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A Deep Generative Architecture for Postfiltering
in Statistical Parametric Speech Synthesis

Ling-Hui Chen, Tuomo Raitio, Cassia Valentini-Botinhao,
Zhen-Hua Ling, Member, IEEE, Junichi Yamagishi, Senior Member, IEEE,

Abstract—The generated speech of hidden Markov model
(HMM)-based statistical parametric speech synthesis still sounds
“muffled”. One cause of this degradation in speech quality may
be the loss of fine spectral structures. In this paper, we propose
to use a deep generative architecture, a deep neural network
(DNN) generatively trained, as a postfilter. The network models
the conditional probability of the spectrum of natural speech
given that of synthetic speech to compensate for such gap between
synthetic and natural speech. The proposed probabilistic postfil-
ter is generatively trained by cascading two restricted Boltzmann
machines (RBMs) or deep belief networks (DBNs) with one
bidirectional associative memory (BAM). We devised two types
of DNN postfilters: one operating in the mel-cepstral domain
and the other in the higher dimensional spectral domain. We
compare these two new data-driven postfilters with other types
of postfilters that are currently used in speech synthesis: a fixed
mel-cepstral based postfilter, the global variance based parameter
generation, and the modulation spectrum-based enhancement.
Subjective evaluations using the synthetic voices of a male and
female speaker confirmed that the proposed DNN-based postfilter
in the spectral domain significantly improved the segmental
quality of synthetic speech compared to that with conventional
methods.

Index Terms—HMM, speech synthesis, deep generative archi-
tecture, modulation spectrum, postfilter, segmental quality

I. INTRODUCTION

STATISTICAL parametric speech synthesis is one of the
most popular methods of speech synthesis due to its

flexibility and compact footprint [2]. Statistical parametric
speech synthesizers have also been found to be as intelligible
as natural human speech several times at the annual evaluation
events of corpus-based speech synthesis systems called “Bliz-
zard Challenge” [3]. It is known, however, that synthesised
speech generated from statistical models still sounds “muffled”
compared to natural speech. This is often attributed to the fact
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that fine spectral structures of natural speech are partly lost due
to statistical averaging, and thus there is room for improving
segmental quality.

Deep neural networks (DNNs) with many hidden layers
have been actively investigated to improve the quality of
synthetic speech and several significant improvements have
been reported. For instance, DNNs have been applied to
acoustic modelling [4]. Zen et al. [5] used DNN to learn the
relationship between input texts and extracted features instead
of using decision tree-based state tying. Restricted Boltzmann
machines (RBMs) or deep belief networks (DBNs) have been
used to model the output probabilities of hidden Markov model
(HMM) states instead of Gaussian mixture models (GMMs)
[6]. DBNs have also been used to model the joint distribution
of linguistic and acoustic features [7]. A hybrid model which
combines a DBN with an Gaussian process regression has
been used for F0 modeling [8]. In addition, an auto-encoder
neural network has also been used to extract low dimensional
excitation parameters [9]. Recently, recurrent neural networks
(RNNs) with long-short term memories (LSTMs) have been
used for prosody modelling [10] and acoustic trajectory mod-
elling [11], [12].

In addition to these above improvements to acoustic mod-
eling, there have also been several successful attempts to
improve the segmental quality of synthesised speech at syn-
thesis time (without changing the acoustic models), including
postfiltering to enhance spectral peaks [13] [14] and a global
variance (GV) parameter generation algorithm that enhances
the dynamics within a speech utterance [15]. An interesting
approach based on the enhancement of the modulation spec-
trum (MS) has recently been proposed [16]. The main aim of
this method is to enhance the natural frequency modulation in
the spectral parameter trajectories. These methods have been
demonstrated to improve the quality of synthetic speech based
on empirical findings of acoustic differences between natural
and synthetic speech, which tend to occur for most speakers.

Another possible way of reducing the gap between the
segmental quality of natural and synthetic speech is to learn
acoustic differences directly from data. If we have a parallel
set of natural and synthetic speech, we can estimate the condi-
tional probability of acoustic differences, i.e., the probability
of natural speech given “muffled” synthetic speech. One could
then model and reconstruct the spectral fine structures through
data-driven statistical methods. This is conceptually similar to
voice conversion (VC) techniques that take into consideration
the conditional probability of parallel speaker pairs [17].

This paper introduces a deep generative architecture as a
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postfilter [1] to model the conditional probability of acoustic
differences. The proposed architecture is a DNN with layer-
wise generative training 1. In voice conversion [18] this is
typically done with a Gaussian mixture model (GMM) but a
DNN was chosen here instead due to its abilities to handle
highly correlated and high-dimensional data, allowing us to
conduct spectral shaping directly in the spectral amplitude
domain. We compared the proposed method with the GV and
the recently proposed MS enhancement as well as the normal
spectral peak enhancement filter.

This paper is organised as follows: in Section II we overview
the related techniques, and in Section III we explain the
proposed DNN-based approach. The experimental conditions
and evaluation results are shown in Section IV. Analysis and
discussions on the proposed DNN-based postfilter and its
relation to other postfilter methods are given in Section V,
and the summary of our findings is given in Section VI.

II. RELATED TECHNIQUES

A. Mel-cepstral postfilter

Statistical averaging of parameters creates trajectories that
are overly smooth across frames in the time domain but also
within a frame in the spectrum domain. One of the first postfil-
ter techniques applied to statistically generated speech trajec-
tories appeared in [14]. The method was originally presented
in [19] to enhance the formant structure in speech coding,
but it can also be used to compensate for the overly smooth
spectrum in speech synthesis. The method works by modifying
the generated mel-cepstral coefficients so that spectrum peaks
and valleys are enhanced. The postfilter is controlled by a
single parameter, referred to as β. When β=0, no postfilter
is applied and the degree of formant enhancement increases
with increasing β. A similar postfilter for line spectral pairs
was also proposed in [13].

B. Global variance

Another method frequently used for improving the quality
of synthetic speech is a parameter generation algorithm that
considers GV [15]. In the GV parameter generation algorithm,
we define an objective function including HMMs likelihood
and a penalty term that reflects the dynamic range of each
dimension of the parameter sequence at the utterance level.
This penalty term is intended to keep the variance of the
generated trajectory as wide as that of the natural speech,
while maintaining an appropriate parameter sequence in the
sense of maximum likelihood [15]. An extended algorithm that
calculates GV in the spectral domain has also been investigated
[20].

C. Modulation spectrum

Short-term spectral analysis is one of the most widely used
methods in speech processing. Parameters that characterise
the spectral envelopes can be derived in a number of ways,
e.g., using fast Fourier transform (FFT), linear prediction, or

1 In the rest of this paper, the proposed deep generative architecture is
called DNN for simplification.
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Fig. 1. Modulation spectra of the 16th mel-cepstral coefficient estimated
from natural speech and generated from a statistical model.

cepstral analysis, and the changes in the vocal tract shape and
also the glottal excitation are reflected in the temporal patterns
of such parameters.

In the analysis of natural speech, the parameter trajectories
of spectral coefficients exhibit rich modulation characteristics,
whereas in statistical speech synthesis, the generated speech
parameter trajectories are temporally over-smoothed due to
the state-based statistical modelling and averaging thereof
[2], [21]. The over-smoothing can be partly alleviated, for
example, by using the aforementioned mel-cepstral postfilter
[19] or GV [15]. The latter forces the variance of the generated
parameter trajectories closer to the variance observed in pa-
rameter trajectories of natural speech, but it does not explicitly
modify the frequency-dependent modulation characteristics
(i.e., the spectral content) of the trajectories. On the contrary,
processing in the modulation spectrum (MS) domain, the
frequency-dependent temporal modulations of the parameter
trajectories can be explicitly enhanced [1], [16].

Enhancement in the modulation spectrum domain was first
proposed in [16], and it was also studied in our earlier
work [1], which confirmed the results in [16] that the MS
enhancement has approximately an equal effect to the quality
as GV enhancement.

In this work, we apply the MS enhancement in the mel-
cepstral domain (although MS enhancement can be also
performed in the high-dimensional spectrum domain). The
spectrum of a speech frame is parametrised by the mel-
cepstrum [22], resulting in a vector c = [c1, c2, · · · , cM ] of
length M , which is the order of the cepstral analysis. Short-
term spectral analysis of a speech utterance thus yields a
matrix R = [c>1 , c

>
2 , · · · , c>T ] of size M × T , where T is

the number of frames. The time trajectory of the mth mel-
cepstal is defined as rm = [cm,1, cm,2, . . . , cm,T ]. Finally, the
MS of trajectory rm is defined as:

sm,f = log (|F{rm}|) , (1)

where f is the modulation frequency bin, defined by the
number of points in the Fourier analysis used in Eq. (1). The
number of points in the Fourier analysis in Eq. (1) must be
greater than the number of frames T of an utterance. In order
to evaluate the MS over a database, the MS of each utterance
is evaluated for each coefficient. The MS statistics are assumed
to be normally distributed:

sm,f ∼ N (µm,f , σm,f ) . (2)

Fig. 1 illustrates the MS statistics sm,f of natural and
synthetic speech over a large speech database. We can see that
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Fig. 2. Illustration of enhancing the 36th mel-cepstral coefficient trajectory
by variance scaling (equal scaling across different modulation frequencies)
and MS enhancement that can modify the frequency-dependent modulation
characteristic of speech.

synthetic speech has less modulated trajectories than natural
speech. By modifying the MS of synthetic speech trajectories
to be closer to the modulation characteristics of natural speech,
the speech quality can be improved [1], [16]. This can be done
by the formula [16]:

s′m,f = (1− α)sm,f + α

{
σ
(N)
m,f

σ
(S)
m,f

(sm,f − µ(S)
m,f ) + µ

(N)
m,f

}
,

(3)
where indices (N) and (S) indicate the parameters evaluated
from natural and synthetic speech, respectively, and α defines
the amount of shift from synthetic to natural MS. The en-
hanced trajectory is recovered by the inverse operation of Eq. 1
and preserving the original phase:

r′m = F−1{es
′
m+iφ}, (4)

where φ is the phase of the original parameter trajectory. Fig. 2
illustrates MS enhancement of a mel-cepstrum trajectory.

III. DNN-BASED PROBABILISTIC POSTFILTER

In Section II, we introduced several frequently used post-
filtering techniques for enhancing the segmental quality of
synthetic speech. However, these techniques were proposed
based on empirical findings on the acoustic differences be-
tween the spectral features of synthetic and natural speech.
There are various acoustic differences between natural and
synthetic speech, but each of these techniques mostly deals
with only one specific aspect.

In this paper, we proposed a probabilistic postfilter to au-
tomatically discover and compensate the acoustic differences
observed in the spectral domain. The postfilter is similar to
VC in the sense that it converts synthetic spectral features into
natural synthetic spectral features. However, the conventional
approaches for VC, such as the ones based on GMMs and
conventional neural networks (NN) [23], still suffer from the
over-smoothing problem caused by the statistical averaging of
the underlying model. Recently, we have proposed a genera-
tively trained DNN for spectral conversion in VC [24], [25]
and showed that it can significantly improve the segmental
quality of generated speech. In this paper, we extend this
approach to spectral postfiltering for HMM-based parametric
speech synthesis.

A. Basic components
The proposed DNN is composed by three types of gener-

ative neural networks: restricted Boltzmann machine (RBM)

Fig. 3. The graphical model representations for an RBM (left) and a BAM
(right). The double circles represent visible units while the single circles
represent hidden units.

[26], deep belief network (DBN) and bidirectional associative
memory (BAM) [27].

1) Restricted Boltzmann machine: An RBM is a two lay-
ered generative neural network, including a visible layer and
a hidden layer, whick correspond to visible random variable
v and hidden random variable h as can be seen from the left
of Fig. 3. Units between different layers are fully connected
and there are no connections between units in the same layer.

An RBM is an undirected graphical model that describes
a probabilistic distribution defined by an energy function.
We assumed that it would obey a Gaussian distribution to
model spectral features and hence the Gaussian-Bernoulli
RBM (GBRBM) was used. The energy function of a GBRBM
is given by

ERBM(v,h) =

V∑
i=1

(vi − ai)2

2σ2
i

−
V∑
i=1

vi
σi

wi∗h− b>h, (5)

where vi is the ith element in the visible random variable
vector v and ai is that in bias vector a. Here h is the hidden
variable vector, b is the hidden bias vector. wi∗ is the ith row
vector of the weight matrix W , and V is the number of units
in the visible layer. Σ = diag{σ2

1 , · · ·σ2
V } is usually fixed to

the diagonal covariance matrix of the training data [28] and is
not considered to be a parameter of the model. Therefore the
parameter set of an RBM is {W ,a, b}. σi has been ignored
in the rest of this paper for the sake of simplicity.

The probabilistic distribution of visible random variable v
described by an RBM can be written as

P (v) =
1

ZRBM

∑
h

exp{−ERBM(v,h)}, (6)

where ZRBM =
∑

h

∫
v
exp{−ERBM(v,h)}dv is the partition

function, which is intractable to compute and evaluate. There-
fore, the contrastive divergence (CD) algorithm is usually used
to estimate the parameters of an RBM [29], [30] and the
annealed importance sampling (AIS) algorithm is adopted to
approximate the partition function ZRBM for model evaluation
[31]. RBMs have been proven to be powerful for spectral
modeling in statistical parametric speech synthesis [6].

2) Bidirectional associative memory: BAM is also a shal-
low neural network with only two layers, as can be seen in the
right of Fig. 3. Both layers in BAM are visible layers without
any hidden layers, which is differnent from RBM. BAM was
originally proposed as a special case of the Hopfield network
[32] for information retrieval [27]. Chen et al. [1] and Liu et al.
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h3

h2

h1

v
Fig. 4. Graphical representation of a deep belief network with three hidden
layers (h1, h2 and h3) and a visible layer (v).

[33] extended BAM as a generative model whose probabilistic
distribution can also be given by an energy function. The
energy function for modeling binomial random variables of
BAM is given by

EBAM(d,u) = −a>d− b>u− d>Wu, (7)

where d and u correspond to the binomial random variable
vectors in the two visible layers, and a and b are the
corresponding bias vectors. The joint distribution over d and
u is therefore given by

P (d,u) =
1

ZBAM
exp{−EBAM(d,u)}, (8)

where ZBAM =
∑

d,u exp{−EBAM(d,u)} is also an in-
tractable partition function. Therefore, following the training
method of an RBM, we adopted the CD algorithm to estimate
the parameters of BAM [33], which are {W ,a, b}.

3) Deep belief network: DBN is another type of neural
network-based generative model, but with multiple hidden
layers. Fig. 4 shows the graphical structure of a DBN with
three hidden layers. The connections between different layers
are directed except for the two top hidden layers. The units
in the visible layer are Gaussian random variables to enable
spectral feature modeling and those in the hidden layers are
binomial variables. The probabilistic distribution of a DBN as
a generative, with L hidden layers, can be written as:

P (v) =∑
h1,··· ,hL

P (v | h1)

L−2∏
l=1

P (hl | hl+1)P (hL−1,hL), (9)

where hl = [hl1, h
l
2, . . . h

l
Hl
]> are the hidden variables in the

lth hidden layer, and Hl is the number of hidden units in this
layer. The conditional probabilities are given by

P (v | h1) = N (v;W 1h1 + b1, I), (10)

P (hl−1j = 1 | hl) = g(wl
j∗h

l + blj), l = 2, . . . , L− 1,

(11)

where {W 1, b1} are the parameters of the first layer, wl
j∗ is

the jth row vector of weight matrix W l that connects the lth
and l− 1th layers, blj is the jth element of corresponding bias

vector bl, and g(x) = 1/(1 + e−x) is the sigmoid activation
function. The joint probability of the two top hidden layers is
given by BAM Eq. (8), whose energy function is

E(hL,hL−1) = −hL>bL − hL−1
>
bL−1 − hL−1

>
WLhL.

(12)
The parameters of the DBN, {W l, bl}Ll=1, can be estimated
by using a layer-wise greedy learning algorithm initialized by
an RBM. Therefore, the DBN has a better ability to describe
the probabilistic distribution of visible variables than the RBM
[6], [28].

B. Model training

The right of Fig. 5 outlines the structure of the proposed
DNN-based probabilistic postfilter. We can see that it has a
symmetric structure, including an input layer, an output layer,
and several hidden layers. The inputs and outputs of the DNN
are synthetic and natural spectral features. They can be in
the form of mel-cepstrum or higher-dimensional spectrum, for
example. As we can see from the left of Fig. 5, the proposed
DNN-based postfilter is generatively trained layer-by-layer
by cascading two RBMs/DBNs with a BAM. The training
procedure is conducted in the following four detailed steps:

1) Acoustic space modeling: Two generative neural networks
are constructed in this first step, the first (θx) is for model-
ing the probabilistic distribution of the synthetic feature
space and the second (θy) is for modeling that of the
natural feature space. The generative neural network here
can consist of either RBMs or DBNs. The respecctive
model parameters are

θx = {W l
x,a

l
x, b

l
x}Ll=1, (13)

θy = {W l
y,a

l
y, b

l
y}Ll=1, (14)

for the two DBNs with L hidden layers (L = 1 for
RBMs). The training process for a DBN actually consists
of stacking L RBMs, and therefore {W l

x,a
l
x, b

l
x} and

{W l
y,a

l
y, b

l
y} correspond to the parameters for the lth

RBM of synthetic and natural spectra.
2) Binary encoding of spectral features: The estimated

RBMs/DBNs may also serve as auto-encoders for spectral
features. These auto-encoders can encode the raw spectral
features into high-level hidden binary representations
[34].
The hidden binary representations are obtained according
to the conditional distribution derived from the model,
e.g., for synthetic spectral features:

hx,j ∼ P (hx,j = 1 | x) = g(x>w∗j + bj), (15)

where x is the spectral feature, hx,j is the jth dimension
of its hidden representation hx, and w∗j and bj are
the model parameters related to the jth hidden unit.
Because the hidden units are conditionally independent
of each other, the hidden representations can be sampled
conveniently dimension-by-dimension.
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Fig. 5. Structure and training procedure for proposed DNN-based postfilter. The six-hidden-layer DNN is composed of a BAM and two DBNs, with three
hidden layers for synthetic and natural speech.

The hidden representations for the DBNs are extracted
layer-by-layer as the binary code of the DBN auto-
encoders [34]. Note that although the directed connec-
tions in the DBN are top-down for generation as a de-
coder in Fig. 4, they can also be bottom-up for extracting
hidden variables as an encoder [35].

3) Joint modeling: BAM θh = {W h,ah, bh} is adopted in
the third step to model the joint distribution of hidden
variables from the two RBMs/DBNs estimated in step
1. Note that the two RBMs (or the top hidden layers
of the DBNs) are trained separately in an unsupervised
way in step 1 and the relationship (or acoustic difference)
between synthetic and natural speech is captured by a
single BAM in this step in high-level hidden space.

4) Model combination: The three estimated generative mod-
els are combined in the final step by concatenating
the two RBMs/DBNs with the BAM. The concatenated
model is then converted to a DNN (feed-forward stochas-
tic neural network) with 2L hidden layers, as shown in
Fig. 5. The parameters of the DNN θ = {W l, bl}2L+1

l=1

are copied from the RBMs/DBNs and BAMs, which are

{W l, bl} =


{W l

x, b
l
x} l ≤ L,

{W h, bh} l = L+ 1,

{W 2L+2−l
y

>
,a2L+2−l

y } l > L+ 1.
(16)

The parameters of each layer are estimated separately in
this training procedure and copied to form a DNN. We did
not joint fine-tune of the parameters for all layers. This does
not mean that joint fine-tuning is unnecessary. The minimum
mean square error (MMSE) criterion is usually used for DNN
training in regression tasks, such as those in speech generation.
However, previous work in VC has indicated that listeners
prefer synthetic speech generated using a network architecture
without the fine-tuning over one using the fine-tuning based on
the MMSE criterion [25]. Therefore we can assume that this
criterion may not be optimal for training a postfilter, either.

This probabilistic postfilter works because of the powerful
modeling ability of RBMs/DBNs:
• An RBM is equivalent to a structured GMM with 2H

components. The number of Gaussian components in
an RBM can be considerably larger than the number
of training samples we can obtain, due to its ability
to describe very complicated multimodal distributions of
spectral features.

• An RBM is a product of experts (PoE) [36] model
that describes a probabilistic distribution with very sharp
modes.

• A DBN is a deep extension of an RBM and it is reported
that it is a better model for spectral envelopes [6].

C. Spectral postfiltering
The proposed DNN directly describes a conditional distri-

bution of natural spectral feature y given synthetic spectral
feature x:

P (y | x) =
∑

h1,···h2L

P (y,h1, · · ·h2L | x)

=
∑

h1,···h2L

P (y | h2L)

2L−1∏
l=1

P (hl+1 | hl)P (h1 | x)

' P (y | h2L∗)

2L−1∏
l=1

P (hl+1∗ | hl
∗
)P (h1∗ | x),

(17)

where h1,. . . ,h2L are random variables in the 2L hidden layers
of the proposed DNN-based postfilter. Here, P (h1 | x) and
P (hl | hl−1) are multi-variate binomial distributions defined
similarly to those in Eq. (15) and

P (y | h2L) = N (y;W 2L+1h2L + b2L+1, I). (18)

We make an approximation in Eq. (17) in order to reduce the
computational cost by using the optimal samples for hl

∗
in-

stead of summing over them. This approximation is reasonable
because the models are trained similarly layer-by-layer. The
optimal binary samples hl

∗
are sampled from the conditional

distribution according to the maximum probabilities as:

h1∗ = argmax
h1

P (h1 | x), (19)

hl
∗
= argmax

hl

P (hl | hl−1), l = 2, . . . , 2L. (20)
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When the mean-field approximation is used here, the proposed
DNN is treated exactly the same as as a conventional feed-
forward neural network.

The input and output spectral features may be composed
of multiple frames in practice to capture sequential properties
of the feature trajectories. The maximum likelihood param-
eter generation (MLPG) algorithm [37] is adopted in this
case to generate a static feature sequence for synthesizing
speech. For example, the output spectral feature sequence,
c = [c>1 , . . . , c

>
T ]
>, is generated by

c∗ = argmax
c

P (y | x), (21)

' argmax
c

T∏
t=1

P (yt | h
2L
t

∗
), (22)

s.t. y = Mc, (23)

where M is the matrix that is used to convert the static feature
sequence into multiple frame sequence [1]. Note that the
conditional distribution in Eq. (18) is a Gaussian distribution
with a unit covariance matrix because the training samples
are normalized to zero mean and unit variance. Therefore, the
conditional distribution needs to be converted into the real
distribution before applying the MLPG algorithm. Since the
conditional distributions are single Gaussian distributions with
a globally shared diagonal covariance matrix, the MLPG in
this paper is the same as that in conventional approaches.

IV. EVALUATION

This section presents the subjective evaluation and acoustic
analysis of synthetic speech processed using various quality-
enhancement methods2. First, we will describe the text-to-
speech voices used in the experiments and the methods we
used in evaluations to compensate for over-smoothing. Then,
the acoustic analysis in terms of modulation characteristics and
spectra is presented, after which we will present the design of
the listening test and finally the test results.

A. Voices and methods

We used a female and a male synthetic voice for the
evaluation, both of which were in English. The male voice
was created from a high-quality average voice model adapted
to 2840 sentences recorded from a British male speaker, which
consisted of approximately three hours of speech material. The
female voice was built using 4546 sentences recorded from a
Scottish female speaker, which comprised approximately four
hours of speech.

All data were sampled at 48 kHz. We extracted the following
acoustic features at 5 ms intervals: 59 mel-cepstral coefficients,
mel scale f0 and 25 aperiodicity band energies extracted using
the Speech Transformation and Representation using Adaptive
Interpolation of weiGHTed (STRAIGHT) [38] analysis. We
used a hidden semi-Markov model as the acoustic model,
and the observation vectors for the spectral and excitation
parameters contained static, delta, and delta-delta values, with

2Speech samples used in the evaluation can be found at: http://wiki.inf.ed.
ac.uk/CSTR/PostfilterJournal

TABLE I
Methods that were evaluated.

NONE No enhancement
PF Mel-cepstral postfilter [14]
GV Global variance [15]
MS Modulation spectrum in mel-cepstral domain [16]
DNN-MCEP Deep neural network in mel-cepstral domain
DNN-SPEC Deep neural network in spectral domain

one stream for the spectrum, three streams for f0 and one for
band-aperiodicity. Speech was synthesised in the frequency
domain.

Table I outlines the methods we evaluated. The parameter β
was set to 0.4 to create the PF entry as in [14]. We applied
the method of global variance [15] only to the mel-cepstral
stream for the GV entry.

The MS of the natural and the synthetic utterances were
evaluated using Eqs. (1) and (2) and using mel-cepstrum for
representing the spectrum of speech for MS enhancement.
The MS was evaluated for each file and each mel-cepstral
coefficient trajectory, from which the MS statistics (mean µ
and standard deviation σ) were estimated. We used 4096-point
Fourier analysis in Eq. (1) in order to exceed the maximum
number of frames in an utterance in the database. The synthetic
trajectories were enhanced using Eq. (3) based on the statistics
that were evaluated. The value of α was set to 0.85 based
on the findings by Takamichi et al. [16]. The MS enhanced
mel-cepstra were then used for synthesising speech (in the
frequency domain).

The input and output of the DNN postfilters were formed
by using multiple consecutive frames of spectral features in
both mel-cepstral and spectral domains:
• Mel-cepstral domain The DNNs were trained with paired

synthetic and natural spectral features aligned using the
dynamic time warping (DTW) algorithm3. Only a DNN
with two hidden layers was constructed for the mel-
cepstral domain, because we observed that the more hid-
den layers we used from our preliminary experiments, the
worse the generated speech was. There were 2048 hidden
units in each hidden layer. The postfilter was only applied
to the lower dimensional mel-cepstral coefficients (1–18th
mel-cepstral coefficients), which are mostly related to the
formants of speech.

• Spectral domain The spectral envelopes, which were
extracted using STRAIGHT with a fast Fourier trans-
form (FFT) length of 4096, were directly used as the
spectral domain features. The dimensionality of the spec-
tral envelopes was 2049. The spectral envelopes were
warped into the Bark scale (using a bilinear transform
with a warping factor of 0.77 [39]) before the DNNs
were trained. Spectral envelopes of synthetic and natural
speech were aligned using the alignment paths calculated
from their corresponding mel-cepstra. We found from our
internal experiments that the generated speech improved

3 It is also possible to obtain such paired data via the forced alignment
algorithms. However a preliminary subjective evaluation test showed that the
above DTW algorithm was preferred in terms of the quality of synthetic
speech.

http://wiki.inf.ed.ac.uk/CSTR/PostfilterJournal
http://wiki.inf.ed.ac.uk/CSTR/PostfilterJournal
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Fig. 6. Preference scores between samples generated with DNN postfilters
with one, three and five frames in input/output.

as we increased the number of hidden layers. However,
DBNs with three hidden layers, which formed a DNN
with six hidden layers, were used to limit the computa-
tional costs. There were 2048 hidden units in each hidden
layer.

The RBMs, DBNs and BAMs were estimated using the CD
algorithm with one-step Gibbs sampling (CD-1). The mini-
batch size was set to 10 during training. The learning rate was
set to 0.0001 for all models. The momentum and weight decay
were also employed to train the models [30]. Two hundred
epochs were executed in training the RBMs and DBNs, and
50 epochs were executed in training the BAMs.

B. Listening experiment: Context size of DNN postfilter

We used three consecutive frames for input and output of the
DNN postfilter in our previous experiments [1]. We wanted to
evaluate the effect of context size in this expriment by varying
the number of consecutive frames. We trained DNN postfilters
with one, three and five frames as input and output to do this.

We evaluated the quality of the postfilters by three possible
paired comparisons. Ten native English speakers participated
in the listening test. Each listener compared 120 pairs of
speech samples, which were comprised of 40 samples from
each of the three paired comparisons.

Fig. 6 provides the breakdown in percentages excluding the
no preference option with 95% confidence intervals calculated
using a two-tailed binomial test. The scores indicate that
the DNN postfilter with five frames was preferable to those
with one and three frames. The three-frame system was also
preferred over the one-frame system. Although we also built
systems with seven and nine frames, no clear differences were
perceived between these and the five-frame system, and the
model training took much longer. Therefore, we fixed the
context size of the DNN-based postfilter to five frames for
the experiments in the rest of this paper.

Note that this experiment was conducted in the mel-cepstral
domain. The performance of the DNN postfilter in the spectral
domain could differ from what we observed in the mel-cepstral
domain. However, it was difficult to train the DNN with more
than five frames in such a high dimensional space. Therefore,
we also fixed the context size of DNN in spectral space to five
frames in the experiments.
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Fig. 7. Average difference in modulation spectrum of mel-cepstra for different
systems compared to natural speech for the female (top) and male (bottom)
speakers.
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Fig. 8. Average difference in modulation per mel-cepstral coefficient for
different systems compared to natural speech for the female (tom) and male
(bottom) speakers.

C. Acoustic analysis

This section presents the results obtained from acoustic
analysis. One interesting aspect to compare is to analyze the
modulation characteristics. This is because the proposed DNN-
based postfilter uses five frames as input and hence may
implicitly learn such temporal characteristics without explicitly
using modulation spectrum features.

Frame-wise mel-cepstra were evaluated from all the syn-
thetic and natural speech waveforms to study the modulation
characteristics of the test speech samples. The average mod-
ulation spectra of all systems were then evaluated following
the same procedure as that in MS enhancement, which was
described in Section II-C. Fig. 7 shows the differences in mod-
ulation spectra with respect to natural speech for each method
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calculated from mel-cepstra and averaged across sentences
and all mel-cepstral coefficients for the female and male
speakers. The same data are presented in Fig. 8, but they have
been ploted separately for each mel-cepstral coefficient and
averaged over all modulation frequencies.

Fig. 7 indicates that GV and DNN-SPEC have the high-
est modulation at low modulation frequencies that represent
modulation frequencies that are mostly associated with rela-
tively slow movements of the articulators. Interestingly, the
modulation in these two systems is even higher than that in
natural speech. Speech with no enhancement (NONE) has
the least modulation overall, and the rest of the systems
fall between these two extremes. Although the modulation
decreases for higher modulation frequencies for all systems,
MS enhancement indicates a consistent increase in modulation
for all frequencies, especially for the female speaker, thus
possibly over-enhancing the higher modulation frequencies.

Fig. 8 indicates that DNN-SPEC provides the largest boost
in modulation for mid-quefrency mel-cepstral coefficients,
while MS enhancement seems to create the highest overall
boost in modulation for each coefficient, probably due to
all modulation frequencies being enhanced. Speech with no
enhancement (NONE) has the lowest modulation for all mel-
cepstral coefficients. However, all systems have less mod-
ulation on almost all mel-cepstral coefficients compared to
natural speech. Interestingly, the DNN-MCEP that enhanced
the coefficients from 1 to 18 shows increase only within these
coefficients.

Finally, we present the spectrogram of a test sentence
produced by the systems we evaluated here in Fig. 9. We
can see that both the formants and the spectral fine structure
are more enhanced when using the DNN-SPEC postfilter
compared to other methods of enhancement. We also present
the spectrogram generated by the proposed postfilter with
mean-field sampling for hidden units to show the effective-
ness of the proposed sampling method (Eqs. (19) and (20)).
Benefiting from direct modeling in the spectral domain, the
spectrogram of the DNN-SPEC system has a more detailed
spectral structure especially at the high frequencies than the
conventional methods of enhancement that operate in the mel-
cepstral domain.

D. Listening experiment: Comparing postfilters

We evaluated the methods in Table I using the MUlti-
ple Stimuli with Hidden Reference and Anchor (MUSHRA)
methodology [40]. Participants rated stimuli produced by all
methods in parallel in the MUSHRA test using a scale from
0 to 100. It was possible for subjects to directly compare the
methods and revise scores accordingly in this way. Such tests
require reference stimulus to be presented that participants
should rate as 100. The reference was natural speech in our
tests. The same sentence was used in each comparison apart
from the female voice whose natural speech reference was
a different sentence as we did not have the recordings of
the test sentences used here. Each participant evaluated 10
sentences for the male voice and 10 for the female voice. A
set of 60 sentences were balanced across participants so that
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Fig. 10. Results for the male voice: box plots of subjective ratings. Means
are represented by solid red lines and medians are represented by dashed
green horizontal lines.
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Fig. 11. Results for the female voice: box plots of subjective ratings. Means
are represented by solid red lines and medians are represented by dashed
green horizontal lines.

for every six participants all sentences were rated under all
conditions. The sentences were chosen from the first six sets
of the Harvard dataset [41], which was a set that was not used
to train either of the voices. As 24 native English speakers
participated in the listening test, 240 scores were obtained for
each method applied to each voice.

E. Results

The distributions of the subjective scores are indicated by
the box plots in Fig. 10 and Fig. 11 for the male and female
voices.

We performed a series of pairwise t-tests to identify sig-
nificant differences in mean scores between the methods.
We applied the Bonferroni correction to compensate for the
large number of comparisons. All pairs were found to be
significantly different at a 1% level except (PF, MS), (PF,
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Fig. 9. Spectrogram of utterance “on the smooth planks” generated using baseline system (NONE) and the enhancement methods: PF, GV, MS, DNN-MCEP,
DNN-SPEC and DNN-SPEC* (refers here to the DNN-SPEC method but with the mean-field approximation)

. The female speaker model was used.

DNN-MCEP) and (GV, MS) for the male voice and (PF, DNN-
MCEP) and (DNN-MCEP, MS) for the female voice according
to this procedure.

The results indicate that all the postfiltering methods re-
sulted in better quality of synthetic speech than that without
post-processing. GV and MS were the most preferable for the
male speaker out of the conventional postfiltering methods,
and GV was the most preferable for the female speaker.

Further we can see that the proposed DNN-based post-
filter in the mel-cepstral domain performs as well as the
conventional mel-cepstral postfilter. Finally, we found that
the proposed DNN-based postfilter in the spectral domain
produced synthetic speech that was of higher quality than that
obtained with any conventional postfilters.

V. DISCUSSION

A. Why did DNN-based spectral postfilter perform better?

The results presented in Section IV-E indicate that the pro-
posed DNN-based postfilter in the spectral domain produced
synthetic speech of significantly higher quality than that ob-
tained with the conventional postfilters. Three possible reasons
for this include:
• The DNN was trained directly in the spectral domain

rather than in the mel-cepstral domain, and was therefore
able to learn spectral fine structures in detail. Note
that we did not include GV in the spectral domain in
our experiments although it provided good results in a
previous study on speech data sampled at 16 kHz [20].
However, it did not work well on the speech data sampled
at 48 kHz in our experiments. In contrast, the proposed
DNN-based postfilter worked well for speech sampled at
both 16 and 48 kHz [1], [42]. The DNN was also able to
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learn the gap in speech dynamics between synthetic and
natural speech in the spectral domain similarly to GV in
the spectral domain.

• The DNN spectra are generated from an RBM trained
on natural speech, which is equivalent to training a
structured GMM that has a huge number of mixture com-
ponents (22048 in this work) [25]. The RBMs/DBNs are
probabilistic models with some beneficial properties, as
was discussed in Section III-B. The acoustic differences
between synthetic and natural speech are modeled in a
high-level binary hidden space. There are fewer patterns
in this space than in the original spectral space, and it is
therefore easier to compensate for the differences with a
single layered BAM.

• The DNN could also learn modulation characteristics
since it uses five consecutive frames for mapping and be-
cause there is a close relationship between the DNN and
MS. The FFT convolution is equivalent to the weighted
sum in a network unit of the convolutional DNN [43],
and the next deep layer of a DNN trained in the spectrum
domain may therefore contain a representation related to
MS.

The spectral features were encoded into binary represen-
tations by RBMs/DBNs for mapping in the proposed DNN-
based postfilter. This is important because the modeling and
mapping in a transformed binary space can avoid the statistical
averaging effect in the continuous space of original spectra,
which is the main cause of the over-smoothing problem in
conventional HMM-based statistical parametric speech syn-
thesis.

However, the subjective results indicate that the proposed
method is feature sensitive. Although it works well in the
spectral domain, it is significantly worse than DNN-SPEC in
mel-cepstral domain. However, it is better than the baseline
method without any post-processing (NONE). One reason for
this is the use of high-dimensional spectra in DNN-SPEC.
Another reason could be that the DNN is not well estimated
in the mel-cepstral domain. It is vital in the training of the
proposed DNN to first generate good binary representations
for spectral features using RBMs for estimating higher hidden
layers of DBNs and BAM. Each dimension of these binary
representations are produced according to the probability of
the corresponding unit being one (probability of the unit being
“switched on”, e.g., P (h1j,x = 1 | x) for synthetic speech in
Eq. (15)). Fig. 12 presents the histograms for P (h1j,x = 1 | x)
in the mel-cepstral and spectral domains. The histograms were
counted using all 2048 hidden units of a sentence from the
training set. We can see a clear 0/1 pattern in histogram of the
spectral domain, i.e., the probabilities are either close to zero
or close to one. This makes it easy to sample reliable binary
representations with many units being one. However, most
probabilities are focused on 0.2 in the mel-cepstral domain
and very few are close to one. The sampled binary sample
is not a good representation of the mel-cepstrum because it
was sampled with a very low probability. Therefore we used
a mean-field approximation for DNN-MCEP discussed in this
paper instead of sampling binary representations. Using mean-
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Fig. 12. Histogram of P (hj = 1) for hidden units from first hidden layer
in mel-cepstral domain (top) and spectral domain (bottom).

field approximation loses the benificial properties of binary
representations in avoiding over-smoothing.

B. Modulation spectrum

The results suggest that low modulation frequencies are
perceptually most significant, and enhancing these improves
the quality of synthetic speech. There is still a large gap in
modulation spectra at the higher modulation frequencies in
comparison to natural speech, but it is not yet clear how much
this has perceptual relevance. MS enhancement, which had
the highest modulation at high modulation frequencies, did
not produce the best quality. However, the higher modulation
frequencies, probably linked to the excitation patterns, may
still be perceptually important, but simple MS enhancement
probably cannot reproduce or enhance the modulation patterns
present in natural glottal excitation.

We noticed that the excitation of speech had a significant
effect on the modulation characteristics of the estimated spec-
tral parameters in the experiments with MS enhancement.
Fig. 2 plots difference in the modulation spectra between 1)
parameters estimated from natural speech, and 2) parameters
generated from statistical models. However, if the modulation
spectrum of the latter is estimated from a synthesized speech
waveform instead of the generated parameters, the MS has
higher levels of modulation. This is probably due to the exci-
tation of speech that generates additional modulation at higher
modulation frequencies. Thus, the difference in modulation
spectra between natural and synthetic speech should theoreti-
cally be estimated using parameters estimated from natural and
synthetic waveforms in both cases. Chen et al. calculated the
difference in MS between parameters estimated from natural
speech and parameters generated from statistical models [1],
[16], thus ignoring the effect of excitation of synthetic speech.
The effect of ignoring synthetic excitation will most likely
over-estimate the difference in modulation between natural and
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synthetic speech and thus higher modulation frequencies will
be over-emphasized after MS enhancement, as is shown in
Fig. 7. This might degrade speech quality due to the strong,
overly fast modulations in the spectral parameters. Due to this
issue, Takamichi et al. uses low-pass filtering of the MS before
enhancement [16] (although it was not explicitly mentioned
in the paper), which might explain why MS enhancement
performed better in that particular experiment. Despite this
previously mentioned issue, the method in [1] (i.e., MS
estimated from generated parameters and without low-pass
filtering of MS) was used as a reference in this study since it
was proven to be successful despite the effect of excitation
being ignored. Preliminary experiments on estimating MS
from the natural and synthetic speech waveforms indicated
that the method is feasible: the higher modulation spectrum is
not overly emphasized, but lightly less enhancement will be
achieved also in the lower modulation frequencies.

C. Computational cost

The proposed DNN-based enhancement can be time con-
suming since the model is applied directly to high-dimensional
spectra. For example, applying a sentence with T frames,
the computational complexity of this method is O(NHTL),
where N is the dimensionality of the spectral envelope, H is
the number of units in each hidden layer, and L is the number
of hidden layers. The computational complexity of the GV
method is O(MKT ), where M is the dimensionality of the
spectral feature (e.g., mel-cepstrum) and K is the number of
iterations for applying GV (note that M � N ).

We can see that the computational complexity of the pro-
posed DNN-based postfilter is still hundreds of times that of
the conventional GV-based approach. This could be a limita-
tion in real time systems. However, the DNN-based postfilter
can also be applied to the model parameters of HMMs to
accelerate the synthesis process. For example, the mean vector
of the spectral stream (mel-cepstrum) of each HMM state can
be converted into multiple frames of spectra, and the DNN-
based postfilter can be applied to the converted mean vectors.
The postfiltered mean vectors can then be converted back to
the mel-cepstral domain with dynamic features to replace the
corresponding mean vectors of the HMMs. In this case, the
computational cost of the synthesis process is exactly the same
as that of the conventional method (NONE).

VI. CONCLUSION

We proposed a data-driven postfilter technique to improve
the segmental quality of statistical parametric text-to-speech
synthesis. The proposed method uses a DNN to model the
conditional probability of the spectrum of natural speech
given the spectrum of synthetic speech. We evaluated the
proposed postfilter in two different spectral domains: the
low dimensional mel-cepstral domain and the full spectrum
domain, which we described in correspondence. We found that
the full spectral domain DNN-based postfilter significantly im-
proved the segmental quality of synthetic speech by comparing
these two variants with existing postfilter techniques. We also

compared and evaluated them with conventional methods for
both a female and male voice.

Future work will include studies on the DNN-based post-
filter in a speaker independent fashion, investigation into long
term modulation spectra with LSTM-based RNN in hidden
binary space, and also studies on enhancements to modula-
tion spectra using higher-dimensional spectra instead of mel-
cepstra.
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