
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prolonged diet-induced obesity in mice modifies the
inflammatory response and leads to worse outcome after stroke

Citation for published version:
Maysami, S, Haley, MJ, Gorenkova, N, Krishnan, S, McColl, BW & Lawrence, CB 2015, 'Prolonged diet-
induced obesity in mice modifies the inflammatory response and leads to worse outcome after stroke'
Journal of neuroinflammation, vol. 12, pp. 140. DOI: 10.1186/s12974-015-0359-8

Digital Object Identifier (DOI):
10.1186/s12974-015-0359-8

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of neuroinflammation

Publisher Rights Statement:
© 2015 Maysami et al. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public
Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://doi.org/10.1186/s12974-015-0359-8
https://www.research.ed.ac.uk/portal/en/publications/prolonged-dietinduced-obesity-in-mice-modifies-the-inflammatory-response-and-leads-to-worse-outcome-after-stroke(20c31d0c-789d-4ae8-aade-c7c6b972230b).html


JOURNAL OF 
NEUROINFLAMMATION

Maysami et al. Journal of Neuroinflammation  (2015) 12:140 
DOI 10.1186/s12974-015-0359-8
RESEARCH Open Access
Prolonged diet-induced obesity in mice
modifies the inflammatory response and
leads to worse outcome after stroke

Samaneh Maysami1,2, Michael J. Haley1, Natalia Gorenkova1, Siddharth Krishnan1, Barry W McColl3

and Catherine B Lawrence1*
Abstract

Background: Obesity increases the risk for ischaemic stroke and is associated with worse outcome clinically and
experimentally. Most experimental studies have used genetic models of obesity. Here, a more clinically relevant
model, diet-induced obesity, was used to study the impact of obesity over time on the outcome and inflammatory
response after stroke.

Methods: Male C57BL/6 mice were maintained on a high-fat (60 % fat) or control (12 % fat) diet for 2, 3, 4 and
6 months when experimental stroke was induced by transient occlusion of the middle cerebral artery (MCAo) for
either 20 (6-month diet) or 30 min (2-, 3-, 4- and 6-month diet). Ischaemic damage, blood–brain barrier (BBB)
integrity, neutrophil number and chemokine expression in the brain were assessed at 24 h. Plasma chemokine levels
(at 4 and 24 h) and neutrophil number in the liver (at 24 h) were measured. Physiological parameters (body weight
and blood glucose) were measured in naïve control- and high-fat-fed mice at all time points and blood pressure at
3 and 6 months. Blood cell counts were also assessed in naïve 6-month control- and high-fat-fed mice.

Results: Mice fed a high-fat diet for 6 months had greater body weight, blood glucose and white and red blood
cell count but no change in systolic blood pressure. After 4 and 6 months of high-fat feeding, and in the latter
group with a 30-min (but not 20-min) occlusion of the MCA, obese mice had greater ischaemic brain damage. An
increase in blood–brain barrier permeability, chemokine expression (CXCL-1 and CCL3), neutrophil number and
microglia/macrophage cells was observed in the brains of 6-month high-fat-fed mice after 30-min MCAo. In
response to stroke, chemokine (CXCL-1) expression in the plasma and liver was significantly different in obese mice
(6-month high-fat fed), and a greater number of neutrophils were detected in the liver of control but not obese
mice.

Conclusions: The detrimental effects of diet-induced obesity on stroke were therefore dependent on the severity
of obesity and length of ischaemic challenge. The altered inflammatory response in obese mice may play a key role
in its negative impact on stroke.
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Background
Stroke is a major cause of death and disability and a key
health and socioeconomic burden, yet there is no widely
applicable treatment, despite many promising candidates
being identified in preclinical studies. One reason for
this lack of translation could be due to experimental
studies in stroke failing to adequately consider the
underlying status of a typical stroke patient, who usually
present with diabetes, hypertension, atherosclerosis,
metabolic syndrome or obesity [1, 2].
Obesity is a major health problem worldwide, and in

the UK in 2010, over a quarter of adults were classified
as obese. Obesity is associated with several risk factors
for stroke incidence and outcome including metabolic
syndrome, hypertension, diabetes and hypercholesterol-
aemia. However, obesity in its own right has now been
identified as an independent risk factor for stroke and is
often associated with worse clinical outcome [3]. Con-
sistent with this, ischaemic damage, blood–brain barrier
(BBB) breakdown and the incidence of haemorrhagic
transformation are increased in obese rodents in re-
sponse to experimental stroke [4–8]. Most of these stud-
ies have been performed in rodents that are genetically
deficient in the appetite-regulating adipokine leptin (ob/
ob mice) or have a defective leptin receptor (db/db mice
and fa/fa Zucker rat). In addition to its effects on energy
homeostasis, leptin regulates other important biological
functions such as the immune system [9], and acute lep-
tin administration is neuroprotective against ischaemic
injury in mice [10]. However, the effects of obesity on
stroke outcome in obese ob/ob mice are not reversed by
leptin administration [8] and are therefore likely to be
due to factors associated with adiposity and not leptin
deficiency. Recent data have shown that a deleterious ef-
fect of obesity on acute brain injury is also observed in
rat [11, 12], mouse [5, 13] or gerbil [14] models of diet-
induced obesity. Since mutations leading to leptin defi-
ciency have been identified only in a small subset of
obese humans, diet-induced obesity has greater clinical
relevance [15]. However, the impact of diet-induced
obesity on stroke outcome in mice remains to be charac-
terised fully, as it is not known exactly when during the
development of obesity the negative effects become
apparent.
Obesity is now considered an ‘inflammatory and pro-

thrombotic condition’ that is associated with elevated
systemic and vascular pro-inflammatory profiles [16, 17].
Stroke induces a rapid systemic and central inflamma-
tory responses including expression of pro-inflammatory
cytokines and chemokines and multiple inflammatory
and cellular responses in the bone marrow, liver and
spleen, which negatively impact on outcome [18]. As the
inflammatory response after experimental stroke is al-
tered in obese ob/ob mice [7] and in mice made obese
with a diabetic diet [13], changes in the inflammatory
response may contribute to the detrimental effect of
obesity on stroke. However, less is known about how
diet-induced obesity affects the inflammatory response
to stroke.
The aim of this study therefore was to determine when

during the development of diet-induced obesity in mice
a negative effect on stroke outcome is observed and to
compare this to changes in the central and peripheral in-
flammatory response.

Methods
Mice and diets
C57BL/6 male mice (8-week-old; Harlan UK Limited,
UK) were randomly assigned a high-fat diet (60 % energy
from fat, 35 % fat content by weight, 13 % saturated fatty
acids, 58G9, Test Diets®, supplied by IPS Product Sup-
plies Ltd, UK) or control diet (12 % energy from fat, 5 %
fat content by weight, 0.78 % saturated fatty acids, 58G7)
and housed in groups of 4–5. Separate groups of mice
were then maintained on their respective diets for 2, 3, 4
or 6 months. Each duration of feeding diet (i.e. time on
diet) was performed as a separate experiment, and ran-
domisation to diet was therefore done independently for
each experiment. All mice were given ad libitum access
to their respective diets and water and were housed at a
constant ambient temperature of 21 ± 2°C on a 12-h
light, 12-h dark cycle (lights on at 0800 h). All experi-
mental procedures using animals were conducted in ac-
cordance with the United Kingdom Animals (Scientific
Procedures) Act, 1986 and approved by the Home Office
and the local Animal Ethical Review Group, University
of Manchester.

Measurement of physiological and haematological
parameters
Body weight was monitored in all mice. In tail vein
blood samples, blood glucose was measured using a
hand-held glucose monitor (Accu-Check Aviva, Roche,
UK) and blood cell counts were analysed using a
haematometer (Pentra ES 60, Horiba Ltd, UK). Blood
pressure was measured in conscious mice using a tail
cuff system (BP-2000, Visitech Systems, USA).

Focal cerebral ischaemia
Focal ischaemia was induced by transient middle cerebral
artery occlusion (MCAο). Briefly, under isoflurane anaes-
thesia (in a mixture of 30 % oxygen and 70 % nitrous
oxide), the carotid arteries were exposed and a 6–0 silicon
rubber-coated monofilament (Doccol, USA) with a 2-mm
tip (210 μm diameter, coating length 405 mm) was intro-
duced into the external carotid artery and advanced along
the internal carotid artery until occluding the origin of the
MCA. Cerebral blood flow was monitored in all mice by
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laser-Doppler (Moor Instruments, UK), and middle cere-
bral artery occlusion (MCAo) was confirmed by a drop in
cerebral blood flow of at least 2 0% of baseline. If this drop
in blood flow was not attained, animals were excluded
from the analysis. After 20 or 30 min (see below), the fila-
ment was withdrawn to establish reperfusion and the
wound sutured. During surgery, core body temperature
was monitored using a rectal probe and maintained at
37 ± 0.5 °C, using a homeothermic blanket (Harvard
Apparatus, Kent, UK) and all mice were kept anaesthe-
tised throughout the whole surgical procedure. During
recovery all mice were given saline (0.5 ml, subcutane-
ously). In some groups, tail vein blood was taken immedi-
ately before MCAo (time 0), and at 4 and 24 h after
reperfusion, and plasma obtained after centrifugation
(13,000 × g, 10 min) was stored at −80°C until further use.
In separate experiments mice fed a control or high-fat

diet for 2 (n = 9/group), 3 (n = 7–8/group), and 4 (n =
9–12/group) months, the MCA was occluded for 30
min. In the 6-month group, MCAo was induced for ei-
ther 20 (n = 5–8/group) or 30 (n = 5-6/group) min. In a
separate study, MCAo was induced for 30 min in 6-
month high-fat- or control-fed mice (n = 5–6/group),
and sham-operated animals (n = 5–6/group) were also
prepared where the filament was advanced along the in-
ternal carotid artery and was retracted immediately. For
all groups of animals, mice within a given cage were ran-
domly assigned to undergo either MCAo or sham sur-
gery or no surgical intervention (naïve). In total, 10 % of
mice died during or after the surgical procedure and 8 %
were excluded due to lack of drop in cerebral blood flow
as described above. A reduction in sample size for some
groups is therefore shown in the results section.

Tissue processing
Twenty-four hours after MCAo, mice were terminally
anaesthetised with isoflurane and perfused transcardially
with 0.9 % saline, and samples of the liver, spleen and
lung were taken, frozen and stored at −80 °C until ana-
lysis. In a separate study, the brain was also taken after
saline perfusion, and from the ipsilateral and contralat-
eral hemisphere, the striatum and cortex were dissected
and frozen. Following perfusion with saline, animals
were then perfuse-fixed with 4 % paraformaldehyde
(PFA; in 0.1 M phosphate buffer, PB). Brains were re-
moved and post-fixed (in 4 % PFA), cryoprotected (30 %
sucrose in 0.1 M PB) and frozen in isopentane on dry
ice. Coronal brain sections (30 μm) were cut on a freezing
sledge microtome (Bright 8000–001, Bright Instrument
Co Ltd, UK). The liver was also removed and post-fixed
(in 4 % PFA) before embedding in paraffin wax. Sections
of liver were cut at 5 μm with a rotary microtome and
mounted onto slides.
Measurement of ischaemic damage
Brain sections were stained with either cresyl violet or
haematoxylin and eosin (H&E). The volume of ischae-
mic damage was calculated as described previously [19].
Briefly, areas of damage on cresyl violet-stained sections
were directly transcribed onto brain maps at eight ana-
tomically defined coronal levels (bregma levels; 2.22,
1.54, 0.98, 0.14, −0.58, −1.22, −1.82 and −2.54 mm as de-
fined by [20]) and are therefore corrected for oedema.
The area of damage at each level was then measured
using ImageJ (NIH, Bethesda, MD, USA) and the volume
calculated. The volume of damage was expressed as the
total amount of ischaemic damage, which was the sum
of the damage in the striatum, cortex and hippocampus
and thalamus combined (‘other’).

Immunohistochemistry
Immunoperoxidase labelling for neutrophils was per-
formed on PFA-fixed brain or paraffin-embedded liver
sections mounted onto slides. For liver, sections were
deparaffinised, rehydrated and antigen retrieval per-
formed by incubation in heated citrate buffer (10 mM
sodium citrate, 0.05 % Tween 20). All sections were ini-
tially incubated in 0.3 % H2O2 in 0.1 M PB for 10 min to
quench endogenous peroxidase activity. Non-specific
binding of antibodies was blocked for 1 h with 2 % nor-
mal serum (Vector Laboratories, UK) from species in
which the secondary antibody was raised. Sections were
incubated with a rabbit anti-neutrophil antibody (SJC for
neutrophils, 1:1000, kindly provided by Drs. Daniel
Anthony and Sandra Campbell, University of Oxford,
UK) before being incubated in an anti-rabbit biotinylated
(for brain: 1:500, Vector Labs) or HRP-labelled polymer
(for liver: EnVision Plus, Dako) secondary antibody for
30 min–2 h at room temperature. For the brain, signal
amplification was then performed by incubating sections
in avidin-biotin complex (Vectastain ABC Elite, Vector
Labs). For peroxidase visualisation, sections were incu-
bated in 3, 3′-diaminobenzidine solution (DAB; for the
liver: EnVision Plus, or for the brain: SigmaFast DAB
with metal enhancer, Sigma-Aldrich, UK). All tissues
stained for neutrophils were then counterstained with
Papanicoloau haematoxylin and coverslipped. For visual-
isation of microglia/macrophages in the brain, PFA-fixed
brain sections were treated as above but incubated in a
rabbit anti-Iba1 antibody (1:1000, Wako Chemicals)
overnight at 4 °C. For assessment of BBB disruption, pri-
mary antibody was omitted and a biotinylated anti-
mouse IgG secondary antibody used (1:500, Vector Labs)
before incubation in DAB (no metal enhancer).
SJC-positive neutrophils were counted in a defined area

of the liver and results expressed as number of neutro-
phils/area. For the brain, the number of neutrophils per
section (3–7 sections depending on the region analysed)
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was counted in the ipsilateral cortex (1.54 to −2.7 mm),
striatum (1.54 to −1.22 mm) and hippocampus (−1.22 to
−2.7 mm). The average number of cells per section was
then calculated and the group mean determined for each
brain region. For Iba1-positive cells, three separate images
were taken in the striatum and cortex (for the ipsilateral
and contralateral hemisphere). The area of Iba1 staining
was assessed in each image using the threshold function
of ImageJ (NIH, Bethesda, USA), with the threshold value
kept constant and verified on all images so that only the
area of positive Iba1 staining was measured. The area of
Iba1 staining was expressed as percentage increase from
the contralateral hemisphere. For BBB disruption, the in-
tensity of IgG staining was analysed (using ImageJ) in the
contralateral and ipsilateral cortex, striatum and hippo-
campus (as defined above) and results expressed as per-
centage increase from the contralateral hemisphere.

Chemokine protein analysis
Saline-perfused liver, spleen, lung and brain samples were
homogenised in buffer (50 mM Tris–HCl, 150 mM NaCl,
5 mM CaCl2 and 0.02 % NaN3) containing 1 % Triton-X
100 and a protease inhibitor cocktail (Set I; Calbiochem,
Merck Chemicals Ltd). All homogenates were centrifuged
at 10,000 × g for 30 min at 4 °C. The supernatant from the
liver samples was further ultra-centrifuged at 100,000 × g
for 1 h at 4 °C. All supernatants were then stored at −20 °
C until analysis. CXCL-1 and CCL3 were assessed due to
their chemoattractant properties for neutrophils. Mouse
CXCL-1 (KC) was analysed by cytometric bead array (BD
Biosciences, UK) and mouse CCL3 (MIP-1α) by ELISA
(Duoset; R&D Systems, UK), according to the manufac-
turer’s instructions. Cytokine concentrations were deter-
mined by reference to the relevant standard curves. For
liver, spleen, lung and brain supernatant, protein concen-
tration was assessed by a bicinchonic protein assay (BCA;
Pierce Biotechnology, USA) and results expressed as pico-
gram per milligram protein for the liver, spleen and lung
and the ratio of ipsilateral/contralateral for the brain. For
the liver, spleen and lung, a separate group of 6-month
high-fat- or control-fed mice (naïve) were treated as above
but in the absence of any intervention (sham or MCAo).
Table 1 Physiological response to a high-fat diet in mice

2 month 3 month

Control High-fat Control

Body weight gain (g) 5.2 ± 0.6 16.3 ± 1.3*** 6.0 ± 2.0

Glucose (mmol/l) 7.1 ± 0.3 8.9 ± 0.4** 9.4 ± 0.5

Systolic blood pressure (mmHg) - - 105.8 ± 2.7

Diastolic blood pressure (mmHg) - - 47.6 ± 1.6

Separate groups of mice were maintained on a high-fat or control diet for 2, 3, 4 or
(mmol/l) and systolic and diastolic blood pressure (mmHg, in 3 and 6 month group
Data are mean ± standard error of the mean (SEM), n = 5–12/group
*P < 0.05, **P < 0.01, ***P < 0.001 versus control-fed mice. Student’s t-test
Data and statistical analyses
For all analyses, data are represented as mean ± standard
error of the mean (SEM). Sample sizes were determined
by power calculation (α = 0.05, β = 0.2) of our previous
data at http://www.stattools.net/SSizAOV_Pgm.php. For
all ex vivo analyses, the investigator was blinded to diet
(control or high-fat) and treatment (e.g. length of occlu-
sion of MCA, sham or naive).
For two groups, parametric data were analysed using

Student’s t-test and for data with unequal variances, a
Welch’s correction was applied. All other data was ana-
lysed using a two-way ANOVA with diet and treatment
(sham or MCAo) or duration of MCAo as the fixed fac-
tors followed by a Bonferroni test for multiple compari-
sons. P < 0.05 was considered significant.
Results
Characterisation of the experimental model of diet-
induced obesity
In separate groups of mice, body weight gain was sig-
nificantly increased (P < 0.001 for all groups) after a
high-fat diet at 2, 3, 4 and 6 months when compared to
control-fed mice (Table 1). High-fat feeding also caused
a significant increase (P < 0.05 and P < 0.01) in blood
glucose at all time points. Blood pressure was measured
in mice fed with their respective diets for 3 or 6 months,
and there was no significant effect of high-fat feeding
on systolic or diastolic blood pressure at both time
points.
In the blood of mice fed a high-fat diet for 6 months,

there was an increase in the total number of white
blood cells (WBC), which was accounted for by a sig-
nificant increase (P < 0.05 and P < 0.01) in neutrophil
and lymphocyte cell numbers when compared to
control-fed mice (Table 2). Red blood cell (RBC) num-
ber and size significantly increased in high-fat-fed mice
as indicated by an increase in RBC count, mean corpus-
cular volume (MCV) and red cell distribution width
(RDW). Haemoglobin concentration and haematocrit
(HCT) were also higher compared to control-fed mice
(Table 2).
4 month 6 month

High-fat Control High-fat Control High-fat

23.0 ± 0.7*** 7.6 ± 0.6 25.8 ± 0.9*** 9.6 ± 1.4 28.4 ± 1.8***

11.0 ± 0.5* 8.4 ± 0.4 10.1 ± 0.5* 8.9 ± 0.7 10.7 ± 0.5*

106.0 ± 1.7 - - 106.1 ± 2.9 114.6 ± 6.7

51.2 ± 4.9 - - 49.9 ± 4.0 52.7 ± 3.4

6 months when body weight gain (g, from week 0 on diet), blood glucose
s only) were assessed

http://www.stattools.net/SSizAOV_Pgm.php


Table 2 The effect of a high-fat diet on haematological
parameters

Control High-fat diet

Total WBC (× 103/μl) 19.3 ± 0.9 27.6 ± 3.4*

Neutrophils (×103/μl) 1.84 ± 0.09 3.59 ± 0.8**

Lymphocytes (× 103/μl) 17.2 ± 0.9 23.7 ± 2.6*

Monocytes (× 103/μl) 0.01 ± 0.004 0.04 ± 0.01

Eosinophils (× 103/μl) 0.08 ± 0.02 0.06 ± 0.02

Basophils (× 103/μl) 0.13 ± 0.03 0.15 ± 0.04

LIC (× 103/μl) 0.05 ± 0.01 0.07 ± 0.01

RBC (× 106/μl) 8.3 ± 0.4 11.5 ± 0.7***

HGB (g/dl) 12.0 ± 0.5 17.2 ± 0.9***

HCT (%) 39.8 ± 1.7 57.3 ± 3.3***

MCV (fL) 48.3 ± 0.8 49.6 ± 0.4**

RDW (%) 12.1 ± 0.3 12.8 ± 0.2*

Platelets (× 103/μl) 1200 ± 114 1353 ± 85

MPV (fL) 5.4 ± 0.1 5.3 ± 0.05

PCT (%) 0.11 ± 0.01 0.12 ± 0.01

Mice were maintained on a high-fat or control diet for 6 months. Blood
obtained from the tail vein was analysed using a Pentra ES 60 haematometer
HCT haematocrit HGB haemoglobin, LIC large immature cells, MCV mean
corpuscular volume, MPV mean platelet volume, PCT plateletcrit, RBC red
blood cells, RDW red cell distribution width, WBC white blood cells
Data are mean ± standard error of the mean (SEM), n = 10–12/group
*P < 0.05, **P < 0.01, ***P < 0.001 versus control-fed mice. Student’s t-test
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Severity of obesity and ischaemic challenge interact to
modify outcome after experimental stroke
There was no significant effect of obesity on the volume
of ischaemic damage after 30-min MCAo in mice fed a
high-fat diet for 2 or 3 months (Fig. 1a, b). By 4 months
of high-fat feeding, obese mice had an increase in the
amount of total ischaemic damage in response to 30-
min MCAo when compared to control-fed mice (P <
0.001 Fig. 1c), which was accounted for by an increase in
damage in the striatum and ‘other’ brain areas. In obese
mice fed a high-fat diet for 6 months, an exacerbation of
total ischaemic damage was also observed after 30-min
MCAo (P < 0.05 Fig. 1e, f ) but not when the MCA was
occluded for 20 min (Fig. 1d). This exacerbation of dam-
age after 30-min MCAo in 6-month high-fat-fed mice
was due to an increase in the cortex and ‘other’ brains
regions rather than the striatum. Obesity did not appear
to increase the risk of haemorrhagic transformation as
no areas containing red blood cells were observed in
obese (or control) mice at all time points or duration of
ischaemic damage (when assessed by H&E staining). In
the same group of animals, immunohistochemistry for
IgG to assess the integrity of the BBB revealed that after
6 months of high-fat feeding, an increase in IgG staining
intensity was observed in the cortex (P < 0.05) but not
the striatum of obese mice in response to 30-min MCAo
(Fig. 2ci–ii). After 20-min MCAo, there was a significant
increase in the intensity of IgG staining in the striatum
(P < 0.05) but not cortex in high-fat-fed mice (Fig. 2bi–
ii). There was no significant difference in IgG staining in
all brain regions analysed in mice fed a high-fat diet for
3 months compared to controls (Fig. 2ai–ii). These data
suggests that the impact of obesity on acute ischaemic
brain injury is dependent on an interaction between the
duration/severity of obesity and the ischaemic challenge.

Elevated central chemokine expression is associated with
greater brain neutrophil infiltration in obese mice in
response to stroke
A significant increase in CXCL-1 and CCL3 was detected
in the ipsilateral striatum and cortex of brains from 6-
month high-fat-fed mice 24 h after 30-min MCAo when
compared to high-fat-fed mice that underwent sham sur-
gery (Fig. 3a). There was no significant difference in
CXCL-1 and CCL3 expression in the brain of control mice
24 h after 30-min MCAo compared to the sham group.
This chemokine response in 6-month high-fat-fed mice
was associated with a significant increase in the number
of neutrophils in the striatum 24 h after 30-min MCAo
(Fig. 3b). No difference in neutrophil number was ob-
served in the brains of 6-month high-fat-fed mice after
20-min MCAo or in 3-month high-fat-fed mice after 30-
min MCAo (Fig. 3b). No neutrophils were detected in the
contralateral (non-ischaemic) hemisphere in any group of
control- or high-fat-fed mice (data not shown).
Immunohistochemistry to detect Iba1 showed an in-

crease in the intensity of staining of microglia/macro-
phages in the area of infarct in sections from mice that
had undergone MCAo compared to the contralateral
non-ischaemic tissue. This increased staining was also
associated with a change in morphology in some microglia
cells. When quantified, there was no significant difference
in the area of Iba1-positive cells between control- and
high-fat-fed mice in the striatum and cortex at either 3
(after 30-min MCAo) or 6 (after 20-min MCAo) months
of diet (Fig. 4). In 6-month high-fat-fed mice after 30-min
MCAo, there was no difference in the area of Iba1-
positive cells in the striatum but there was an increase in
the cortex when compared to control-fed mice.

Altered peripheral chemokine response is associated with
an increase in liver neutrophils in control but not obese
mice in response to stroke
An increase in plasma CXCL-1 was observed 4 and
24 h after 20 or 30-min MCAo in mice fed a control or
high-fat diet for 6 months compared to 0 hour (Fig. 5a,
b). At 4 h after 30-min MCAo, the increase in plasma
CXCL-1 was significantly greater in mice fed a high-fat
diet for 6 months compared to control-fed mice
(Fig. 5b). There was no significant change in liver
CXCL-1 expression in either control or high-fat-fed
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Fig. 1 The detrimental effect of a high-fat diet on stroke outcome is dependent on the severity of obesity and length of ischaemic challenge.
Male C57BL/6 mice (8-week-old) were maintained on either a control or high-fat diet and, in separate groups of mice, 30-min middle cerebral
artery occlusion (MCAo) was performed after 2 (a), 3 (b), 4 (c) and 6 (e) months on diet. In mice fed diet for 6 months, MCAo was also performed
for 20 min (d). Quantification of volume of ischaemic damage was performed on representative sections taken at eight defined coronal levels
after 24-h reperfusion. f Representative pictures from 6-month high-fat- or control-fed mice after 30-min MCAo. Scale bar, 1.25 mm. Data are
shown as mean ± standard error of the mean (SEM). n = 4–9/group. *P < 0.05, **P < 0.01, ***P < 0.001 versus control-fed mice for the same brain
region. Student’s t-test
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mice 24 h after 20-min MCAo when compared to naïve
mice (Fig. 5c). After 30-min MCAo, a significant in-
crease in CXCL-1 was detected at 24 h in the liver of
mice fed a control diet for 6 months, but no change
was observed in high-fat-fed mice compared to naïve
mice (Fig. 5d). This same pattern of expression of
CXCL-1 in control and obese mice (at 6 months) was
also seen in the spleen and lungs after 20 and 30-min
MCAo (data not shown). There was no change in the
expression of CCL3 in the plasma (4 and 24 h) or liver
(at 24 h) in response to 20 or 30-min MCAo in control
or 6-month high-fat-fed mice and all values were below
the limit of detection (data not shown).
In naïve mice fed a high-fat diet for 6 months, an in-
crease in the number of neutrophils was observed in the
liver, where neutrophils often appeared in clusters
(Fig. 6a, b, e). In response to stroke (30-min MCAo), a
significant increase in the number of neutrophils were
detected at 24 h in the liver in control mice but there
was no change in high-fat-fed mice when compared to
naïve mice (Fig. 6a–e).

Discussion
The present study demonstrates that obesity in mice due
to a high-fat diet significantly alters the inflammatory re-
sponse and increases the severity of ischaemic damage
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after stroke. Specifically, this study is the first to show that
in mice, this effect of obesity on stroke outcome was
dependent on both the severity of obesity and duration of
ischaemic challenge. This detrimental effect of obesity in
mice was observed after 4–6 months of high-fat feeding,
suggesting that the mechanisms underlying the obesity-
induced sensitivity to stroke take time to evolve. Fur-
thermore, the duration of occlusion was also critical in
determining whether obesity led to worse ischaemic
damage, indicating that a threshold level of ischaemia
is required before the effect of obesity is seen. In rats,
3-month (but not 1 month) exposure to a high-fat diet
worsens outcome after endothelin-induced ischaemia
[11]. Together, these data suggest that the negative im-
pact of obesity on stroke outcome is critically
dependent on how long the obese phenotype is present
and the severity of the initial stroke insult.
Obesity is often associated with hypertension and in-

sulin resistance/type II diabetes, complications that can
also lead to a negative effect on stroke outcome clinically
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and in experimental models [21, 22]. As a high-fat diet
up to 6 months did not cause hypertension, it is not
likely that changes in blood pressure account for the
negative effect of obesity seen here. Although, it is pos-
sible that blood pressure could change in obese mice in
response to ischaemia, which was not measured here. A
high-fat diet increased blood glucose in all mice. It is un-
likely that hyperglycemia at the time of stroke is respon-
sible for worse damage in obese mice as raised blood
glucose was observed at all time points including at 2–
3 months when obese mice did not have worse damage.
Whether raised blood glucose for a prolonged period of
time results in structural/physiological alterations that in-
crease the susceptibility to an ischaemic insult remains to
be tested. Furthermore, as insulin sensitivity and tolerance
to glucose were not tested in the present study, it is pos-
sible that insulin resistance may have correlated with
worse outcome.
Obesity in humans is associated with an increase in

the number of blood cells that can lead to an increase in
blood viscosity [23, 24]. Here, we show that obese mice
(after 6-month high-fat diet) had higher levels of both
RBC and WBC and an increase in haematocrit (percent-
age of RBCs in blood). These changes in blood cell num-
ber could potentially result in raised blood viscosity,
although this remains to be determined here. Previous
studies have shown that high-fat feeding in animals can
significantly increase the number of WBC in specific
lymphocyte subtypes and enhance blood viscosity [25–
27]. As elevated haematocrit is associated with worse
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outcome in stroke patients [28, 29] and after experimen-
tal stroke in mice [30], these changes in blood cell num-
ber after high-fat feeding might contribute to worse
outcome in obese mice.
In the present study, an increase in BBB permeability

to IgG was observed in obese mice, which confirms that
obesity promotes severe disruption to the BBB [8]. It is
possible that the enhanced BBB disruption is due to the
greater amount of ischaemic damage in obese mice;
however, an increased BBB permeability was also seen in
obese mice that had the same amount of damage in the
striatum after 20-min MCAo compared to controls.
These data indicate that obesity can lead to detrimental
effects on cerebrovascular integrity after stroke inde-
pendently of the extent of ischaemic damage and suggest
multiple ways in which obesity may complicate stroke.
Obesity has also been shown to result in haemorrhagic
transformation in response to cerebral ischaemia, an ob-
servation that was not seen here in diet-induced obese
mice. However, the experimental studies in rodents
reporting an increase in the incidence of haemorrhagic
transformation have used different models of obesity in-
cluding the leptin-deficient ob/ob mouse [8] and high-fat-
fed rats [12] or a different model of cerebral ischaemia [5].
The reason why diet-induced obese mice are less suscep-
tible to haemorrhagic transformation is unknown, but the
enhanced ischaemic damage in these obese mice cannot
be due solely to haemorrhagic transformation.
Stroke results in a local inflammatory response in the

brain characterised by changes in cytokine and chemo-
kine expression and immune cell infiltration [18] and
activation of resident microglia cells [31]. There was no
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clear difference in the extent of activation of microglial
(or macrophage) cells in the brain of obese mice apart
from an increase in the cortex of 6-month high-fat-fed
mice after 30-min MCAo. This change in microglial
cells likely reflects the greater amount of ischaemic
damage observed in this group of obese mice. Diet-
induced obesity resulted in a greater number of neutro-
phils in the brain (striatum) of mice that had the worse
outcome in response to stroke. Neutrophil infiltration
was also reported to occur in adipose tissue after con-
sumption of a high-fat diet in naïve rodents [32]. How-
ever, as obesity alone did not cause neutrophil invasion
into the brain, these data suggest that neutrophil re-
cruitment seen here occurs in response to ischaemia.
The increase in brain chemokine expression (CXCL-1
and CCL3) and greater circulating blood neutrophil
numbers that were observed in obese mice in the
present study are likely responsible for the enhanced
neutrophil infiltration into the brain in response to
stroke. In support, chemokine expression and the num-
ber of neutrophils have been reported to be up-
regulated after stroke in the brain of genetic models of
obesity [4, 6]. As neutrophils have been shown to con-
tribute to ischaemic brain damage [33, 34], it is possible
that enhanced chemokine expression and neutrophil
numbers in the brain of obese mice is responsible for
the worse ischaemic damage in obesity. The increase in
brain chemokine expression observed here is in con-
trast to that in mice fed a high-fat ‘diabetic’ diet where
a blunted chemokine (CCL2) and cytokine (interleu-
kin-6) response after stroke is observed [13]. These
discrepancies highlight important differences in the in-
flammatory response to stroke in mice fed high-fat di-
ets and are likely dependent on a number of factors
including the type of diet, length on diet, duration of
ischaemia and time after the ischaemic challenge.
A rapid and transient peripheral inflammatory response

is also observed after stroke that precedes the local inflam-
matory response in the brain [35, 36]. In the present study,
enhanced chemokine (CXCL-1) expression was observed
in the blood at 4 h after stroke in obese mice that had
greater damage. An increase in circulating neutrophils after
experimental stroke has been observed by 8 h [34]. Al-
though neutrophil numbers in the blood were not analysed
here in response to stroke, it is possible that more neutro-
phils were mobilised from the bone marrow in response to
early increase (4 h) in CXCL-1 expression in obese mice.
An increase in the hepatic expression of CXCL-1 has also
been reported after experimental stroke [35]. Here, we also
observed an increase in hepatic expression of CXCL-1 ex-
pression in control (but not obese) mice, which was associ-
ated with neutrophil infiltration into the liver. This study is
therefore the first to show that neutrophils migrate to the
liver after experimental stroke in mice without co-
morbidities, including obesity. Hepatic CXCL-1 and neu-
trophil numbers have also been shown to increase after an
inflammatory stimulus in the brain [37]. The consequence
of this inflammation in the liver after stroke is unclear but
it might be involved in multi-organ dysfunction syndrome
that can occur after cerebral ischaemia and is a significant
source of morbidity and mortality in patients [38]. In sup-
port, liver damage has been reported to increase after ex-
perimental stroke in rats [39].
The inflammatory response in the liver of control mice

after stroke was not observed in obese mice that had worse
ischaemic brain damage and greater brain neutrophil mi-
gration. The lack of neutrophil trafficking into the liver of
obese mice in response to stroke is consistent with the ab-
sence of CXCL-1 expression in this organ of these mice. A
blunted inflammatory response in the liver of diet-induced
obese mice also occurs after a peripheral inflammatory
challenge [40] or infection [41]. Furthermore, in response
to hepatic ischaemia-reperfusion injury, less CXCL-1 and
neutrophil extravasation is observed in the liver of obese
mice [42]. Overall, these data suggest that the central and
peripheral chemokine response after experimental stroke
is different in high-fat-fed mice compared to controls.
Whether these differences in chemokine expression are
responsible for the greater migration of neutrophils seen
in the liver of control mice versus the higher number of
neutrophils in the brain of high-fat-fed mice remains to be
determined.
In summary, the data in the present study suggest that

obesity may exert a greater negative effect on stroke out-
come when the stroke insult is more severe and/or occurs
when the obese phenotype has developed more strongly.
In humans therefore, it is likely that the potential risk of
obesity on stroke outcome are seen only after someone
has been obese for a critical/minimum period of time, and
that the effect of obesity could be reversible if someone
has been obese for a only a short period of time. However,
it remains to be determined if/how the altered neuro/sys-
temic inflammatory response seen in obesity contributes
to its detrimental effect on stroke outcome.
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