on their
first feed (3 x AJ-C and 3 x ER-C), six cages received an infective blood meal only on their second
feed (3 x C-AJ and 3 x C-ER), and finally three cages received two uninfected blood-meals (C-C)
(Table 1). All cages received two blood meals with mosquitoes in single infection treatments being
given an uninfected feed in place of one of the infective blood meals. This was done in order to
control for any effect of a second blood meal on parasite replication [38]. This fully factorial study
design allowed us to examine how the presence of a co-infecting strain affects parasites that enter
the vector first and second, and to test whether co-infection impacts vector survival.

The six cages that received two infective feeds were all found to contain mosquitoes infected
with parasites of both strains. For cages which fed on ER first and AJ second, 75%(±4.6 SEM) of
mosquitoes became infected on their first feed, and of these 25%(±5.3 SEM) additionally became
infected with AJ. For cages that fed on AJ first and ER second, 25%(±4.7 SEM) of mosquitoes
became infected on their first feed, and of these 78%(±8.8 SEM) additionally became infected
with ER (Fig 1). Therefore both parasite strains were able to establish in already infected vectors.

The affect of secondary infection on replication of primary infection
It was not possible to determine which feed individual oocysts originated from, but by using
quantitative PCR we were able to determine the genome count (total number of potential

Table 1. Treatment groups and sample sizes.

1st feed 2nd feed n (mosquitoes*, cages) Dissected day 7 Dissected day 11

Experiment 1

Control AJ 338, 3 60 92

ER AJ 278, 3 80 77

Experiment 2

Control Control 232, 3 - -

Control AJ 212, 3 - 90

Control ER 195, 3 - 86

AJ Control 222, 3 91 -

AJ ER 294, 3 90 88

ER Control 202, 3 90 -

ER AJ 256, 3 90 91

* Mosquitoes which took full blood meals on both transmissions. Control = bloodmeal on an uninfected age and sex matched mice.

doi:10.1371/journal.ppat.1005003.t001
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sporozoites produced) for each of our strains within each infected mosquito midgut. The pro-
duction of sporozoites within the oocyst requires the acquisition of (presumably limited) nutri-
ents from the mosquito [27,39] and has previously been shown to be negatively related to
oocyst density [20]. Due to anaemia and immune factors from the vertebrate host, infective
bloodmeals are also likely to be lower quality. Therefore, we predicted that the host infection
status and/or the establishment of a new infection during oocyst development would negatively
impact parasite replication (competitive suppression). However, the host infection status of the
second bloodmeal (infective or control) did not affect the number of genomes from the first
infection for either of our focal strains (Treatment (infective or control): χ2 = 0.01, p = 0.77;
Treatment�Focal strain: χ2 = 0.20,p = 0.66; Fig 2; Table B in S2 Text). When we split our infec-
tive treatment group by whether the second infection established or not, we found no effect of
secondary infection on AJ (Control vs. Infected: z = 0.24, p = 0.99; Fig 2; Table B in S2 Text),
and for ER infections genome numbers were actually slightly higher in mosquitoes which were

Fig 1. Mosquitoes can accumulate multiple infections from successive bloodmeals. Each bar shows pooled data for mosquitoes from 3 experimental
replicates (cages). Presence of each genotype determined by PCR of infected midguts 7 days after the second bloodmeal (experimental day 11). Treatment
group (first feed = > second feed) and sample sizes are shown below each bar.

doi:10.1371/journal.ppat.1005003.g001
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subsequently infected with AJ (Control vs. Infected: z = 3.49, p = 0.01; Fig 2; Table B in S2
Text). This suggests that the development of established malaria infections is not negatively
impacted by secondary infections.

The effect of previous infection on probability of secondary infection
In our first experiment, AJ was used as our focal strain and was more than five times as likely
to infect mosquitoes already infected with ER than mosquitoes which had previously received a
control feed or had been exposed to ER on the first feed but had not become infected (previous
infection status Χ2 = 21.38, p<0.0001; Fig 3; Table C in S2 Text).

In our second experiment, we measured how previous infection affected the establishment
of parasites received during the second bloodmeal for both our strains. In agreement with
experiment 1, mosquitoes which had become infected during their first feed were much more
likely to then become infected on their second feed (infection with focal strain ~ previous infec-
tion status Χ2 = 7.09, p<0.01; Fig 3; Table C in S2 Text).

Fig 2. Subsequent infection does not negatively impact on parasite development.Genome count (number of potential sporozoites produced) for
infections established after a mosquitoes first blood meal depending on the status of the second feed received. Control = second bloodmeal from an
uninfected host, exposure = second bloodmeal from an infected host but second infection did not establish, infection = secondary infection established.
Mosquitoes were dissected and genome numbers and the presence of secondary infection determined by PCR 7 days after their first bloodmeal. Means
calculated from 90–100 mosquitoes across 3 cages per combination and bars show the standard error of the mean. Genome density was significantly
affected by focal parasite strain (AJ vs. ER; χ2 = 21.13, p<0.001) but not by treatment group (control vs. infective 2nd feed; χ2 = 0.09, p = 0.77). For full details
of analyses see results text and Table B in S2 Text.

doi:10.1371/journal.ppat.1005003.g002
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Fig 3. Already infectedmosquitoes are more likely to pick up a second infection. Proportion of mosquitoes becoming infected during their second
bloodmeal depending on previous infection status. Control = first bloodmeal from an uninfected host. Exposed = first bloodmeal infective but primary infection
did not establish. Infected = mosquito already infected from first bloodmeal at the time of second bloodmeal. Means calculated from 86–95 mosquitoes
across 3 cages per combination and bars show the standard error of the mean. Uninfected control mosquitoes and uninfected but exposed mosquitoes were
equally likely to become infected during their second bloodmeal (experiment 1: X2 = 2.04, p = 0.1; experiment 2: X2 = 2.05, p = 0.15) while mosquitoes with an
established infection were significantly more likely to become infected (experiment 1: X2 = 21.38, p<0.0001; experiment 2: X2 = 7.09, p = 0.008). In
experiment 2 there was also a significant effect of focal strain (X2 = 7.83, p = 0.005) but no interaction between strain and infection status (X2 = 0.44, p = 0.8).
For full analysis see results text and Table C in S2 Text.

doi:10.1371/journal.ppat.1005003.g003
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Infection probabilities varied with focal strain and experiment (Fig 3), which was likely due
to mice having lower gametocyte densities for AJ infections in experiment 2 (Table A in S2
Text). However, the relative increase in infection probability during a second feed for previ-
ously infected mosquitoes remained consistent (previous infection status�focal parasite strain
in experiment 2: Χ2 = 0.44, p = 0.80; previous infection status�experiment for AJ: Χ2

2,7 = 0.99,
p = 0.32). Therefore the presence of parasites from a previous infection increased the probabil-
ity of a new infection for both our focal strains and in replicate experiments.

The observed increase in infection probability during the second bloodmeal for mosquitoes
infected during the first could be due to (1) mosquito variation in susceptibility, so that some
individuals had a higher likelihood of infection during both feeds, (2) blood-meal quality of the
first feed having knock on effects for the second feed (for example, feeding on an anaemic
mouse for the first blood-meal could result in mosquitoes taking a larger second blood-meal),
or (3) the first infection facilitating the establishment of the secondary infection (either through
physical damage to the midgut, changes in resource availability, or immune depletion).

In each of our experiments, mosquitoes where randomly allocated to experimental cages
from the same cohort of inbred mosquitoes. It is therefore unlikely that there would be varia-
tion in susceptibility between cages, although it is possible that there could be variation in sus-
ceptibility between mosquitoes within cages. If there were a subset of mosquitoes refractory to
infection in each cage we would expect i) the total number of mosquitoes in each cage to
remain constant ii) mosquitoes which failed to become infected during their first feed would be
less likely than controls to become infected during a second feed. In both our experiments,
cages which received two infectious feeds had an overall higher prevalence of infection from
the second feed than in control cages (Χ2

1,4 = 6.07, p = 0.034), suggesting the increase in sus-
ceptibility in these cages was occurring over and beyond the background level of infection.
Additionally, previously exposed but uninfected mosquitoes were just as likely to become
infected on their second bloodmeal as mosquitoes from control cages (Experiment 1: X2 = 2.04,
p = 0.1; Experiment 2: X2 = 2.05, p = 0.2; Fig 3; Table C in S2 Text) and therefore did not repre-
sent a refractory subset of individuals.

Differences in blood-meal quality per se are also unlikely to explain increased transmission
to already infected mosquitoes: mosquitoes that had previously received a control feed or had
received an infective feed but remained uninfected were equally likely to become infected dur-
ing their second bloodmeal (Control vs. exposed: Experiment 1: X2 = 2.04, p = 0.1; Experiment
2: X2 = 2.05, p = 0.2; Fig 3), and there was no effect of the mouse red blood cell density on prob-
ability of infection (Experiment 1: Χ2 = 0.01, p = 0.99; Experiment 2: Χ2 = 0.10, p = 0.75).

By a process of elimination, it seems most likely that the presence of a primary infection
directly increases the chance of a secondary infection establishing. In order to determine how
this occurs (e.g. whether through interactions with vector immunity, resources, or physical
damage to the mosquito midgut) more experiments are needed.

The effect of a previous infection on replication of subsequent infection
As expected, overall oocyst burdens were higher in mosquitoes that were infected during both
bloodmeals compared to mosquitoes infected only on their second bloodmeal. However, the
magnitude of this effect depended on the order of strains in the double infections. The highest
oocyst burdens were found in mosquitoes with AJ infections followed by ER infections (oocyst
density ~ infection status�focal parasite: X2 = 9.22, p<0.005; Fig 4; Table D in S2 Text).

It was not possible to reliably determine which infection individual oocysts resulted from,
but we were able to compare genome counts for our focal infections developing in double
infections those in matched single infections (controls). Infections that established in already
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infected mosquitoes had higher genome counts than those that established in previously unin-
fected (naïve) mosquitoes (X2 = 8.15, p<0.005; Fig 5; Table E in S2 Text). The magnitude of
this effect depended on the focal strain (genome count 6 x higher for ER but over 300 x higher
for AJ; Fig 5).

Higher genome counts in already infected mosquitoes could have been due to some mosqui-
toes being more susceptible to both infections, but genome counts from the first and second
infections for double infected mosquitoes were unrelated (Χ2

1,8 = 0.002, p = 0.97; S2 Fig).
Therefore, the presence of parasites from a prior infection increases both the chances that sub-
sequent infection will establish, and the density that subsequent infection will reach in the
mosquito.

The effect of infection status on vector survival
The probability that parasites will be transmitted to a new vertebrate host depends both on the
ability of the parasite to establish and replicate within the vector and the potential number of
infective bites a vector can take, which will depend on how many blood feeding cycles the mos-
quito survives for. We performed a comprehensive examination of the impact of infection

Fig 4. Oocyst loads in mosquitoes infected with parasites from single andmultiple feeds.Mean number of oocysts in infected mosquitoes that were
only infected on their second feed (single infection) or were infected during both blood meals (double infection). Infection order is shown below bars for
double infections e.g. ER = >AJ were infected with ER during their first feed and then AJ on their second. Values within the bars show the mean number of
oocysts for each group and error bars show the standard error of the mean. There was a significant interaction between infection status (single vs. double)
and focal strain (X2 = 60.1, p<0.001) with AJ = >ER double infections significantly higher densities than either ER = >AJ double infections or single infections
with either strain. For full details of analyses see results text and Table D in S2 Text.

doi:10.1371/journal.ppat.1005003.g004
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status on vector survival. A total of 1631 mosquitoes across 21 cages were monitored twice
daily until death (our longest lived mosquito died 72 days after receiving its first bloodmeal).
Three cages fed on uninfected mice during both blood meals (C-C), 12 cages fed on control
mice for one bloodmeal and infective mice for the other (C-AJ, C-ER, AJ-C or ER-C), and 6
cages fed on infective mice during both bloodmeals (AJ-ER or ER-AJ) (Table 1). Dead mosqui-
toes were tested for the presence of infection and identity of the infecting strain(s) using PCR.

There was no significant difference in survival between control uninfected mosquitoes and
exposed but uninfected mosquitoes (Χ2

1,615 = 0.003, p = 0.96), therefore these groups were ana-
lysed together giving us 4 groups for comparison (uninfected; infected with AJ; infected with
ER; infected with both strains). While PCR of mosquito cadavers allowed us to directly deter-
mine infection status (uninfected, infected with AJ, infected with ER, or double infection) for
mosquitoes used in survival analysis oocyst counts from dead mosquitoes are not possible.
Therefore, a mean oocyst density was calculated from a subset of ~30 mosquitoes per cage
which were removed and dissected 7 days after each infective bloodmeal. Dissected mosquitoes
were counted as censored points in the survival analysis. Total gametocyte densities were taken
as the summed gametocyte density from the two feeds taken by each mosquito and red blood

Fig 5. Infections established in already infectedmosquitoes have higher genome counts.Mean genome counts per infected mosquito for focal
infections established during the mosquitoes second feed depending on whether the mosquito had an established infection from its first feed or had
previously received a control (uninfected) bloodmeal. Values within the bars show the mean number of oocysts for each group and error bars show the
standard error of the mean. Focal infections in already infected mosquitoes had significantly higher genome counts than focal infections in control
mosquitoes (X2 = 8.15, p<0.005). Identity of the focal strain did not significantly impact genome count (X2 = 0.13, p = 0.72). For full details of analyses see
results text and Table E in S2 Text.

doi:10.1371/journal.ppat.1005003.g005
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cell density was the mean of the two feeds. Across all groups there were no significant relation-
ships between mosquito survival and red blood cell density in the blood-meals (Χ2 = 0.001,
p = 0.97), mean oocyst density (Χ2 = 0.84, p = 0.36), or gametocyte density (Χ2 = 3.04,
p = 0.08), therefore these factors were dropped from the statistical models (Table F in S2 Text).

There was a significant effect of infection status on mosquito survival (4 level factor; unin-
fected, AJ infection, ER infection, double infection; Χ2

3,891 = 9.53, p = 0.024). However the only
significant pairwise comparison was between uninfected mosquitoes and those infected with
AJ alone (AJ vs. uninfected: Χ2

1,673 = 6.5, p = 0.01; ER vs. uninfected: Χ2
1,810 = 1.05, p = 0.31;

AJ vs. ER: Χ2
1,253 = 0.24, p = 0.62; Double infection vs. uninfected: Χ2

1,638 = 0.002, p = 0.99;
Double infection vs. AJ: Χ2

1,81 = 0.15, p = 0.70; Double infection vs. ER: Χ2
1,218 = 0.002,

p = 0.97; Fig 6; Table F in S2 Text), and so we conclude that while there was some evidence of
clone differences in virulence, there was no evidence that double infections had a greater viru-
lence to the mosquito than single infections (Fig 6). While this initially seems surprising, given
that double infections contained more parasites than single infections, it is likely that all the
densities within our experiment where low enough to not have a detectable impact on vector
survival, particularly under laboratory conditions with ad libitum access to glucose and water
[20–22,40].

Discussion
So far as we are aware, our experiments provide the first conclusive evidence that mosquitoes
are capable of accumulating multiple infections over successive blood meals. We found that
they are (Fig 1), and furthermore that the presence of parasites from a previous infection facili-
tates both the establishment and density of subsequent malaria parasite infections (Fig 3, Fig 5)
without negatively impacting the replication of the primary infection (Fig 2) or mosquito sur-
vival (Fig 6).

Facilitation of establishment and density of secondary infections contrasts with the competi-
tive suppression seen during mixed strain infections in the vertebrate host [9,41]. Previous
studies have shown negative density dependence in the production of sporozoites by oocysts,
presumably due to resource limitation or apparent competition mediated by the vector
immune response [20]. However, parasites in our study are unlikely to have reached the thresh-
old for negative density dependence to impact development (estimated at ~200 oocysts [20]). It
is possible that the facilitation we observed is because primary infection leads to structural
changes in the mosquito midgut making it easier for a second infection to invade, and/or that
the vector’s anti-parasite immune response may be depleted or suppressed by the primary
infection, thereby leading to lower ookinete mortality. Another interesting possibility is that
parasites respond to cues signalling the presence of another genotype and alter their replication
schedules, as can apparently occur in vertebrate infections [9,42]. Changes in vector biting
behaviour induced by the primary infection [36], or trade-offs between the duration of oocyst
development and sporozoite production, may mean that the fitness-maximizing intrinsic incu-
bation period for malaria parasites is different for parasites sharing the vector with parasites
from an existing infection. If this were the case, the higher genome counts from secondary
infections could be due to parasites speeding up their replication when entering an already
infected mosquito, in order to maximise representation in the salivary glands when the mos-
quito bites new hosts. Further experiments are required in order to determine how the within-
vector environment changes with the establishment of a previous infection and why this
increases the probability of a new infection and its density. A good first step would be to track
the ookinetes invasion and establishment of oocysts, using fluorescently marked parasites
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within a previously infected mosquito, and therefore determine at which stage facilitation
occurs.

At first glance, our discovery that a primary malaria infection facilitates a subsequent infec-
tion contrasts with the finding by Rodrigues et al. that midgut bacteria introduced into the

Fig 6. Infection status and vector survival. Survival curves depending on infection status at death (determined by PCR of mosquito cadavers). Lines are a
spline fitted to the mean survival curve for mosquitoes with that infection status from between 6 (double infections) and 21 (uninfected) replicate cages.
Shaded areas show the standard error of the mean. Mosquitoes infected with AJ had significantly lower survival rates than control mosquitoes (X2 = 5.58,
p = 0.02). All other pairwise comparisons were non-significant (p>0.1). For full analysis see results text and Table F in S2 Text.

doi:10.1371/journal.ppat.1005003.g006
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mosquito haemolympth by invading ookinetes prime the vector immune response, reducing
the density of subsequent malaria parasite infections [43]. Several differences in experimental
protocols may account for the apparent contradiction. For example, overall oocyst loads in our
experiments were close to natural infection densities [27,44,45] and much lower than those of
Rodrigues et al. (mean ~5 oocysts per midgut in our single infections compared to means of
~15 & ~60 [43]). Perhaps a large number of ookinetes must cross the midgut to generate suffi-
cient bacterial infection to prime a protective anti-Plasmodium effect. Alternatively, our chal-
lenge infections were four days after our primary infections. Rodrigues et al. [43] challenged
their mosquitoes 7 and 14 days later; perhaps anti-malaria immunity elicited by bacterial inva-
sion takes a week or more to develop. The elegant experimental protocols of Rodrigues et al.
were not designed to look at direct interactions between the priming and challenge parasites
because they induced early death of primary infections. Some combination of their protocols
and ours would make possible the analysis of the outcomes of co-infections initiated further
apart in time and at higher parasite densities. We concentrated on infections acquired from
successive blood meals because mosquitoes rarely live long enough to transmit infections
acquired two or more gonotrophic cycles after the first [35,46,47].

Combined, our results suggest that mosquitoes taking multiple infective bites will dispro-
portionally contribute to onward malaria transmission of individual strains. How often mos-
quitoes would be expected to take multiple infective feeds in natural transmission settings
depends on many other parameters (e.g. biting rate, proportion of infectious hosts, vector sur-
vival). Using parameters from Killeen et al. [35] we estimate that without facilitation, ~10–41%
of infectious vectors would have oocysts originating from more than one feeding cycle and ~8–
17% of infectious mosquitoes would have salivary gland sporozoites originating from multiple
blood meals (S1 Text). These estimates are lower bounds; with facilitation these proportions
could be much higher. They will be even higher if mosquitoes feed on multiple hosts within a
gonadotrophic cycle [27–29], if infected mosquitoes are more likely to blood feed [48], and if
infected hosts are more attractive to mosquitoes [49], as has been recorded. Our data are in
keeping with the observation that mixed species infections in the field appear to be higher in
mosquitoes than would be expected from the single constitutive species prevalence’s, or from
the prevalence of mixed infections in humans [4]. Additionally, accumulation of infections
multiple feeds could partially explain the lower than expected rates of heterozygous oocysts
observed in field studies of P. falciparum [45](as parasites from multiple feeds will not be able
to mate).

The controlled experiments reported here are not feasible in natural transmission settings
as they require replicate infections in vertebrate hosts with known infection densities, matched
time since infection (to control for transmission blocking immunity) and parasite strains
which can be tracked by PCR through the mosquito. However, if mosquitoes in the field are
accumulating multiple infections over the course of their lives, we predict that older mosqui-
toes would have a higher prevalence of mixed infections than younger mosquitoes [4]. With
tools now available for determining infection diversity [25,45] and rapid estimation of age of
field caught mosquitoes [50], this can be tested.

If the facilitation we have demonstrated here occurs in natural transmission settings, there
could be significant epidemiological consequences. Control measures reducing prevalence in
the vertebrate host, and therefore reducing the likelihood of mosquitoes taking multiple infec-
tive feeds, could disproportionally reduce transmission of individual strains – for example of
drug resistant parasites. By increasing the proportion of infectious mosquitoes with mixed
strain infections it is also likely that the facilitation reported here will increase the rates of
mixed infections in vertebrate hosts which could have implications for infection virulence and
the spread of resistant strains [1,51].
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More generally, our results point to contrasting effects of mixed strain infections during the
malaria lifecycle – while different parasite strains competitively suppress each other in the ver-
tebrate host [6,9,52,53], we have found that they facilitate each other in the mosquito. The
potential epidemiological and evolutionary consequences of this antagonism and synergy
could be investigated using mathematical models of malaria populations.

Methods

Parasites, hosts and vectors
The two wild type Plasmodium chabaudi parasite strains (AJ and ER) used here were originally
collected from thicket rats (Thamnomys rutilans) in the Congo [54], maintained as part of the
WHO Registry of Standard Malaria Parasites (The University of Edinburgh) before transporta-
tion to Penn State University where they are stored in liquid nitrogen.

Mice in our experiments were 6–10 week old female C57Bl/6 kept on a 12:12 L:D cycle. The
mice were fed on Laboratory Rodent Diet 5001 (LabDiet; PMI Nutrition International, Brent-
wood, MO, USA) and received 0.05% PABA-supplemented drinking water to enhance parasite
growth [55]. Infections were established via intraperitoneal (IP) injection with 5x105 parasites.
For each transmission, double the number of mice needed were infected 14, 15 or 16 days prior
to mosquito bloodmeal. On the day of transmission gametocytemia (proportion of red blood
cells containing gametocytes taken from thin blood smears) and red blood cell density (from
2 μL of blood examined by Flow Cytometry, Beckman Coulter Counter; see [56]) was used to
calculate the gametocyte density per μL of blood. The mice with infections containing the high-
est density of gametocytes were selected and anaesthetized with a 5μL IP injection of Ketamine
(100 mg/kg) and Xylazine (10 mg/kg) and placed on top of individual mosquito cages for 30
minutes. One mouse was used per feed per cage (experiment 1: 12 mice used for 6 cages; exper-
iment 2: 42 mice used for 21 cages; see Table 1 for treatment groups). As each cage was fed on a
different mouse, the density of transmission stages in the blood of each mouse was compared
across treatment groups within each experiment, confirming that focal gametocyte densities
did not significantly differ (AJ in experiment 1: F1,4 = 2.22, p = 0.21; AJ in experiment 2: F1,4 =
0.05, p = 0.84; ER in experiment 2: F1,4 = 0.71, P = 0.44; see Table A in S2 Text for gametocyte
densities in each of the relevant pairwise comparisons). In order to maximise power without
increasing the number of animals used, mosquitoes from the cages receiving two infective
feeds were used to examine both the effect double infections on both the first and second infec-
tion to establish (see Table 1).

Anopheles stephensi larvae were reared under standard insectary conditions at 26°C, 85%
humidity and a 12L:12D photo-period. Eggs were placed in plastic trays (25 cm × 25 cm × 7
cm) filled with 1.5 L of distilled water. To reduce variation in adult size at emergence, larvae
were reared at a fixed density of 400 per tray. Larvae were fed on ground TetraFin fish flakes
and from 10–11 days after egg hatch, pupae were collected daily and placed in emergence
cages. The adults that emerged were fed ad libitum on a 10% glucose solution supplemented
with 0.05% paraaminobenzoic acid (PABA). Adult female mosquitoes between 3 and 5 days
old were equally distributed across all experimental cages with 100–120 female mosquitoes per
cage. Experimental cages were given Ad lib access to 10% glucose solution supplemented with
0.05% paraaminobenzoic acid (PABA) apart from in the 24 hours prior to feeding on mice
where they were deprived of glucose to increase propensity to blood feed. After both blood-
feeds, any visibly unfed females were removed and discarded and mosquitoes were provided
with bowls for oviposition. Sample sizes in Table 1 reflect the number of mosquitoes that took
full bloodmeals on both occasions they were offered a host.
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Measuring infection status and intensity
In order to ensure densities were comparable our focal infections were always assessed after 7
days. This means that when we were testing for an impact on the first infection mosquitoes
were dissected at experimental day 7 and when we were testing for an impact on the second
infection mosquitoes were dissected at experimental day 11 (7 days after the second bloodmeal
on experimental day 4). To determine infection status and density ~30 mosquitoes per cage
were removed, killed with chloroform and dissected. Midguts were examined for oocyst pres-
ence and intensity and infected guts were then placed individually into 30 μL of chilled PBS
within 1.5 mL microtubes. Tubes were maintained on ice prior to storage at -80°C. DNA was
extracted from individual mosquito midguts using the E.Z.N.A MicroElute Genomic DNA kit
(Omega Bio-Tek) as per manufacturer’s instructions, eluted in a total volume 20 μL and stored
at -80°C. Clone specific genome numbers were determined by PCR following the methods in
[57].

The effect of infection status on survival
Cages were checked for dead mosquitoes twice daily until all mosquitoes had died (72 days
after receiving their first blood meal). Mosquito cadavers were stored individually in 1.5mL
microtubes and immediately frozen at -20°C for short-term storage before being moved to
-80°C within two weeks. Parasite DNA was extracted for the mosquito cadavers and the pres-
ence and genome count for each strain was quantified using the same methodology as for dis-
sected midguts except for the addition of 2.5μL of BSA per reaction well prior to PCR analysis
(10mg/mL Bovine Serum Albumin, New England BioLabs Inc.). BSA was used as pigment
found in the eyes of insects has previously been shown to inhibit DNA amplification [58]. A
pilot study confirmed previous studies [59], showing BSA was successful at preventing this
inhibition. Infection prevalence in dead mosquitoes from each cage strongly correlated with
prevalence from dissected mosquitoes confirming our ability to reliably detect parasite infec-
tion through this method (R2 = 0.99 for AJ; R2 = 0.96 for ER prevalence; R2 = 0.95 for the mean
number of strains per mosquito; S3 Fig).

Data analysis
All analysis was performed using R version 3.0.2 (R core team (2013) http://www.R-project.
org). Gametocyte densities in the mice used for transmission were calculated by multiplying
the gametocytemia by the red blood cell density and were log10 transformed and analyzed
using general linear models. The proportion of mosquitoes infected with the focal strain for
each group was analyzed using generalized mixed effect models (glmer) with a binomial error
structure and cage fitted as a random effect (lme4. R package version 1.0–6). For analysis of
infection density within the mosquito, only infected mosquitoes were included and host game-
tocyte density was fitted as a random effect in models. Oocyst densities were analysed using
glmer with a poisson error structure and sporozoite densities were log10 transformed and ana-
lysed using lmer models. Survival analysis was performed using Cox proportional hazard
mixed effect models (Terry Therneau (2012) coxme: Mixed Effects Cox Models. R package ver-
sion 2.2–3) with experimental cage fitted as a random effect and infection status, estimated
total red blood cells in bloodmeals and the mean oocyst density from mosquitoes dissected
from the same cage fitted as fixed effects. Total red blood cell density in bloodmeals was esti-
mated from red blood cell densities in the two mice each cage fed on (one per feed) and was
included to account for any variation in the quality of bloodmeals received. For all analyses we
followed model simplification by sequentially dropping the least significant term and compar-
ing the change in deviance with and without the term to Chi-square distributions until the
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minimum adequate model was reached. Full details of statistical models can be found in S2
Text and data are deposited in the Dryad repository: (doi:10.5061/dryad.8nr13) [60].

Ethics statement
This study was carried out in strict accordance with the recommendations in the Guide for the
Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was
approved by the Animal Care and Use Committee of the Pennsylvania State University (Permit
Number: 35790).

Supporting Information
S1 Text. Predicted contribution of mosquitoes infected or infectious with parasites from
multiple feeds to transmission in the absence of facilitation.Methods A: General details of
the explicit feeding cycle model used to simulate survival and infection. Figure A: Predicted
contribution of mosquitoes infected or infectious with parasites from multiple feeds for each of
four transmission settings. Table A: Summary of the epidemiological characteristics of the four
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S1 Fig. Ability to detect oocyst infections from first feed at day 7 and day 8. Data from
experiment 1. Mosquitoes were given an infected bloodmeal on day 0 (with clone AJ), an unin-
fected bloodmeal on day 4. Midguts where then removed examined for oocysts and PCR’d for
the presence of AJ genomes at day 7 and day 11. There was no significant difference in the
prevalence of infection at these two time points (Χ2

1,4 = 0.16, p = 0.69) indicating that we could
reliably detect the presence of an infection received on day 0 at day 11 (the appropriate time-
point for examining infections received on day 4). Means are based on dissection of 90 mosqui-
toes across 3 replicate cages for each time point. Bars show the standard error of the mean.
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S2 Fig. Relationship between genome counts of AJ and ER within individual mosquitoes.
Density of ER and or AJ in dissected mosquitoes that became infected with parasites from both
bloodmeals. Each point represents a single mosquito. ER density ~ AJ density; Χ2

1,8 = 0.002,
p = 0.97.
(TIFF)

S3 Fig. Correlation between prevalence in dead and dissected mosquitoes. Each point shows
a cage mean for prevalence/number of strains per mosquito determined though PCR of dead
mosquitoes throughout the experiment or from dissection and PCR of midguts 7 days after an
infective feed. The black line shows a 1 to 1 correlation for reference and the R squared values

Facilitation of Secondary Malaria Infections in the Vector

PLOS Pathogens | DOI:10.1371/journal.ppat.1005003 July 16, 2015 15 / 18

http://dx.doi.org/10.5061/dryad.8nr13
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1005003.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1005003.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1005003.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1005003.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1005003.s005


for each relationship are displayed on the graph.
(TIFF)

Acknowledgments
We thank J. Teeple for mosquito husbandry and help with transmissions, D. Sim for help with
mouse infections and D. Kennedy, N. Mideo, L. McNally, M. Thomas, S. Reece and members
of the RAPIDD program of the Science & Technology Directorate, Department of Homeland
Security, and the Fogarty International Center, National Institutes of Health, for discussion.

Author Contributions
Conceived and designed the experiments: LCP AFR. Performed the experiments: LCP JTB SB
MJJ. Analyzed the data: LCP. Wrote the paper: LCP JTB AFR.

References
1. Balmer O, Tanner M. Prevalence and implications of multiple-strain infections. Lancet Infect Dis. 2011;

11: 868–878. doi: 10.1016/S1473-3099(11)70241-9 PMID: 22035615

2. Raberg L, de Roode JC, Bell AS, Stamou P, Gray D, et al. The role of immune-mediated apparent com-
petition in genetically diverse malaria infections. Am Nat. 2006; 168: 41–53. PMID: 16874614

3. Read AF. The ecology of genetically diverse infections. Science. 2001; 292: 1099–1102. PMID:
11352063

4. Bossert WH, McKenzie FE. Mixed-species Plasmodium infections of Anopheles (Diptera: Culicidae). J
Med Entomol. 1997; 34: 417. PMID: 9220675

5. Read AF, Day T, Huijben S. The evolution of drug resistance and the curious orthodoxy of aggressive
chemotherapy. Proc Natl Acad Sci USA. 2011; 108: 10871–10877. doi: 10.1073/pnas.1100299108
PMID: 21690376

6. Pollitt LC, Huijben S, Sim DG, Salathé RM, Jones MJ, et al. Rapid response to selection, competitive
release and increased transmission potential of artesunate-selected Plasmodium chabaudimalaria
parasites. PLoS Pathog. 2014; 10: e1004019. doi: 10.1371/journal.ppat.1004019 PMID: 24763470

7. Alizon S, de Roode JC, Michalakis Y. Multiple infections and the evolution of virulence. Ecol Lett. 2013;
16: 556–567. doi: 10.1111/ele.12076 PMID: 23347009

8. de Roode JC, Pansini R, Cheesman SJ, Helinski MEH, Huijben S, et al. Virulence and competitive abil-
ity in genetically diverse malaria infections. Proc Natl Acad Sci USA. 2005; 102: 7624–7628. PMID:
15894623

9. Pollitt LC, Mideo N, Drew DR, Schneider P, Colegrave N, et al. Competition and the evolution of repro-
ductive restraint in malaria parasites. Am Nat. 2011; 177: 358–367. doi: 10.1086/658175 PMID:
21460544

10. Daubersies P, Sallenave-Sales S, Magne S, Trape JF, Contamin H, et al. Rapid turnover of Plasmo-
dium falciparum populations in asymptomatic individuals living in a high transmission area. Am J Trop
Med Hyg. 1996; 54: 18–26. PMID: 8651363

11. Mercereau-Puijalon O. Revisiting host/parasite interactions: molecular analysis of parasites collected
during longitudinal and cross-sectional surveys in humans. Parasite Immunol. 1996; 18: 173–180.
PMID: 9223172

12. Smith T, Felger I, Tanner M, Beck HP. Premunition in Plasmodium falciparum infection: insights from
the epidemiology of multiple infections. Trans R Soc Trop Med Hyg. 1999; 93: 59–64. PMID: 10450428

13. Bruce MC, Donnelly CA, Alpers MP, Galinski MR, Barnwell JW, et al. Cross-species interactions
between malaria parasites in humans. Science. 2000; 287: 845–848. PMID: 10657296

14. Hastings IM. Malaria control and the evolution of drug resistance: an intriguing link. Trends Parasitol.
2003; 19: 70–73. PMID: 12586474

15. Talisuna AO, Erhart A, Samarasinghe S, Van Overmeir C, Speybroeck N, et al. Malaria transmission
intensity and the rate of spread of chloroquine resistant Plasmodium falciparum: Why have theoretical
models generated conflicting results? Infect Genet Evol. 2006; 6: 241–248. PMID: 16112915

16. Bousema JT, Drakeley CJ, Mens PF, Arens T, Houben R, et al. Increased Plasmodium falciparum
gametocyte production in mixed infections with P.malariae. Am J Trop Med Hyg. 2008; 78: 442–448.
PMID: 18337341

Facilitation of Secondary Malaria Infections in the Vector

PLOS Pathogens | DOI:10.1371/journal.ppat.1005003 July 16, 2015 16 / 18

http://dx.doi.org/10.1016/S1473-3099(11)70241-9
http://www.ncbi.nlm.nih.gov/pubmed/22035615
http://www.ncbi.nlm.nih.gov/pubmed/16874614
http://www.ncbi.nlm.nih.gov/pubmed/11352063
http://www.ncbi.nlm.nih.gov/pubmed/9220675
http://dx.doi.org/10.1073/pnas.1100299108
http://www.ncbi.nlm.nih.gov/pubmed/21690376
http://dx.doi.org/10.1371/journal.ppat.1004019
http://www.ncbi.nlm.nih.gov/pubmed/24763470
http://dx.doi.org/10.1111/ele.12076
http://www.ncbi.nlm.nih.gov/pubmed/23347009
http://www.ncbi.nlm.nih.gov/pubmed/15894623
http://dx.doi.org/10.1086/658175
http://www.ncbi.nlm.nih.gov/pubmed/21460544
http://www.ncbi.nlm.nih.gov/pubmed/8651363
http://www.ncbi.nlm.nih.gov/pubmed/9223172
http://www.ncbi.nlm.nih.gov/pubmed/10450428
http://www.ncbi.nlm.nih.gov/pubmed/10657296
http://www.ncbi.nlm.nih.gov/pubmed/12586474
http://www.ncbi.nlm.nih.gov/pubmed/16112915
http://www.ncbi.nlm.nih.gov/pubmed/18337341


17. Baliraine FN, Afrane YA, Amenya DA, Bonizzoni M, Vardo-Zalik AM, et al. A cohort study of Plasmo-
dium falciparum infection dynamics in Western Kenya Highlands. BMC Infect Dis. 2010; 10: 283. doi:
10.1186/1471-2334-10-283 PMID: 20868504

18. Paaijmans KP, Blanford S, Chan BHK, Thomas MB. Warmer temperatures reduce the vectorial capac-
ity of malaria mosquitoes. Biol Lett. 2012; 8: 465–468. doi: 10.1098/rsbl.2011.1075 PMID: 22188673

19. Sinden RE, Dawes EJ, Alavi Y, Waldock J, Finney O, et al. Progression of Plasmodium berghei through
Anopheles stephensi is density-dependent. PLoS Pathog. 2007; 3: e195. doi: 10.1371/journal.ppat.
0030195 PMID: 18166078

20. Pollitt LC, Churcher TS, Dawes EJ, Khan SM, Sajid M, et al. Costs of crowding for the transmission of
malaria parasites. Evol Appl. 2013; 6: 617–629. doi: 10.1111/eva.12048 PMID: 23789029

21. Churcher TS, Dawes EJ, Sinden RE, Christophides GK, Koella JC, et al. Population biology of malaria
within the mosquito: density-dependent processes and potential implications for transmission-blocking
interventions. Malar J. 2010; 9: 311. doi: 10.1186/1475-2875-9-311 PMID: 21050427

22. Dawes EJ, Churcher TS, Zhuang S, Sinden RE, Basáñez M-G. Anophelesmortality is both age- and
Plasmodium-density dependent: implications for malaria transmission. Malar J. 2009; 8: 228. doi: 10.
1186/1475-2875-8-228 PMID: 19822012

23. Taylor LH. Infection rates in, and the number of Plasmodium falciparum genotypes carried by Anophe-
lesmosquitoes in Tanzania. Annals of Tropical Medicine and Parasitology. 1999; 93: 659–662. PMID:
10707111

24. Babiker HA, Ranford-Cartwright LC, Currie D, Charlwood JD, Billingsley P, et al. Randommating in a
natural population of the malaria parasite Plasmodium falciparum. Parasitology. 1994; 109: 413–421.
PMID: 7800409

25. Juliano JJ, Porter K, Mwapasa V, Sem R, Rogers WO, et al. Exposing malaria in-host diversity and esti-
mating population diversity by capture-recapture using massively parallel pyrosequencing. Proc Natl
Acad Sci USA. 2010; 107: 20138–20143. doi: 10.1073/pnas.1007068107 PMID: 21041629

26. Bell AS, Huijben S, Paaijmans KP, Sim DG, Chan BHK, et al. Enhanced transmission of drug-resistant
parasites to mosquitoes following drug treatment in rodent malaria. PLoS ONE. 2012; 7: e37172. doi:
10.1371/journal.pone.0037172 PMID: 22701563

27. Beier JC. Malaria parasite development in mosquitoes. Annu Rev Entomol. 1998; 43: 519–543. PMID:
9444756

28. Norris LC, Fornadel CM, HungWC, Pineda FJ, Norris DE. Frequency of multiple blood meals taken in a
single gonotrophic cycle by Anopheles arabiensismosquitoes in Macha, Zambia. Am J Trop Med Hyg.
2010; 83: 33–37. doi: 10.4269/ajtmh.2010.09-0296 PMID: 20595474

29. Scott TW, Githeko AK, Fleisher A, Harrington LC, Yan G. DNA profiling of human blood in anophelines
from lowland and highland sites in western Kenya. Am J Trop Med Hyg. 2006; 75: 231–237. PMID:
16896124

30. Boyd MF. Epidemiology: Factors related to the definitive host. In: Boyd MF, editor. Malariology. A com-
prehensive survey of all aspects of this group of diseases from a global standpoint. Volume 1. Philadel-
phia: W. B. Saunders Company, Vol. 1. 1949. pp. 609–697.

31. Daniels CW. Summary of researches on the propagation of malaria in British Central Africa. British
medical journal. 1901; 1: 193.

32. Garnham PCC. Malaria parasites and other haemosporidia. 1st ed. Oxford: blackwell scientific publi-
cations; 1966.

33. Huff CG. Individual Immunity and Susceptibility of Culex pipiens to various Species of Bird Malaria as
studied by means of double infectious Feedings. American Journal of Hygiene. 1930; 12: 424–441.

34. Kuehn A, Pradel G. The coming-out of malaria gametocytes. J Biomed Biotechnol. 2010; 2010:
976827. doi: 10.1155/2010/976827 PMID: 20111746

35. Killeen GF, McKenzie FE, Foy BD, Schieffelin C, Billingsley PF, et al. A simplified model for predicting
malaria entomologic inoculation rates based on entomologic and parasitologic parameters relevant to
control. Am J Trop Med Hyg. 2000; 62: 535–544. PMID: 11289661

36. Cator LJ, George J, Blanford S, Murdock CC, Baker TC, et al. “Manipulation” without the parasite:
altered feeding behaviour of mosquitoes is not dependent on infection with malaria parasites. Proc R
Soc Lond B Biol Sci. 2013; 280: 20130711.

37. Paaijmans KP, Cator LJ, Thomas MB. Temperature-dependent pre-bloodmeal period and tempera-
ture-driven asynchrony between parasite development and mosquito biting rate reduce malaria trans-
mission intensity. PLoS ONE. 2013; 8: e55777. doi: 10.1371/journal.pone.0055777 PMID: 23383280

38. Ponnudurai T, Lensen AH, van Gemert GJ, Bolmer M, van Belkum A, et al. Large-scale production of
Plasmodium vivax sporozoites. Parasitol. 1990; 101: 317–320.

Facilitation of Secondary Malaria Infections in the Vector

PLOS Pathogens | DOI:10.1371/journal.ppat.1005003 July 16, 2015 17 / 18

http://dx.doi.org/10.1186/1471-2334-10-283
http://www.ncbi.nlm.nih.gov/pubmed/20868504
http://dx.doi.org/10.1098/rsbl.2011.1075
http://www.ncbi.nlm.nih.gov/pubmed/22188673
http://dx.doi.org/10.1371/journal.ppat.0030195
http://dx.doi.org/10.1371/journal.ppat.0030195
http://www.ncbi.nlm.nih.gov/pubmed/18166078
http://dx.doi.org/10.1111/eva.12048
http://www.ncbi.nlm.nih.gov/pubmed/23789029
http://dx.doi.org/10.1186/1475-2875-9-311
http://www.ncbi.nlm.nih.gov/pubmed/21050427
http://dx.doi.org/10.1186/1475-2875-8-228
http://dx.doi.org/10.1186/1475-2875-8-228
http://www.ncbi.nlm.nih.gov/pubmed/19822012
http://www.ncbi.nlm.nih.gov/pubmed/10707111
http://www.ncbi.nlm.nih.gov/pubmed/7800409
http://dx.doi.org/10.1073/pnas.1007068107
http://www.ncbi.nlm.nih.gov/pubmed/21041629
http://dx.doi.org/10.1371/journal.pone.0037172
http://www.ncbi.nlm.nih.gov/pubmed/22701563
http://www.ncbi.nlm.nih.gov/pubmed/9444756
http://dx.doi.org/10.4269/ajtmh.2010.09-0296
http://www.ncbi.nlm.nih.gov/pubmed/20595474
http://www.ncbi.nlm.nih.gov/pubmed/16896124
http://dx.doi.org/10.1155/2010/976827
http://www.ncbi.nlm.nih.gov/pubmed/20111746
http://www.ncbi.nlm.nih.gov/pubmed/11289661
http://dx.doi.org/10.1371/journal.pone.0055777
http://www.ncbi.nlm.nih.gov/pubmed/23383280


39. Hogg JC, Carwardine S, Hurd H. The effect of Plasmodium yoelii nigeriensis infection on ovarian pro-
tein accumulation by Anopheles stephensi. Parasitology Research. 1997; 83: 374–379. PMID:
9134561

40. Aboagye-Antwi F, Guindo A, Traoré AS, Hurd H, Coulibaly M, et al. Hydric stress-dependent effects of
Plasmodium falciparum infection on the survival of wild-caught Anopheles gambiae female mosquitoes.
Malar J. 2010; 9: 243. doi: 10.1186/1475-2875-9-243 PMID: 20796288

41. Bell AS, de Roode JC, Sim D, Read AF. Within-host competition in genetically diverse malaria infec-
tions: parasite virulence and competitive success. Evolution. 2006; 60: 1358–1371. PMID: 16929653

42. Reece SE, Drew DR, Gardner A. Sex ratio adjustment and kin discrimination in malaria parasites.
Nature. 2008; 453: 609–614. doi: 10.1038/nature06954 PMID: 18509435

43. Rodrigues J, Brayner FA, Alves LC, Dixit R, Barillas-Mury C. Hemocyte differentiation mediates innate
immune memory in Anopheles gambiaemosquitoes. Science. 2010; 329: 1353–1355. doi: 10.1126/
science.1190689 PMID: 20829487

44. Pringle G. A quantitative study of naturally-acquired malaria infections in Anopheles Gambiae and
Anopheles funestus in a highly malarious area of East Africa. Trans R Soc Trop Med Hyg. 1996; 60:
626–632.

45. Annan Z, Durand P, Ayala FJ, Arnathau C, Awono-Ambene P, et al. Population genetic structure of
Plasmodium falciparum in the two main African vectors, Anopheles gambiae and Anopheles funestus.
Proc Natl Acad Sci USA. 2007; 104: 7987–7992. PMID: 17470800

46. Cator LJ, Lynch PA, Thomas MB, Read AF. Alterations in mosquito behaviour by malaria parasites:
potential impact on force of infection. Malar J. 2014; 13: 164. doi: 10.1186/1475-2875-13-164 PMID:
24885783

47. Read AF, Lynch PA, Thomas MB (2009) How to make evolution-proof insecticides for malaria control.
PLos Biol 7:e1000058. doi: 10.1371/journal.pbio.1000058 PMID: 19355786

48. Ferguson HM, Read AF. Mosquito appetite for blood is stimulated by Plasmodium chabaudi infections
in themselves and their vertebrate hosts. Malar J. 2004; 3: 12. PMID: 15151700

49. DeMoraes CM, Stanczyk NM, Betz HS, Pulido H, Sim DG, et al. Malaria-induced changes in host
odors enhance mosquito attraction. Proc Natl Acad Sci USA. 2014; 111: 11079–11084. doi: 10.1073/
pnas.1405617111 PMID: 24982164

50. Mayagaya VS, Michel K, Benedict MQ, Killeen GF, Wirtz RA, et al. Non-destructive determination of
age and species of Anopheles gambiae s.l. using near-infrared spectroscopy. Am J Trop Med Hyg.
2009; 81: 622–630. doi: 10.4269/ajtmh.2009.09-0192 PMID: 19815877

51. Wiesch zur PA, Kouyos R, Engelstädter J, Regoes RR, Bonhoeffer S. Population biological principles
of drug-resistance evolution in infectious diseases. Lancet Infect Dis. 2011; 11: 236–247. doi: 10.1016/
S1473-3099(10)70264-4 PMID: 21371657

52. HarringtonWE, Mutabingwa TK, Muehlenbachs A, Sorensen B, Bolla MC, et al. Competitive facilitation
of drug-resistant Plasmodium falciparummalaria parasites in pregnant women who receive preventive
treatment. Proc Natl Acad Sci USA. 2009; 106: 9027–9032. doi: 10.1073/pnas.0901415106 PMID:
19451638

53. Färnert A. Plasmodium falciparum population dynamics: only snapshots in time? Trends Parasitol.
2008; 24: 340–344. doi: 10.1016/j.pt.2008.04.008 PMID: 18617441

54. Carter R. Studies on enzyme variation in the murine malaria parasites Plasmodium berghei, P. yoelii, P.
vinckei and P. chabaudi by starch gel electrophoresis. Parasitology. 1978; 76: 241–267. PMID: 351525

55. Jacobs RL. Role of P-Aminobenzoic acid in Plasmodium berghei infection in the mouse. Exp Parasitol.
1964; 15: 213–225. PMID: 14191322

56. Ferguson HM, Mackinnon MJ, Chan BH, Read AF. Mosquito mortality and the evolution of malaria viru-
lence. Evolution. 2003; 57: 2792–2804. PMID: 14761058

57. Bell AS, Huijben S, Paaijmans KP, Sim DG, Chan BHK, et al. Enhanced transmission of drug-resistant
parasites to mosquitoes following drug treatment in rodent malaria. PLoS ONE. 2012; 7: e37172. doi:
10.1371/journal.pone.0037172 PMID: 22701563

58. Boncristiani H, Li J, Evans JD, Pettis J, Chen Y. Scientific note on PCR inhibitors in the compound eyes
of honey bees, Apis mellifera. Apidologie. 2011; 42: 457–460.

59. Kreader CA. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein.
Appl Environ Microbiol. 1996; 62: 1102–1106. PMID: 8975603

60. Pollitt LC, Bram JT, Blanford S, Jones MJ, Read AF (2015) Data from: Existing infection facilitates
establishment and density of malaria parasites in their mosquito vector. Dryad Digital Repository. http://
dx.doi.org/10.5061/dryad.8nr13

Facilitation of Secondary Malaria Infections in the Vector

PLOS Pathogens | DOI:10.1371/journal.ppat.1005003 July 16, 2015 18 / 18

http://www.ncbi.nlm.nih.gov/pubmed/9134561
http://dx.doi.org/10.1186/1475-2875-9-243
http://www.ncbi.nlm.nih.gov/pubmed/20796288
http://www.ncbi.nlm.nih.gov/pubmed/16929653
http://dx.doi.org/10.1038/nature06954
http://www.ncbi.nlm.nih.gov/pubmed/18509435
http://dx.doi.org/10.1126/science.1190689
http://dx.doi.org/10.1126/science.1190689
http://www.ncbi.nlm.nih.gov/pubmed/20829487
http://www.ncbi.nlm.nih.gov/pubmed/17470800
http://dx.doi.org/10.1186/1475-2875-13-164
http://www.ncbi.nlm.nih.gov/pubmed/24885783
http://dx.doi.org/10.1371/journal.pbio.1000058
http://www.ncbi.nlm.nih.gov/pubmed/19355786
http://www.ncbi.nlm.nih.gov/pubmed/15151700
http://dx.doi.org/10.1073/pnas.1405617111
http://dx.doi.org/10.1073/pnas.1405617111
http://www.ncbi.nlm.nih.gov/pubmed/24982164
http://dx.doi.org/10.4269/ajtmh.2009.09-0192
http://www.ncbi.nlm.nih.gov/pubmed/19815877
http://dx.doi.org/10.1016/S1473-3099(10)70264-4
http://dx.doi.org/10.1016/S1473-3099(10)70264-4
http://www.ncbi.nlm.nih.gov/pubmed/21371657
http://dx.doi.org/10.1073/pnas.0901415106
http://www.ncbi.nlm.nih.gov/pubmed/19451638
http://dx.doi.org/10.1016/j.pt.2008.04.008
http://www.ncbi.nlm.nih.gov/pubmed/18617441
http://www.ncbi.nlm.nih.gov/pubmed/351525
http://www.ncbi.nlm.nih.gov/pubmed/14191322
http://www.ncbi.nlm.nih.gov/pubmed/14761058
http://dx.doi.org/10.1371/journal.pone.0037172
http://www.ncbi.nlm.nih.gov/pubmed/22701563
http://www.ncbi.nlm.nih.gov/pubmed/8975603
http://dx.doi.org/10.5061/dryad.8nr13
http://dx.doi.org/10.5061/dryad.8nr13

