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The typical response of the adult mammalian pulmonary circulation to a low oxygen 

environment is vasoconstriction and structural remodelling of pulmonary arterioles, 

leading to chronic elevation of pulmonary artery pressure (pulmonary hypertension) 

and right ventricular hypertrophy. Some mammals, however, exhibit genetic resistance 

to hypoxia-induced pulmonary hypertension1-3. We used a congenic breeding program 

and comparative genomics to exploit this variation in the rat and identified the gene, 

Slc39a12, as a major regulator of hypoxia-induced pulmonary vascular remodelling. 

Slc39a12 encodes the zinc transporter, ZIP12. We report that ZIP12 expression is 

increased in many cell types, including endothelial, smooth muscle and interstitial cells, 

in the remodelled pulmonary arterioles of rats, cows and humans susceptible to 

hypoxia-induced pulmonary hypertension. We show that ZIP12 expression in 

pulmonary vascular smooth muscle cells is hypoxia-dependent and that targeted 

inhibition of ZIP12 inhibits the rise in intracellular labile zinc in hypoxia-exposed 

pulmonary vascular smooth muscle cells and their proliferation in culture. We 

demonstrate that genetic disruption of ZIP12 expression attenuates the development of 

pulmonary hypertension in rats housed in a hypoxic atmosphere. This entirely novel 

and unexpected insight into the fundamental role of a zinc transporter in mammalian 

pulmonary vascular homeostasis suggests a new drug target for the pharmacological 

management of pulmonary hypertension. 
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We have reported previously that the Fisher 344 (F344) rat strain is resistant to 

hypoxia-induced pulmonary hypertension compared to the Wistar Kyoto (WKY) strain2. 

Linkage analysis of a F2 population derived from inbred WKY x F344 rats identified a 

quantitative trait locus (QTL) on chromosome 172. Based on this observation, we next 

conducted ten successive microsatellite-guided backcrosses of offspring with WKY rats and 

derived two congenic strains in which the original QTL was dissected and represented as 

partially overlapping regions of a donor F344 genome interposed onto the genetic 

background of the WKY recipient strain (Extended Data Fig. 1, 2). Resistance to hypoxia-

induced pulmonary hypertension was detected in one of the congenic strains (R47A, Fig. 1a-

d, Extended Data Fig. 2). Three subcongenic strains (SubA, SubB and SubC) were derived by 

further backcrosses of R47A onto the WKY background and the congenic interval was fine-

mapped to a region of 8.28 Mbp containing an estimated 65 genes (rat chr17: 85,072,475-

93,347,784) (Fig. 1 and Extended Data Fig. 2a). Whole genome sequencing (>20X coverage) 

of the WKY and F344 parental strains4 revealed 13 non-synonymous coding SNPs affecting 

9 genes within the refined congenic interval, and 6 indels resulting in frameshift mutations in 

4 genes (Extended Data Table 1). Polymorphic examination of the 13 SNPs and 6 indels in 2 

additional rat strains susceptible to hypoxia-induced pulmonary hypertension (the 

spontaneously hypertensive and fawn-hooded rat strains, respectively) excluded 5 SNPs and 

5 indels and narrowed the genes of interest to 7 (Slc39a12, St8sia6, Cubn, Nmt2, Dclre1c, 

Hspa14 and Cdnf, Fig. 1e and Extended Data Table1). Further polyphen analysis allowed us 

to exclude 5 listed genes (St8sia6, Cubn, Nmt2, Dclre1c and Cdnf) as the non-synonymous 

coding changes were predicted to be benign. We identified Slc39a12, with a loss of 

thymidine at position 88,575,534 leading to a frameshift mutation in exon 11, as the highest 

priority candidate gene for further investigation.  
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Slc39a12 encodes the solute carrier 39 zinc transporter family (ZIP1 - 14) member 12 

(ZIP12) and has high specificity for zinc5. The ZIP family tightly regulates cellular zinc 

homeostasis in numerous cell types by promoting zinc uptake from the extracellular space or 

release from intracellular compartments. The rat Slc39a12 gene contains 12 exons and the 

ZIP12 protein comprises 688 amino acids with a secondary structure comprising 8 

transmembrane domains (TMD). In the F344 strain the frameshift mutation in Slc39a12 

introduces a stop-codon predicting a C-terminal truncated ZIP12 protein of 553 amino acids 

(Extended Data Fig. 3a). This affects the conserved zinc transporting aqueous cavity between 

TMD IV to V, resulting in the loss of the metalloprotease motif (HEXPHE), which would be 

expected to lead to a reduction in zinc transport6. 

A pathognomonic histological signature of chronic hypoxia-induced pulmonary 

hypertension is thickening of the pulmonary vascular media (due to hyperplasia and 

hypertrophy of smooth muscle cells) and the muscularisation of previously unmuscularised 

pulmonary arterioles7. We found that ZIP12 mRNA levels were very low and ZIP12 protein 

undetectable by immunohistochemistry in the pulmonary vasculature of adult WKY rats 

housed in a normal oxygen atmosphere, but WKY rats exposed to hypoxia showed markedly 

increased lung ZIP12 mRNA levels and pronounced ZIP12 expression in remodelled 

pulmonary arterioles (Fig. 2a-b and Extended Data Fig. 3b). ZIP12 expression was evident in 

vascular smooth muscle but also other cell types (endothelial and interstitial cells) known to 

contribute to structural changes seen in hypoxic lungs. In contrast, and consistent with a 

frameshift mutation in Slc39a12 predicting a C-terminal truncated protein, ZIP12 was 

undetectable with an antibody directed at the C-terminus of the protein in the lungs of 

chronically hypoxic F344 rats (Fig. 1b and Extended Data Fig. 3b).  

Slc39a12 is highly conserved across species8 and transcribed constitutively in many 

tissues (www/biogps.org). To investigate the relevance of our observations in rats to other 
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susceptible animal species, as well as humans, we examined ZIP12 expression in whole lung 

samples of 1) neonatal calves housed in a normal atmosphere or exposed to hypobaric 

hypoxia for two weeks (barometric pressure, PB = 445mmHg, equivalent to 4500m altitude, 

12% O2), 2) older (yearling) cattle with naturally occurring pulmonary hypertension (so-

called “Brisket disease”) developed as a result of prolonged pasturing at high altitude (2,438 

to 3,505m), and 3) human subjects at sea level and Kyrgyz highlanders residing above 

2500m. ZIP12 expression, which is undetectable by immunohistochemistry in healthy bovine 

and human lung exposed to a normal oxygen atmosphere (Fig. 2c), is clearly visible in the 

remodelled pulmonary vessels from chronic hypoxia exposure, indicating that ZIP12 up-

regulation in pulmonary vasculature is a common response to hypoxia (Fig. 2c).  

To better understand the regulation of ZIP12 by hypoxia, we exposed human 

pulmonary vascular smooth muscle cells in culture to hypoxia (2%O2). Increased HIF protein 

and ZIP12 gene expression was observed in hypoxic cells; mRNA levels of other zinc 

transporters, ZIP6, ZIP7, ZIP10 and ZnT8, were unchanged (Extended Data Fig. 4a-b). 

Further examination of the Slc39a12 gene using HOMER analysis9 revealed a hypoxia 

response element (HRE) encoding both HIF-1α and HIF-2α binding motifs (Fig. 2d) at 1kb 

downstream of the ZIP12 transcription start site (human (hg19) chr10: 18,241,879-

18,241,887). We cloned a 1.5kb fragment of the 5’ region of ZIP12 containing this HRE into 

the luciferase reporter vector, pGL4.10 (Fig. 2d). Human pulmonary vascular smooth muscle 

cells transfected with the ZIP12 HRE reporter vector demonstrated significantly increased 

luciferase activity after exposure to hypoxia, while the luciferase activity of cells transfected 

with the mutant HRE vector (a substitution of the 5’-ACGTG-3’ motif by 5’- AGCAG-3’; 

Fig. 2d) remained at basal normoxia levels (Fig. 2e). Chromatin immunoprecipitation (ChIP) 

followed by real time PCR confirmed the enrichment of both HIF-1α and HIF-2α binding to 

this ZIP12 HRE after hypoxia exposure (Fig. 2f).  
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We then explored the contribution of ZIP12 to the regulation of intracellular zinc 

levels in human pulmonary vascular smooth muscle cells. Intracellular labile zinc measured 

using a genetically-encoded fluorescence resonance energy transfer (FRET) based zinc probe, 

eCALWY-410, exhibited a striking increase in cells exposed to hypoxia for 48h, and this was 

markedly reduced by inhibiting ZIP12 expression with a targeted siRNA (Fig. 3a-e). 

Inhibition of ZIP12 expression with siRNA also inhibited hypoxia-induced pulmonary 

vascular smooth muscle cell proliferation (Fig. 3f). ZIP12 siRNA transfection did not affect 

intracellular zinc levels or proliferation in normoxia (Extended Data Fig. 4c-f). These data 

suggest that disrupted ZIP12 expression exerts a direct effect on pulmonary vascular cells in 

response to hypoxia and contributes to the resistant pulmonary hypertension phenotype 

exhibited in F344 strain. 

To provide direct genetic confirmation that disrupted ZIP12 expression attenuates the 

pulmonary vascular response to hypoxia we employed zinc finger nuclease technology11 to 

introduce mutations in Slc39a12 in the hypoxia-susceptible WKY rat strain. A mutant line 

was generated containing a frame-shift resulting in a truncated ZIP12 protein with loss-of-

function (Extended Data Fig. 5). Inter-cross of heterozygous animals generated homozygous 

(ZIP12-/-), heterozygous (ZIP12+/-) and wild-type rats that were then exposed to hypoxia 

(10%O2) for 2 weeks. ZIP12-/- rats demonstrated lower pulmonary artery pressures, right 

ventricular hypertrophy and vascular remodelling than wild-type rats (Fig. 4a-c; Extended 

Data Fig. 6a-d) with ZIP12+/- rats exhibiting an intermediate phenotype.  Wild-type rats 

resembled WKY rats after exposure to hypoxia showing markedly increased lung ZIP12 

expression in the remodelled pulmonary arterioles, in contrast to the absence of expression in 

ZIP12-/- rats (Fig. 4d-e). Comparison of the ZIP12-/- response to hypoxia with the WKY and 

F344 parental strains reveals that mutation of Slc39a12 is responsible for about 50% of the 

resistance observed in the F344 strain, highlighting the importance of Slc39a12 as a hypoxia-
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susceptibility gene but also suggesting that other genes yet to be identified may also 

contribute.  

Systemic blood pressure and cardiac output in the hypoxic ZIP12-/- rats was similar 

to that of wild-type rats (Extended Data Fig. 6e-g) signifying that the reduced pulmonary 

artery pressures in the ZIP12-/- rat in chronic hypoxia is due to reduced pulmonary vascular 

resistance (PVR; mean pulmonary artery pressure = PVR x cardiac output). Both vascular 

tone and structural remodeling contribute to PVR, and increased pulmonary vascular tone 

preceeds the structural changes. ZIP12 expression may increase PVR by increasing 

pulmonary vascular tone. Zinc-thiolate signaling has been reported to mediate the 

constriction of pulmonary microvascular endothelial cells in acute hypoxia through activation 

of protein kinase C and inhibition of myosin light chain phosphatase, inducing stress fibre 

formation and endothelial cell contraction12. We have shown that ZIP12 targeted siRNA 

attenuates stress fibre formation in human pulmonary vascular smooth muscle cells cultured 

in hypoxia (Extended Data Fig. 6h-f). But given the time-dependent induction of ZIP12 

expression in pulmonary vasculature by hypoxia, the main contribution of ZIP12 is likely to 

be in regulating the response to chronic rather than acute hypoxia. In further support of a 

direct effect on structural remodelling of pulmonary arterioles, we investigated angiogenesis 

ex vivo using pulmonary arteriole rings dissected from ZIP12-/- and wild-type rats. Vascular 

outgrowth from ZIP12-/- vessels in response to hypoxia was attenuated compared to vessels 

from wild-type rats (Extended Data Fig. 6j-k).   

The underlying mechanisms through which ZIP12 affects hypoxic responses remain 

to be defined. Excess intracellular zinc concentrations mediated by upregulation of ZIP 

family members have been observed in a variety of tumour tissues and linked to cell 

proliferation and survival13-15. Zinc is a structural component of a large variety of intracellular 

proteins, including enzymes and transcription factors. Zinc binding motifs have been 
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identified in drug targets for pulmonary hypertension, for example, phosphodiesterase type 5 

(PDE5) and histone deacetylases16,17. Reduced ZIP12 expression and intracellular labile zinc 

levels would be expected to inhibit PDE5 activity18, and we have previously shown that 

PDE5 inhibition attenuated pulmonary vascular smooth muscle proliferation in culture19.  

Following on from our demonstration that ZIP12 is hypoxia-inducible and a key 

regulator of the pulmonary vascular response to chronic alveolar hypoxia exposure, we 

examined lung ZIP12 expression in other presentations of pulmonary hypertension where 

tissue hypoxia is an important driver of pathology. Again, in contrast to healthy lungs, ZIP12 

expression was clearly evident in lung tissues from chronic iron deficient rats20 and rats 

exposed to monocrotaline, as well as patients with idiopathic pulmonary arterial hypertension 

(IPAH) 21 (Fig. 4f), prominent in the remodeled pulmonary vasculature as identified by co-

staining with smooth muscle actin (Fig. 4g). HIF-activation in these tissues was confirmed by 

upregulation of carbonic anhydrase IX, a recognized HIF-regulated biochemical signature of 

tissue hypoxia22 (Extended Data Fig. 7). Interestingly, the F344 rat strain has previously been 

reported to exhibit some resistance to monocrotaline-induced pulmonary hypertension 23; this 

was recapitulated in the ZIP12-/- rat (Extended Data Fig. 8). These data signal a fundamental 

role for ZIP12 in the regulation of pulmonary vascular homeostasis in hypoxic stress, relevant 

to the pathogenesis of pulmonary hypertension beyond that associated with life in a low 

oxygen atmosphere. The current treatments for pulmonary hypertension centre on the 

pharmacological manipulation of signaling mechanisms used by vasoactive factors and have 

limited therapeutic benefit. Our observations open a new avenue of research into the 

therapeutic potential of ZIP12 inhibition and suppressed excursions of intracellular free zinc 

as a novel strategy for preventing or treating pulmonary hypertension.   
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Online Content: Methods, along with any additional Extended Data display items and 

Source Data, are available in the online version of the paper; references unique to these 

sections appear only in the online paper. 
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Figure Legends  

Figure 1. The pulmonary vascular response to hypoxia in the F344 rat is influenced by a 

region of chromosome 17 containing Slc39a12. a. A genetic map of 3 sub-congenic strains 

(SubA, SubB and SubC) derived from the R47A congenic strain (originally derived from a 

WKYxF344 cross) backcrossed with the WKY parental strain. The refined congenic region 

(orange) of 8.28Mb containing 65 genes is within the SubB strain. b-d. SubB exhibits 

attenuated pulmonary hypertension after 2 weeks exposure to a 10% O2 atmosphere 

compared to WKY, SubA and SubC rats: b. mean pulmonary artery pressure (mPAP); c. 

right ventricular hypertrophy (RV/LV+Septum ratio) (n=17 WKY, 15 F344, 14 R47A, 8 

SubA, 10 SubB, 10 SubC); d. vascular muscularisation (n=6 each group). Dotted line 

indicates mean measurements from all the rats in a normal oxygen atmosphere (21%O2; 

mPAP = 14.7±0.3 mmHg; RVH=0.270±0.004; % muscularization=34.2±0.36; for actual 

values in rat strains see Extended Data Fig. 3). Values are expressed as mean ± standard error 

of the mean (SEM). *P<0.05, **P<0.01, ***P<0.001 compared to WKY after one-way 
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ANOVA analysis followed by Bonferroni correction for multiple testing. e. The genes of 

interest (Slc39a12, St8sia6, Cubn, Nmt2, Dclre1c, Hspa14 and Cdnf) identified within the 

SubB congenic interval. The frameshift mutation in Slc39a12 introduces a stop-codon, 

resulting in a truncated protein.  

 

Figure 2. Slc39a12 encodes a zinc transporter, ZIP12, which is up-regulated in 

pulmonary vascular tissue from mammals exposed to chronic hypoxia. a. ZIP12 mRNA 

levels in control and hypoxic WKY rat lungs (n=6 each group). b. Prominent ZIP12 

immunostaining in remodelled pulmonary arterioles in WKY but not F344 rat lungs exposed 

to hypoxia. c. No ZIP12 staining was detected in pulmonary arteries of low altitude 

(normoxia control, CO calf) calves and sea-level humans, yet prominent ZIP12 

immunostaining was observed in the remodelled pulmonary arteries of calves with severe 

pulmonary hypertension (Hx calf), in cattle naturally susceptible to pulmonary hypertension 

at altitude (“Brisket disease”, BD), as well as Kyrgyz highlanders residing above 2500m. d. 

Design of the luciferase reporter vector pGL4.10 containing a 5’ region of ZIP12 which 

includes a hypoxia response element (HRE) encoding for both HIF-1α and HIF-2α binding 

motifs or a mutant HRE sequence where the 5’-ACGTG-3’ motif has been replaced by 5’-

AGCAG-3’(mHRE). e. Human pulmonary artery smooth muscle cells (HPASMCs) 

transfected with the ZIP12 HRE reporter vector demonstrated a significantly increased 

luciferase activity after exposure to hypoxia, but not in the cells transfected with the mutant 

HRE vector (n=6 per group). f. Increased levels of HIF-1α and HIF-2α bound to the ZIP12 

HRE assayed by ChIP-qPCR of chromatin from HPASMCs cultured in normoxia and 

hypoxic conditions (n=3 per group). Data are calculated as percentage of input levels, with 

the dotted line marking percentages below mock immunoprecipitation (IP). Values are 

expressed as mean ± SEM. *P<0.05, **P<0.01, ***P<0.001 compared to normoxic control 
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after One-Way ANOVA analysis followed by Bonferroni correction for multiple testing. NS, 

not significant. 

 

Figure 3. ZIP12 knockdown inhibits hypoxia-induced increase in intracellular labile 

zinc concentration and proliferation of human pulmonary artery smooth muscle cells 

(HPASMCs). a. Representative wide-field microscope images of HPASMC transfected with 

eCALWY-4 probe. Hypoxia exposure produced a striking increase in intracellular free zinc 

(resulting in decreased FRET)10. This was inhibited by transfection with ZIP12 siRNA. 

TPEN-mediated Zn2+ chelation was used to derive maximum fluorescence and 100 

µM ZnCl2 in the presence of the Zn2+ ionophore and pyrithione (ZnPyr) was used to derive 

the minimum fluorescence. b. Representative traces showing the changes in fluorescence 

ratio of the eCALWY-4 probe. Steady-state fluorescence intensity ratio citrine/cerulean (R) 

was measured, then maximum and minimum ratios were determined to calculate free Zn2+ 

concentration using the formula: [Zn2+] = Kd×(Rmax-R)/(R-Rmin), where the Kd for 

eCALWY-4 is 630 pM, the maximum ratio (Rmax) was obtained upon intracellular zinc 

chelation with 50 µM TPEN and the minimum ratio (Rmin) was obtain upon zinc saturation 

with 100 µM ZnCl2 in the presence of the Zn2+ ionophore, pyrithione (5 µM)10. c. 

Quantification of intracellular zinc levels (n=10 each group). d. Chronic hypoxia (48h) 

increases ZIP12 mRNA levels in HPASMCs, which is inhibited by Slc39a12 siRNA (n=5 

each group). e. Representative immunoblot of ZIP12 demonstrating inhibition of hypoxia-

stimulated ZIP12 protein expression by Slc39a12 siRNA in HPASMCs (n=3). f. ZIP12 

siRNA inhibits hypoxia-induced proliferation in HPASMCs (n=5 each group). *P<0.05, 

***P<0.001 compared to control group, #P<0.05 compared to hypoxia group. Scr, scramble 

siRNA control. 
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Figure 4. Genetic disruption of ZIP12 in WKY rat attenuates hypoxia-induced 

pulmonary hypertension. a-c. Zinc finger nucleases were used to disrupt ZIP12 in the WKY 

strain. Rats deficient in ZIP12 demonstrate allele dose-dependent attenuation of hypoxia-

induced pulmonary hypertension compared to wild-type (WT) rats: a. mean pulmonary artery 

pressure (mPAP); b. right ventricular hypertrophy (RV/LV+Septum) (normoxia groups: n=10 

WT, 8 ZIP12+/-, 12 ZIP12-/-; hypoxia groups: n=14 WT, 16 ZIP12+/-, 12 ZIP12-/-); c. 

pulmonary arteriole muscularisation (n=5 each group). ***p<0.001 compared to normoxia 

WT group, #p<0.05 compared to hypoxia WT group after one-way ANOVA analysis 

followed by Bonferroni correction for multiple testing. d. ZIP12 was undetectable by 

Western blot in hypoxic ZIP12-/- rats but increased in hypoxic wide-type (WKY) rats (n=3 

each group). e. ZIP12 expression by immunohistochemistry of WT and ZIP12-/- rat lungs 

before and after hypoxia (2 weeks). f. ZIP12 expression in lungs from a chronic iron deficient 

rat, monocrotaline (MCT) rat and a patient with idiopathic pulmonary arterial hypertension 

(IPAH). g. Double immunofluorescence demonstrates co-localisation of ZIP12 and smooth 

muscle actin in the remodelled vessels from the IPAH patient. 
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Methods 

Animals 

Inbred Wistar-Kyoto (WKY, Charles River, UK) and Fischer 344 rats (F344, Harlan, UK) 

were used as original strains. Animals were maintained at a constant temperature (20°C to 

22°C) with a 12-hour on/12-hour off light cycle, with food and water ad libitum. All 

experiments were conducted under the project licence PPL70/7425 in accordance with the 

UK Home Office Animals (Scientific Procedures) Act 1986 (London, UK). To ascertain 

the pulmonary artery pressure phenotype, male rats (WKY, F344, congenic and sub-congenic 

strains, ZIP12 transgenic rats) aged 10-12 weeks were studied in batches, with the parental 

WKY strain included as an internal control in each batch studied. Sample sizes were chosen 

on the basis of experience of pulmonary artery pressure variation in the parental strains. A 

sample size of at least n=5 per group was predicted to detect a difference in mean pulmonary 

arterial pressure ≥ 5mmHg (standard deviation = 3) with 95% power with 95% confidence. 

Additional animals were studied to obtain sufficient tissue for supportive analyses. 

Generation of congenic and sub-congenic strains  

To investigate the involvement of the chromosome 17 QTL in the pulmonary hypertension 

(PH) phenotype, we introgressed the F344 chromosome QTL segment into the WKY genetic 

background by repeated backcrossing2. We produced a congenic rat strain, R47A 

(WKY.F344-D17Got91/D17Rat51), which contains 15Mbp from the F344 donor region that 

maps to the distal end of the QTL on the WKY background. 

Subsequently, we generated 3 sub-congenic strains Sub-A (WKY.F344-D17Got91 

/D17Rat47), Sub-B (WKY.F344-D17Rat47/D17Rat51) and Sub-C (WKY.F344-D17Rat131 

/D17Rat51). These three recombination events divide the R47A congenic interval into three 

smaller and overlapping sub-congenic intervals (Extended Data Fig. 1).  
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Microsatellite genotyping of congenic rats 

Congenic and sub-congenic rats were genotyped using simple sequence length polymorphism 

(SSLP) markers (Extended Data Table 2). In order to reduce the unknown regions between 

the markers, rats were also genotyped using primers specifically designed to amplify known 

regions containing insertions or deletions in one of the two parental strains (Extended Data 

Table 2). Genomic DNA was isolated from rat ear clippings using Hot Sodium Hydroxide 

and Tris (HotSHOT) extraction24. Forward primers were fluorescently labelled with 6-FAM. 

PCR products together with the fluorescent size marker (ROX 400HD, Applied Biosystems) 

were diluted in formamide and run on a 3730xl DNA Analyzer (Applied Biosystems). 

Results were analysed using GeneMapper v3.7 software (Applied Biosystems).  

Illumina Genome Sequencing Library preparations 

Five micrograms of male WKY/Ncrl (two animals) and F344/Ncrl (one animal) rats were 

used to construct paired-end whole-genome libraries with 300-550 bp insert size. Genomic 

DNA was prepared by standard phenol chloroform extraction followed by treatment with 

DNAse free RNAse. DNA quality was assessed by spectrophotometry (260/280 and 260/230) 

and gel electrophoresis before library construction. Genomic DNA was sheared for 90 sec 

(Covaris S2, KBioscience, Herts, UK), using 10% duty cycle, 5 intensity and 200 cycles per 

burst. The shearing efficiency was assessed by Qubit 2.0 fluorometer measurements (Life 

Technologies Ltd, Paisley, UK) and gel electrophoresis. The library was prepared as 

recommended (Illumina Genomic DNA sample prep kit protocol) with 9 cycles of PCR 

amplification (Illumina Inc., Hayward, CA). Constructed libraries were assessed with an 

Agilent 2100 bioanalyser using a HS DNA assay (Agilent Technologies, Edinburgh, UK) and 

quantified using a KAPA Illumina SYBR Universal Lib QPCR kit (Anachem Ltd, 

Bedfordshire, UK). The resulting libraries were sequenced on an Illumina HiSeq2000 
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following the manufacturer’s instructions. Polymorphisms were confirmed by capillary 

sequencing. 

Generation and genotyping of WKY.Slc39a12 (+/-) and (-/-) rats  

CompoZr™ Custom Zinc Finger Nucleases targeting the rat Slc39a12 gene were designed 

and purchased from Sigma-Aldrich (Extended Data Fig. 3). Pronuclei from fertilized WKY 

oocytes were microinjected with ZFN mRNA (2 ng/µl). Three out of eleven pups were 

positive for Slc39a12 mutations, as revealed by Cel-I surveyor assay and gene sequencing11. 

One pup (mutant 77) hosted a stop codon 15 amino acids from the ZFN binding site, resulting 

in a truncated protein of 490 amino acids (54 KDa), 198 amino acids smaller than the wild 

type protein, and introduced a sequence coding for 5’-ATTTAAAT-3’, a binding site for the 

SwaI restriction enzyme. Mutant 77 was selected as a founder to mate with a WKY female. 

Pups were genotyped by amplifying DNA and digesting with SwaI. The primers used to 

amplify the region of interest were forward 5’-GCAATGGTTTTCCACAGTGA-3’ and 

reverse 5’-GCGCACTGAGGCTTTAAGAA-3’. 

Pulmonary hypertension phenotyping 

Pulmonary hypertension was induced by placing animals in a normobaric hypoxic chamber 

(FIO2 = 10%) for 2 weeks or by subcutaneous injection of monocrotaline (60 mg/kg; Sigma-

Aldrich). The experiments were not randomised. All studies were performed using the same 

equipment and all haemodynamic measurements made by the same two operators. The 

operators were blinded to the genetic status of animals, which was confirmed after 

phenotyping. All histological assessments were made by two observers blinded to genetic 

status of animals. At the end of each experimental period, animals were weighed and 

anesthetized (Hypnorm 1ml/kg i.m.; Mydazolam 0.8ml/kg i.p.). Pulmonary arterial pressure 

was measured with a pre-curved catheter inserted through the right jugular vein. Systemic 
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blood pressure was assessed via carotid artery cannulation. Cardiac output was measured by 

thermodilution. Pulmonary vascular resistance (PVR) was calculated using the standard 

equation: PVR = mean pulmonary artery pressure / cardiac output. All data were recorded 

with a PowerLab Data Acquisition system (AD Instruments) and analysed using LabChart 7 

software. 

The animals were then killed and the heart dissected and individual chamber weights 

recorded. The ratio of right ventricle to left ventricle plus the septum mass (RV/LV+sep) was 

calculated as RV hypertrophy index. Some collected tissues were snap frozen in liquid 

nitrogen and stored at -80°C for further biochemical measurements. The left lung was fixed 

by inflation with 10% formalin in phosphate-buffered saline, embedded in paraffin, sectioned 

for histology. Transverse rat lung sections were processed for elastic van Gieson (EVG) 

staining. Peripheral vessels <100 µm diameter were counted at x40 magnification objective 

and pulmonary vascular remodelling was expressed as the proportion of vessels with double 

elastic lamina (>75% of the circumference as fully muscularised, 25-75% as partially 

muscularised) to total vessels counted. Counting was performed twice by observers blinded 

to treatment. 

Ex vivo angiogenesis assay of pulmonary arteriole 

Angiogenesis assay of arterial rings was performed as previously described25. Pulmonary 

arterioles (1st and 2nd order) were dissected from rat lungs viewed under the microscope. One 

mm sections were placed in matrigel (50µl/well) in a 96-well plate, allowed to gel for 30mins 

at room temperature, then incubated for up to 6 days with endothelial cell culture medium 

MV2 with 5% foetal calf serum (PromoCell). On days 3, 4, 5 and 6, the length of the longest 

sprouts was measured under the microscope (4 x objective). On day 6 arteriole ring 
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fluorescent images were taken by staining the tissue with calcein (Invitrogen) for 15 minutes 

at 37°C. 

Anti-ZIP12 Antibody production 

An antibody raised against the five last amino-acids at the C terminus (Ct) of both the human 

and the rat ZIP12 protein was produced in rabbits following previous methodology26. Rabbits 

were immunized with synthetic peptides conjugated to keyhole limpet hemocyanin 

([CYS(KLH)]QNIKI). Peptide sequence was confirmed to be ZIP12 specific using RStudio.  

Immunized rabbit serum containing anti-ZIP12 antibody specificity was confirmed by 

immunoblotting with rat lung lysates or human pulmonary smooth muscle cells. A single 

band at about 70 kDa was visible in the immunoblots. 

Lung Immunohistochemistry and Immunofluorescence 

Human IPAH and control lung samples were obtained from the Imperial College pulmonary 

hypertension biorepository (ethics reference numbers: 01-210 & 2001/6003) where samples 

are deposited following informed patient consent. Anonymised Kyrgyz high-altitude lung 

samples were obtained from post-mortem lung following approval of the local ethics 

committee (reference 02-23/880).  

Lung sections were immunostained with rabbit anti-ZIP12 (1:1000), Ki67 (1:50; Thermo 

Scientific) and rabbit anti-CAIX (1:100) antibodies. For immunohistochemistry, horseradish 

peroxidase conjugated secondary anti-rabbit antibody (1:200) was used. Double 

immunofluorescence with anti-αSMA (1:100) was performed using fluorescence secondary 

antibodies, anti-mouse Alexa 488 and anti-rabbit Alexa 568 (1:2000, Invitrogen). Images 

(green for ZIP12 and red for αSMA) were detected under Leica confocal microscope (TCS 

SP2 AOBS). 
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Human pulmonary artery smooth muscle cell culture 

Human pulmonary artery smooth muscle cells (HPASMCs) from PromoCell and Lonza were 

grown in Human Smooth Muscle Cell Growth Medium 2 (PromoCell). The cells were 

cultured under normal oxygen tension (20% O2, 5% CO2) or exposed to hypoxia (2% O2, 5% 

CO2, 92% N2) for 48-72hr. A Bromodeoxyuridine (BrdU) cell proliferation assay (Millipore) 

was used to assess cell proliferation following manufacturer’s conditions. 

ZIP12 siRNA transfection  

Cells were transfected overnight with 50pmol siRNA against ZIP12 (s8397, Ambion), or 

negative siRNA (4390844, Ambion) as a control, using Lipofectamine RNAiMAX 

(Invitrogen Life Technologies) according to manufacturer’s conditions.  

Quantification of actin fibre formation 

Cells were cultured on plastic coverslips (Nunc), transfected with scramble or ZIP12 siRNA 

and exposed to hypoxia as described previously. After 48h exposure, cells were fixed with 

4% formaldehyde solution in phosphate buffered saline (PBS) for 10 minutes at room 

temperature. Cells were then incubated with Alexa 568-conjugated phalloidin (1/200; 

Invitrogen) for F-actin detection under confocal microscopy. Sequential XYZ-sections 

(approximately 12 section of 1µm2 / view) were obtained and 3D images were reconstructed. 

Quantification of actin stress fibres was determined by volume rendering in Image-J. Actin 

volume per cell was expressed as fold increase from normoxic control (value set at 1).  

Quantification of zinc concentration by FRET measurement  

Cells on coverslips were washed twice in Krebs-HEPES-bicarbonate (KHB) buffer (140mM 

NaCl, 3.6mM KCl, 0.5mM NaH2PO4, 0.2mM MgSO4, 1.5mM CaCl2, 10mM Hepes, 25mM 

NaHCO3), which was warmed, bubbled with 95% O2: 5% CO2, set to pH 7.4, and contained 
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3mM glucose. Imaging of zinc using eCALWY sensors was carried out as optimized 

before10,27. Briefly, cells were maintained at 37°C throughout with a heating stage (MC60, 

LINKAM, Scientific Instruments), and KHB buffer was perfused (1.5 to 2ml/minute) with 

additions as stated in the Figures. Images were captured at 433 nm monochromatic excitation 

wavelength (Polychrome IV, Till photonics) using an Olympus IX-70 wide-field microscope 

with a 40x/1.35NA oil immersion objective and a zyla sCMOS camera (Andor Technology) 

controlled by Micromanager software28. Acquisition rate was 20 images/minute. Emitted 

light was split and filtered by a Dual-View beam splitter (Photometrics) equipped with a 

505dcxn dichroic mirror and two emission filters (Chroma Technology - D470/24 for 

cerulean and D535/30 for citrine).  

Image analysis was performed with ImageJ software29 using a home-made macro and the 

fluorescence emission ratios were derived after subtracting background. Steady-state 

fluorescence intensity ratio citrine/cerulean (R) was measured, then maximum and minimum 

ratios were determined to calculate free Zn2+ concentration using the following formula: 

[Zn2+] = Kd×(Rmax-R)/(R-Rmin). The maximum ratio (Rmax) was obtained upon intracellular 

zinc chelation with 50 µM TPEN and the minimum ratio (Rmin) was obtain upon zinc 

saturation with 100 µM ZnCl2 in the presence of the Zn2+ ionophore, pyrithione (5 µM)10.  

HIF-motif analysis and cloning  

HOMER9 was used to scan for HIF-1α and HIF-2α recognition motifs in the region 2kb up-

stream and 1.5 kb down-stream of the ZIP12 transcription start site. Results with a HOMER 

score < 6.5 were discarded. A 5’ region of ZIP12 gene containing these motif (HRE) (human 

(hg19) chr10:18,240,587-18,242,100) was cloned into the multicloning site of pGL4.10, 

which encodes the luciferase reporter gene luc2, by Gibson Assembly (NEB, E2611S). Three 
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nucleotide substitutions in the core of the predicted HIF1/2α binding site motif were created 

by site-mutagenic PCR to produce a disabling mutant (Figure 2 d).  

Transfection and luciferase assay 

HPASMCs were seeded in 24 well plates at 70-80% confluence. Cells were transfected with 

300ng of each plasmid together with 2ng of Renilla plasmid using Lipofectamine® 2000 

(Life Technologies), exposed to hypoxia and lysed according to the manufacturer’s 

conditions. Luciferase activity was measured using Dual-Luciferase® Reporter Assay 

Chemistry (Promega) as previously described30. Experiments were repeated in two cells lines, 

n=6 per line.  

Chromatin immunoprecipitation and PCR 

Specific protein-DNA interactions were examined by chromatin immunoprecipitation (ChIP) 

followed by quantitive PCR (Chromatin immunoprecipitation Assay Kit, Millipore). Protein-

DNA crosslinks were achieved by fixation with 1% formaldehyde for 10 minutes at room 

temperature. DNA-protein complexes from 2x106 cells were sheared to lengths between 200 

and 500 base-pairs by sonicator (Bioruptor). The precleared fragments were incubated with 

10 µg of HIF-1α or HIF-2α specific antibody (Novus Biologicals), or without antibody (as a 

negative control) overnight, followed by immunoprecipitation by Protein A Agarose/Salmon 

Sperm DNA (50% Slurry). The crosslinks were reversed by heating at 65°C overnight, 

followed by Proteinase K digestion at 45°C for 2 hours. DNA was then recovered with 

QIAquick PCR purification kit (Qiagen) for quantitative PCR to prove affinity against ZIP12 

promoter region (Figure 2d). Experiments were conducted in two separate cell lines (n=3 

each) and gave the same result.  

Quantitative PCR was performed as previously described in the methodology, using 1ul of 

DNA sample, and using the forward primer 5-TTTCCCAACCTGGGTCCTAT-3 and the 
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reverse primer 5-AGCAGCCAAAAAGCTTGCTA-3. Ct values were normalized compared 

to the values detected in the starting non-inmunoprecipitated DNA sample (input). Protein-

DNA affinity was confirmed when normalized Ct values were above the basal levels 

measured in the negative control.  

Quantitative real time RT-PCR 

RNA was extracted from lungs using RNeasy Mini Kit (Qiagen). PCR was performed with 

an ABI 7500 Sequence Detection System (Applied Biosystems). Quantitative PCR was 

performed using a two-step protocol starting with cDNA synthesis using the ImProm-II™ 

Reverse Transcription System (Promega), followed by PCR using the Power SYBR Green 

PCR Master Mix  (Applied Biosystems). A total of 100ng of cDNA per sample was used. All 

samples were amplified using biological triplicates with two technical replicates per sample. 

The 7500 Sequence Detection System software (Applied Biosystems) was used to obtain CT 

values. Results were analysed using the comparative CT method31. Samples were normalized 

to a reference gene, Ubc (for rat samples) or Cyclophilin (for human cell samples), to account 

for cDNA loading differences. 

Western blot 

Frozen rat tissues (lungs) and cell pellets were homogenized in RIPA buffer (50mM tris-HCl, 

pH 8.0, 150mM sodium chloride, 1.0% Igepal, 0.5% sodium deokycholate, 0.1% sodium 

dodecyl sulphate) (Sigma) supplemented with protease inhibitor (Roche). Western blotting 

was performed using Mini-PROTEAN® TGX™ Precast Gels (Bio-rad) following the 

manufacture’s suggestions. Blots were incubated for 1h at room temperature with Anti-ZIP12 

(1:10,000); Anti-HIF1α (1:1000, Novus Biological); or Anti-HIF2α (1:1000, Novus 

Biological). Proteins were detected by Clarity western ECL substrate (Bio-rad). Optical 
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densities of individual bands were measured using ImageJ software and protein expressions 

were standardised with Vinculin.  

Statistical analysis  

Data are presented as mean ± the standard error of the mean (SEM). Data were tested for 

normality using the Kolmogorov-Smirnov. All data were confirmed normally distributed with 

similar variance between comparator groups. Data were analysed using one-way ANOVA 

followed by Bonferroni post-test adjustment for multiple comparisons or unpaired t-test. 

Graphpad Prism was used for all statistical analysis. 

Other Bioinformatics analyses 

The Ensembl database32 was mined with the BioMart tool33 to identify all transcribed 

elements in the CI region. Search was limited to chromosome 17 between positions 

85,072,475-93,347,758. PolyPhen analysis was used to predict the possible impact of 

described SNP on amino acid substitution on the structure and function of a human protein34.  
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Figure 3. 
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