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The engineer James Watt (1736–1819) was a pioneer of steam power in

the United Kingdom. His practical work revolutionised the rather inefficient

atmospheric engines of his predecessors such as Newcomen. He vastly im-

proved these engines in a variety of ways so that steam power became the

“prime mover” of his age. In doing so he accelerated the Industrial Revolu-

tion and helped to usher in the modern industrial era.

In this article I want to re-examine a mechanism he invented to constrain

the piston of a steam engine to move in a straight line. It consists of the

simple linkage system illustrated in Figure 1. This may appear rather trivial

to us now but with the rise of the importance of mechanical engineering dur-

ing the Victorian period this, and related mechanisms, had many important

applications. Such linkages still find many contemporary uses and modern

research in robotics and flexible structures rely on the geometry which we

are going to examine here.

Watt published his linkage in a patent dated August 24th 1784 and it is

important to remember that he did not claim it produced a true straight line.

He understood its importance and in his old age he wrote to his colleague

Matthew Boulton

Although I am not over anxious after fame, yet I am more proud

of the parallel motion than of any other invention I have ever

made.
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Figure 1: Watt’s linkage

The parallel motion is a simple development of the linkage shown in Figure

1 and this is the phrase used in historical engineering books.

Mathematical functions

The mathematical description of Watt’s linkage will be in terms of implicit

functions and so we shall consider these first. The usual modern definition of

a function f is a rule which takes each element of the domain X and assigns

a unique element in the codomain Y . Sometimes we think of the rule as a

mapping or a procedure. Sometimes we write the function f : X → Y as

y = f(x), where x ∈ X and y ∈ Y .

Some examples, where X and Y are both the set R of real numbers, are

f(x) = x3 and f(x) = ex. It is surprising to learn that this particular defi-

nition of function is a relatively recent innovation. I’d like in this article to

point out an older notion of function which, because of some rather exciting

new techniques for solving systems of polynomial equations, is likely to be-

come more important again. These techniques rely on the pure mathematics

of rings and groups, but already have important applications in mechanical

engineering and robotics design.

Just over one hundred years ago the English mathematician G. H. Hardy,
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in his famous book [5], made the following remarks about functions.

We must point out that the simple examples of functions men-

tioned above possess three characteristics which are by no means

involved in the general idea of a function, viz:

1. y is determined for every value of x;

2. to each value of x for which y is given corresponds one and

only one value of y;

3. the relation between x and y is expressed by means of an

analytical formula.

[...] All that is essential is that there should be some relation

between x and y such that to some values of x at any rate corre-

spond values of y.

Hardy then goes on to give a number of further examples to illustrate

these ideas which can be broadly separated into two groups. Firstly are

those which involve a formula, equation or algebraic expression in x and y.

This might include an infinite sum such as a series. The second are when the

relationship between x and y follow from some geometrical construction. In

this article we shall also look at both these constructions. In particular we

shall find an equation which describes the geometric curve shown in Figure

1 by algebraic means with the help of a computer algebra system.

To begin, for a clearer separation between algebraic and the more geomet-

ric notions of function, we shall go back even further and look at the work

of Leonhard Euler. Euler wrote rather a lot of mathematics. For us, the

separation between algebraic and geometric notions of function are clearly

explained by him in the two volumes [2] and [3].

§4. A function of a variable quantity is an analytic expression

composed in any way whatsoever of the variable quantity and

numbers or constant quantities. Hence every analytic expres-

sion, in which all component quantities except the variable z are
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constants, will be a function of that z; thus a + 3z; az − 4z2;

az +
√

a2 − z2; cz; etc. are functions of z. [2]

Here Euler proposes that a function is that which can be expressed using an

analytic expression. This notion is not that of an input-output machine, in

which the domain and codomain are distinguished. “§16. If y is any kind

of function of z, then likewise, z will be a function of y.” It is important to

realise in connection with this statement that the same algebraic expression

represents both functions. For example, if we think about y = x3 again, for

Euler, this is as much a function of y as it is a function of x. It all depends

on how you are thinking about it at any moment.

A result of this is that functions can be multiple valued: “§10. Finally

we make a distinction between single-valued and multiple-valued functions.”

In particular, Euler gives
√

2z + z2 as an example of a two-valued function.

Whatever value is assigned to z, the expression
√

2z + z2 has a

twofold significance, either positive or negative.

As another example, the usual way of expressing a circle, for example

x2 + y2 = 1, (1)

is to Euler a “function”. It fails to be a function in the modern sense, even if

restricted to the domain (−1, 1), since to each value of x in this range there

are two choices for y. Likewise, for each value of −1 < y < 1 there are two

possible values of x. The modern definition requires only one value for each

x in the domain. This is not just nit-picking, but an important restriction

on what can be a function.

We compare this with the opening of the next volume [3], in which quite

a different notion of function is examined. This is of a single-valued function

of a real variable, which can be represented by a graph.

Thus any function of x is translated into geometry and determines

a line, either straight or curved, whose nature is dependent on the

nature of the function. [3, §6]
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Conversely, explains Euler, “a curve can define a function”. It is this notion

of function as curve in space to which [3] is devoted. In particular, the topic

of curves generated by an algebraic equation relating x and y is developed in

detail in [3].

What both these definitions have in common is the notion we would

describe as an implicit function. Implicit functions do not, I think, have the

popularity they deserve. In this article I want to show some situations in

which using them leads to tidier mathematical results, and then to explain

some applications in which they arise naturally. In particular, the curve

shown in Figure 1 will be described by an implicit function.

The straight line

The straight line is usually described by the equation y = mx + c. The first

point to note is that the value of y is given as an explicit algebraic expression

in x, namely mx + c. So, it is clear that to each x is assigned a unique value

of y. As a result of this we can draw a graph, and we find that m is the

slope, and c the intersection of the line with the y-axis.

Conversely, if we have a line in the plane, then unless the line is vertical,

we can write the equation relative to a pair of axes. But such a description

cannot capture the case in which the line is parallel to the y-axis. Here, we

have only one value of x for which there exists values of y, and indeed every

value of y is identified with this value of x. We would need to write this line

as x = a, say.

However, if we expand our notion of function to include “expressions

composed howsoever from the quantities”, we may include equations such as

the following.

ax + by = p. (2)

In this, we can recover y = mx+ c by division, provided b 6= 0. If b = 0 then,

ax = p, which expresses a vertical line. Initially this equation appears more

complex, having three unknowns a, b and p instead of the usual two. But it
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is more general. I shall now explain why I prefer this form with some more

substantial observations.

Let us assume that we have two different points (xa, ya) and (xb, yb). The

task is to find a straight line between them. It turns out that the expression

representing a straight line through these two points is given by the standard

slope-intercept form by a rather complicated equation

y =
(ya − yb)x + xayb − xbya

xa − xb

. (3)

If xa = xb then we would divide by zero, which is forbidden. This corresponds

to a vertical line, and as before, we cannot express this in the form y = mx+c.

If we re-write (3) in the form (2), then we have

(yb − ya)x + (xa − xb)y = xayb − xbya.

This appears to be complex, but there is a symmetry between the xa, xb,

ya and yb which is arguably easier to see, and hence remember, than in (3).

Putting the point a on the y-axis as (0, a), and the point b on the x-axis as

(b, 0) this reduces to the form

ax + by = ab.

So an easy way to remember the formula is to look at the two axis intercepts:

there is no need to calculate the slope, just to find the equation of the line.

If we define p := ab
√

a2+b2
then this can again be re-written in the form

sin(t)x + cos(t)y = p,

where t is the angle of the line to the x-axis and p now represents the per-

pendicular distance of the line from the origin. In this form we recover an

equation in only two unknowns, t and p. In all these forms the symmetry

between x and y, and the two interpolated points, is arguably more natural

than in the traditional form of the equation for a straight line.

Circles are almost always expressed in an implicit way, as is the ellipse

x2

a2
+

y2

b2
= 1.
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If we use the form (2) for the equation of a line, then it an exercise for you

to show that the tangent to this ellipse, through the point (x0, y0) is given

by
xx0

a2
+

yy0

b2
= 1.

Again, this seems to be simpler and more general than the form y = mx + c

would permit.

Solving the cubic equation

In this section I want to illustrate how the straight lines (2) can help us solve

a cubic equation

w3 + aw2 + bw + c = 0,

by graphical means. Our first observation is that by defining z = w − a

3
we

have

z3 + pz + q = 0. (4)

Notice the z2 term is missing. The equation (4) is known as the reduced cubic

and it is the first step in the method of finding the general formula for the

roots of the cubic, which [4] develops in full detail.

We shall divide by z3 and then define p = x and q = y. This gives us the

equation
x

z2
+

y

z3
= −1.

For each value of z this gives us a straight line. Furthermore, for each point

on this straight line the equation (4) holds. If we think of the plane as the

(p, q) space of all cubic equations (4), then points on these straight lines are

solutions of the equation (4). Hence, to solve a particular equation (4) we

look to see which line(s), if any, pass through the point (p, q).

These lines have been plotted in Figure 2. Let us examine the line labeled

z = −2. This certainly passes through the point p = 100, q = 208. Hence,

we know that the reduced cubic z3 + 100z + 208 = 0 has a real root z = −2.

Furthermore, from Figure 2 it appears that every point in the (p, q) plane
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Figure 2: Graphical solution to the cubic equation: real solutions

has at least one line through it, so every reduced cubic has at least one real

root. To the left of the figure it appears that we have a region in which three

lines always pass through a given point (p, q). Hence, here we always have

three real roots for (p, q) in this region.

The boundary of the region in which the cubic has three real roots is

given by the equation

4p3 = −27q2,

which is another example of an implicit function.

Visualizing implicit functions

One clear advantage of the contemporary function-as-function-machine ap-

proach is the ease with which such functions can be visualised. You can

simply plot the graph, or have a machine approximate this for you. Func-

tions defined implicitly by equations are hard to vizualise, at least initially.
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Figure 3: Other variations of the four-bar linkage

The following is a key observation when trying to sketch the graph of an

expression such as p(x, y) = 0. We begin by factoring p(x, y) over the real

numbers. The expression is satisfied if any of the factors equal zero. Hence,

we plot the graphs of each of the factors separately, and then combine them

by superposition. The graph of p(x, y) = 0 is the superposition of the graphs

of its factors. For example, the graph of the expression x2 = y2, or rather

(x − y)(x + y) = 0, is the superposition of the two lines y = x and y = −x.

Irreducible expressions, such as (1), have their own particular forms,

something which [3] examines at length. We know this, from familiarity,

to be a circle of radius 1, centered at the origin. Familiarity with the other

second order curves, that is to say conic sections, is something which comes

with regular use. Your might like to discover why adding x2y2 to the right

hand side of (1) might be described as “squaring the circle”.

Computer algebra systems, or other technology, can help here, although

you should beware that many CAS’s fail to plot simple implicit functions

by failing to factor the expressions and act on this simple observation. For

example, (x − 2)2 = 0 fails to change sign for any x and y, and as a result

an embarrassing number of mainstream CAS’s fail to plot this convincingly

as the line x = 2.
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Figure 4: A schematic of general four-bar linkages

Linkages

To illustrate somewhat more substantially the contemporary importance of

implicit functions, we shall examine Watt’s linkage, and four-bar linkages in

general. Watt’s linkage is shown in Figure 1. This consists of three movable

bars, fixed to a base which constitutes a fourth bar. We are interested in the

path of the pen, fixed to the middle bar, over all physically realistic positions

of the linkage. You can see this path in the figure.

The original purpose was to constrain the movement of a piston in the

cylinder of a steam engines to move in an approximately straight line. Other

four-bar linkages which were proposed for this purpose are shown in Figure

3. In the linkage to the left, the pen is on an extension of the middle link.

In the linkage to the right, the pen is connected to the middle linkage, but is

offset from the linkage itself, and this represents the most general situation.

For more details of the history of the applications of this problem see [1].

From our point of view, all these will be treated in an identical way, as

shown in Figure 4. From this sketch, we are most interested in the locus of P ,

for all positions of the linkage. It is very worthwhile making physical models

of these linkages, either from commercially available model kits or from mate-

rials you have on hand. Alternatively you might like to implement these on a

dynamic geometry package, such as GeoGebra (http://www.geogebra.at/).

We shall take a more algebraic approach. We first notice that the distance

between (x1, y1) and (x2, y2) is fixed, at r1 say. Hence by the Pythagorean

Theorem we have

(x1 − x2)
2 + (y1 − y2)

2 = r2

1.

10



Indeed, to describe the whole linkage three more applications of the Pythagorean

Theorem provide us with the following equations.

(x2 − x3)
2 + (y2 − y3)

2 = r2

2,

(x3 − x4)
2 + (y3 − y4)

2 = r2

3,

(x4 − x1)
2 + (y4 − y1)

2 = r2

4.

Now, to describe the position of P = (x0, y0), relative to (x2, y2) and (x3, y3)

we need two further applications

(x2 − x0)
2 + (y2 − y0)

2 = r2

5,

(x3 − x0)
2 + (y3 − y0)

2 = r2

6.

Since we fix both ends of the linkage, we specify (x1, y1) and (x4, y4), hence

defining r4 and making one equation redundant. The task is to solve the

system consisting of the remaining five equations. By “solve”, we mean to

specify the lengths of the links r1, . . . , r6, and then to eliminate (x2, y2) and

(x3, y3) to leave a single equation in only (x0, y0) as the solution.

This looks hopeless, but in fact it can be done with computer algebra in

a straightforward way using a concept known as Gröbner bases. If you have

a computer algebra system, such as Maple, Mathematica, Maxima or some

other CAS, you will probably already have the software necessary to do this.

For reference, if you have Maple 9.5, then the commands look something

like this.

> restart:with(Groebner):with(Ore_algebra):

> P1:=(x1-x2)^2+(y1-y2)^2-r1^2;

> P2:=(x2-x3)^2+(y2-y3)^2-r2^2;

> P3:=(x3-x4)^2+(y3-y4)^2-r3^2;

> P4:=(x4-x1)^2+(y4-y1)^2-r4^2;

> P5:=(x0-x2)^2+(y0-y2)^2-r5^2;

> P6:=(x0-x3)^2+(y0-y3)^2-r6^2;
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Notice that we are using an expression (x1 −x2)
2 + (y1 − y2)

2 − r2
1 instead of

an equation. This is really only an input syntax issue, and from this point

onwards it is implied that such an expression represents an equation with

right hand side zero.

Next to examine in more detail a specific example we assign some lengths

to these expressions.

> y1:=0; y4:=0; x1:=-5; x4:=5;

> r1:=5; r2:=2; r3:=5;

> r5:=1; r6:=1;

> S := [P1,P2,P3,P5,P6];

Notice that we have not included the redundant equation P4 in the list S,

which is the resulting system of expressions representing our equations. Next

the CAS computes the “Gröbner basis” for this system, and then we remove

any expressions which have any of the variables x2, y2, x3, or y3.

> LinkageGB:=gbasis(S,lexdeg([x2,y2,x3,y3],[x0,y0])):

> Linkage:=op(remove(has,LinkageGB,{x2,y2,x3,y3})):

> factor(Linkage);

The result of this calculation, which took approximately six minutes to com-

plete, is the expression

(

y0
6 + 2 y0

4 − 99 y0
2 + 3 x0

2y0
4 − 96 x0

2y0
2 + 2401 x0

2 + 3 x0
4y0

2 − 98 x0
4 + x0

6
)2

.

(5)

In terms of the solution to the original system, this reduces to

y0
6+2 y0

4−99 y0
2+3 x0

2y0
4−96 x0

2y0
2+2401 x0

2+3 x0
4y0

2−98 x0
4+x0

6 = 0.

(6)

While we have not been able to find y0 in terms of an explicit expression in

x0, even finding this implicit function is quite an achievement. In fact, it is

hopeless to suppose that the figure of eight curve shown in Figure 1 could

result in a single-valued y0 = f(x0).
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At this point you may be feeling some disquiet that I am not going to

explain exactly what a Gröbner basis is or exactly what you have done with

it. That is your task to investigate using the many available references. A

good place to start is the “help” files on your computer algebra system. For

example, in Maple type help(Grobner);. What I do hope to convince you

of is that these (relatively) new computational techniques are particularly

useful by applying them to a classical problem which does not appear to

be solvable by traditional means, such as those of [6]. Indeed, so useful

are they for solving apparently hopeless systems, such as that above, that I

confidently predict that the implicit function itself will become much more

important and widely used.

In fact, we can do rather a lot more with these techniques. In particular,

rather than specifying the end points and linkage lengths at the outset, we

shall keep these variables in the system of equations. Now we shall solve

the same system, and eliminate (x2, y2) and (x3, y3), finding a single implicit

equation for (x0, y0), in terms of the end points and linkage lengths.

This appears to be an even more hopeless a task, since we have five nonlin-

ear equations with four variables to eliminate and a further nine parameters

which will be left. And yet it can be done. Specifying only that y1 = 0, so

that one end of the linkage is effectively anchored on the x-axis, Maple is

(eventually) able to find the required equation. The restriction y1 = 0 is not

necessary, but it does make the computations finish in a sensible amount of

time. Unfortunately even then, this is rather too long to print here, having

some 27255 terms in the equation.

Having obtained this equation we can use it to investigate the general

behavior of four-bar linkages in which one end is anchored to the x-axis. A

first experiment is suggested by Figure 1. Notice that the end points of the

linkage can be moved to various positions along the x-axis. While these have

been labeled from 0 upwards on the diagram, it makes sense for us to have

(x1, y1) = (−r, 0), (x4, y4) = (r, 0)
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to obtain symmetry, and then as before take

r1 = r3 = 5, r2 = 2, r5 = r6 = 1.

Doing this we obtain, as a polynomial in r, the following.

r4
(

y2

0 + x2

0

)

+ 2r2
(

y4

0 − 26y2

0 − x4

0 + 24x2

0

)

+
(

y2

0 + x2

0 − 24
)2 (

y2

0 + x2

0

)

= 0.

Not surprisingly, by substituting r = 5 into this equation we recover (6).

Figure 5 illustrates the locus of the center point in the middle arm of

Watt linkages, for various values of r. When r = 0 both long arms are fixed

at the origin, and we have the circle y2
0 + x2

0 = 24. The figure of eight shape

shown in the model of Figure 1 is clearly reproduced for r = 5 in Figure 5,

and the algebraic expression for this curve is given in (6).

Recall that Watt’s original intention was to draw an approximate straight

line. For r = 2, Figure 5 appears to show a much longer, approximately

straight section in the curve. Perhaps moving the fixed points to r = 2,

rather than r = 5, gives a better straight line? Indeed it does, and this

configuration was actually proposed for this purpose by the Russian math-

ematician Pafnuty Chebyshev (1821–1894), who was fascinated by linkages.

We shall refer to this as “Chebyshev’s approximate straight line” and you

are encouraged to actually make this for yourself, or at the very least sketch

the linkage. If you do this you will see how the two disconnected parts of the

curve correspond to physical configurations of the linkage.

Notice also that the curve shown to the left of Figure 3 looks very similar

indeed to that for Watt’s linkage with r = 2. And yet Watt’s linkage has

quite a different form than this model, in particular the pen on Watt’s linkage

lies mid-way along the center link. This suggests another line of inquiry: can

we find more than one linkage which generates a particular curve?

To do this let us start with our general expression for the four-bar linkage.

Into this we substitute the values for Chebyshev’s approximate straight line

to obtain the equation
(

y0
6 − 40 y0

4 + 384 y0
2 + 3 x0

2y0
4 − 96 x0

2y0
2 + 784 x0

2 + 3 x0
4y0

2 − 56 x0
4 + x0

6
)2

= 0.

(7)
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Figure 5: The locus of Watt’s linkage for various separations r.
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This is plotted in Figure 5, and labeled r = 2. Now we compare the co-

efficients of (7) with those of the 27255 terms in the general equation. Each

comparison provides an equation in the unknown positions of the end points,

and also the lengths of the links. Again we have a large number of non-linear

equations in nine unknowns. How can we possibly hope to solve these, and

hence find alternative four-bar linkages which produce Chebyshev’s approx-

imate straight line? This is simple; we apply the Gröbner basis technique

again to solve this system of equations, just as we did before.

One result is

(x1, y1) = (0, 0), (x4, y4) = (2, 0)

and

r1 =
5

2
, r2 =

5

2
, r3 = 1, r5 =

5

2
, r6 = 5.

A model of this linkage is shown to the left of Figure 3. Having found

this result by algebraic techniques, it is relatively straightforward to find a

simple and purely geometrical proof that the curves generated are identical

by drawing the two alternative linkages on the same diagram. If you use

dynamical geometry then the proof “jumps out” as the linkages move in

unison.

What about the most general case? If we take a linkage, such as that

shown to the right of Figure 3, then it is always possible to find exactly two

others which generate the same curve. This is the famous triple generation

theorem, and a simple purely geometric proof is given in, for example, [7].

What these algebraic expressions, and their associated graphs, lack is

the movement obtained by the linkages. For example, if the point (x2, y2)

is rotated at a constant speed, then how does the velocity of P change?

These linkages have a satisfying aesthetic quality to them, which can only be

experienced by making the linkages. This can be either with a physical model

of your own, or virtually in dynamic geometry. For a particularly intriguing

example, try r1 = r3 = 5, r2 = 6, the point P the midpoint of the bar, that

is to say r5 = r6 = 3, and with (x1, y1) = (−2, 0), and (x1, y1) = (2, 0). Many

other configurations are possible.
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The four-bar linkage is perhaps the simplest of mechanisms: a three bar

linkage forms a triangle and hence is rigid, and any more bars give the po-

tential for greater degrees of freedom. The techniques I have sketched above

are becoming widely used for the design of mechanisms in general, and the

design of robots in particular. They allow the user to accurately model the

movement of complex joints, both in the plane and in three dimensions.

They allow a designer to search for alternative configurations of links with

the same, or similar, paths. Furthermore, there are many other situations in

mathematics which generate systems of polynomial equations. Where these

need to be manipulated, the Gröbner basis technique is invaluable. All that

can be hoped for as an outcome in general is an implicit function. As a result

of this, I predict that implicit functions will become much more important

in the near future.
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