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Structural bootstrapping at the sensorimotor level for the fast
acquisition of action knowledge for cognitive robots

E. E. Aksoy1, M. Tamosiunaite1, R. Vuga2, A. Ude2, C. Geib3, M. Steedman3, and F. Wörgötter1

Abstract—Autonomous robots are faced with the problem of
encoding complex actions (e.g. complete manipulations) in a
generic and generalizable way. Recently we had introduced the
Semantic Event Chains (SECs) as a new representation which
can be directly computed from a stream of 3D images and is
based on changes in the relationships between objects involved
in a manipulation. Here we show that the SEC framework
can be extended (called “extended SEC”) with action-related
information and used to achieve and encode two important
cognitive properties relevant for advanced autonomous robots:
The extended SEC enables us to determine whether an action
representation (1) needs to be newly created and stored in its
entirety in the robot’s memory or (2) whether one of the already
known and memorized action representations just needs to be
refined. In human cognition these two processes (1 and 2) are
known as accommodation and assimilation. Thus, here we show
that the extended SEC representation can be used to realize
these processes originally defined by Piaget for the first time in
a robotic application. This is of fundamental importance for any
cognitive agent as it allows categorizing observed actions in new
versus known ones, storing only the relevant aspects.

I. INTRODUCTION

A central issue for the development of autonomous robots
is how to quickly acquire new concepts for planning and
acting, for example learning a relatively complex manipu-
lation sequence like cutting a cucumber. Association-based
or reinforcement learning methods are usually too slow to
achieve this in an efficient way. They are therefore most often
used in combination with supervised learning methods. Espe-
cially the Learning from Demonstration (LfD) paradigm seems
promising for cognitive learning ([1], [2], [3], [4], [5]) because
we (humans) employ it very successfully. The problem that
remains in all these approaches is how to represent complex
actions or chains of actions in a generic and generalizable
way allowing to infer the “meaning” (semantics) of an action
irrespective of its individual instantiation.

In our earlier studies we introduced the “Semantic Event
Chain” (SEC) as a possible descriptor for manipulation actions
[6], [7], [8]. The SEC framework analyzes the sequence of
changes of the relations between the objects that are being
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2Jožef Stefan Institute, Department of Automatics, Biocybernetics and
Robotics, Jamova 39, Ljubljana, Slovenia [rok.vuga,ales.ude]
at ijs.si

3School of Informatics, University of Edinburgh, 10 Crichton Street,
Edinburgh, Scotland [cgeib,steedman] at inf.ed.ac.uk

Fig. 1: Schematic representation of the acquisition of action
information by observation using SECs and Action descriptors
(left) as well as execution (right).

manipulated by a human or a robot. Consequently, SECs are
invariant to the particular objects used, the precise object poses
observed, the actual trajectories followed, or the resulting in-
teraction forces between objects. All these aspects are allowed
to change and still the same SEC is observed and captures
the “essence of the action” as demonstrated in several action
classification tests performed by us [6], [7], [8].

The goal of this paper is to extend the SECs with action
related information (action descriptors) and to use the obtained
structure for the assimilation of novel information into the
existing schemata or for the creation of novel schemata
(accommodation) in a Piagetian sense [9]. The first happens
when an agent finds that a newly observed action is compatible
with an already memorized SEC, but there are some elements
present in the new action which are truly novel. These can
then be stored (assimilated) together with the known ones
into the existing schema. The second happens when the agent
realizes that the new action does not compare to any of its
known schemata and requires a novel schema to be created
(accommodation). This way agent’s cumulative memory of
actions can be developed. The main contribution of this paper
is therefore the enrichment process of event chains to further
use memory in a more efficient way. With respect to our
previous approaches ([6], [7], [8]), enriched SECs also lead
to extraction and comparison of action descriptors such as
trajectory segments, pose, and object information.

The whole process of action representation using SECs and
action descriptors is summarized in Fig. 1. In this paper we
are concerned only with the observation phase (left side). The



Fig. 2: Real action scenarios. (a), (c), (e) Sample original key frames, (b), (d), (f) corresponding segments and graphs for the
following actions: Cutting, Chopping, and Stirring.

execution stage (right side) is described in [10] which shows
the possibility of imitating actions with robots by directly
using the here introduced representations.

The paper is organized as follows. We start with the de-
scription of the extended SEC representation and then provide
an example for assimilation as well as accommodation using
this framework. We call the developed algorithm Structural
Bootstrapping. In the discussion section we embed these
results into the state of the art and provide also a comparison
to child language development, from where the concept of
Bootstrapping originates.

II. DATA AND DATA REPRESENTATIONS

A. Data and Pre-processing

Data structures and algorithms we developed are generic
and do not depend on the actual input data. Nonetheless, it is
best to first describe some example experiments, which should
make it is easier to understand all components of our repre-
sentation. We have investigated three different manipulation
actions: Cutting, Chopping, and Stirring. In the Cutting action,

a hand is cutting a cucumber by moving a knife back and
forth. In the Chopping action, a cleaver follows a straight
trajectory to cut a carrot. The Stirring action represents a
scenario in which a spoon is used to stir milk in a bucket. We
recorded these three manipulation sequences with Microsoft
Kinect. The developed system first pre-processes all movie
frames by a real-time image segmentation procedure ([11],
[12]) to uniquely identify and track objects (including hands)
in the observed actions. Each segmented image is represented
by a graph: nodes represent segment centers and edges indicate
whether two objects touch each other or not (in 3D). Fig. 2 (a-
f) depict sample original images with extracted segments
(regions) and graphs for each scenario.

While recording each action sequence, the trajectories of
the hand and manipulated objects as well as their poses are
measured by the 3D motion capture system Optotrak. Fig. 5
illustrates the measured trajectories for the knife and cleaver as
used in the Cutting and Chopping scenario. These trajectories
were measured by attaching a set of 3 active markers to each
of the objects involved in the action.



1) Semantic Event Chain E: By using an exact graph
matching technique the framework discretizes the entire graph
sequence into decisive main graphs. A new main graph is
identified whenever a new node or edge is formed or an
existing edge or node is deleted. Thus, each main graph
represents a “key frame” in the manipulation sequence. All
extracted main graphs form the core skeleton of the SEC E ,
which is a matrix where rows (index i) are possible pairwise
object relations (e. g. between the hand and knife or the knife
and cucumber) and columns (index j) describe the scene
configuration at time j when a new main graph has occurred.
Fig. 3 (a) indicates the SEC with sample main graphs derived
from the Cutting action shown in Fig. 2 (a).

Let E be a semantic event chain with size n×m. Then it
can be written as:

E =


R(oa1 , ob1)
R(oa2 , ob2)

...
R(oan

, obn)

 =


r1,1 r1,2 · · · r1,m
r2,1 r2,2 · · · r2,m

...
...

. . .
...

rn,1 rn,2 · · · rn,m

 , (1)

where ri,j represents a spatial relation R between an object
pair oai , obi at time j. Thus all pairs of objects need to be
considered once, where rows that do not contain any changes
in object-object relations are deleted. The maximum total
number of rows n is defined as n = λ(λ − 1)/2, where λ
is the total number of segments. However, the total number of
columns m depends on the action and can vary.

Relations are given by:

ri,j ∈ {not touching (N), touching (T), absence (A)}, (2)

where N means that there is no edge between two segments,
i.e. graph nodes corresponding to two spatially separated
objects, T represents objects that touch each other, and absence
of an object yields A.

2) Action Encoder Matrix A: A central advantage of our
framework is that we can extract temporal anchor points from
a SEC. These points tell us when to “pay attention to the
action”, because action-relevant details occur at or near the
transitions between the relations recorded in the SEC. These
transitions are encoded by Ti,j , defined as:

Ti,j =

{
0 if ri,j = ri,j−1, j > 1
[T .{d1, d2, . . . , dk}]i,j else (3)

The variables Ti,j correspond to the respective transition and
its k action descriptors d (described later). One could think of
each T as a derivative-like “change-encoder”, which is non-
zero whenever there is a change in the scene graph (“some-
thing has happened with any of the objects”). For improved
readability transitions are given in plain-text (e.g. NT, AT, AN,
etc.) using the corresponding pairs of relations r from the
event chain to encode this. For example, entries (r4,4, r4,5)
and (r4,7, r4,8) represent transitions from N to T and from
T to N as depicted in shaded boxes in Fig. 3 (a). Hence in
these cases we would write specifically T4,5 = [NT]4,5 and
T4,8 = [TN]4,8. For these (and all others where ri,j 6= ri,j−1)
we have Ti,j 6= 0. Descriptors d need to be computed next.

Note that for the first column (j = 1) there are no transitions
and we write Ti,1 = Xi,∀i, where descriptors di,1 define the
initial state of the corresponding objects before the action
progresses. Fig. 3 (b) depicts the corresponding transitions
derived from the SEC given in Fig. 3 (a). In the following we
will abbreviate T .{d1, d2, . . . , dk} with T .d where possible.

The resulting structure will, thus, be a matrix describing the
action A:

A =


X1 [T .d]1,2 · · · [T .d]1,m
X2 [T .d]2,2 · · · [T .d]2,m
...

...
. . .

...
Xn [T .d]n,2 · · · [T .d]n,m

 . (4)

Each descriptor d contains information about the objects
involved, their relative poses at time j of the event, as well as
their trajectories until time j and the forces involved. In our
implementation the variable k from Eq. (3) is set to 4, but this
can be changed if more action-relevant attributes are needed.
We define the descriptor set as:

• d1i,j = {oai
, obi}i is a set containing two object identifiers

of those objects that are involved in the given event.
Note that by definition of the event chain there are
always exactly two objects for each event. Objects do
not change along the rows of an event chain, thus index
j is irrelevant.

• d2i,j = {p}i,j = {x, y, z, α, β, γ}i,j is a set containing
relative pose information between two object identifiers.
The x, y, z and α, β, γ values hold corresponding
translation and rotation values, respectively.

• d3i,j = {t}i,j = {s,g, τ,w1,...,6}i,j , s, g ∈ R6, is

Fig. 3: The SEC (E) and transition matrix extracted from the
Cutting action given in Fig. 2 (a). (a) SEC with corresponding
sample main graphs and segments. (b) Transition matrix show-
ing the respective relational transitions between object pairs.
First column defines the initial relations. Shaded boxes show
two sample transitions: T4,5 = [NT]4,5 and T4,8 = [TN]4,8.



a set of parameters containing trajectory information
in the Cartesian task space. In this study we use the
modified Dynamic Movement Primitives (DMPs, [13])
to encode movement trajectories because they have faster
convergence at the end points compared to the standard
DMPs and allow smooth joining of movement sequences.
Variables s and g denote start and goal (end) points of the
DMP, respectively, and τ is the time constant modulating
the speed of movement. Vectors wl, l = 1, . . . , 6, hold
the shape parameters of the DMP given as weights for
about 5-20 Gaussian kernels (see [13] for a description
of the DMP parameterization). DMPs offer the advantage
that they are robust to perturbations, can generalize to
different start- and end-points, and also allow online mod-
ification of the movement by ways of sensory coupling
([14], [15], [13], [16]).

• d4i,j = {f}i,j = {fx, fy, fz, τx, τy, τz}i,j is a 6D vector
containing the Cartesian space force and torque informa-
tion. Force information cannot directly be obtained from
human demonstration and but requires own exploration
(similar to the situation for a human child).

Thus, derived from the event chain E and using additional
information encoded with descriptors d, we have now obtained
a new matrix A . The event chain becomes obsolete by this.
Still, it makes sense to keep both, E and A , to make the next
step, the description of the bootstrapping algorithm, easier.

B. Algorithm: Structural Bootstrapping

Sensorimotor structural bootstrapping consists of four main
steps: (1) Initial memory formation, (2) observation, (3) com-
parison, and (4) generalization via Assimilation or Accommo-
dation (Fig. 4). In the very first step, the framework analyzes
and stores an action in the specific format described above.
Let this first observed and stored action be 〈(E ,A)a1〉 where
in the pseudo-code below we denote memory storage by
brackets 〈 〉. In the second step, a new action is observed
(E ,A)a2. In the third step, comparison, we determine whether
both, stored and newly observed, actions are semantically the
same (for example cutting and chopping have the same SEC,
whereas stirring has a different one). Similarity between two
event chains, Ea1 and Ea2 is measured using the definition of
spatiotemporal similarity ζ(Ea1,Ea2) for SECs given in [6].
The last step, generalization, is divided into two aspects. If the
semantic similarity ζ(Ea1,Ea2) is below a certain threshold
τE , actions are not type-similar and we will store the complete
newly observed action as a new schema (Accommodation,
lower path in Fig. 4). Otherwise, i. e. for type-similar actions,
we perform a comparison of the two descriptor sets [T .d]a1i,j
and [T .d]a2i,j . Below we describe how DMP descriptors d3i,j
can be compared. The comparison of other descriptors (object
identity, relative pose information, and torques at the contact
point) can be done using standard metrics.

The acquisition of new action information is completed by
extending the memory either by storing the new action or by
additionally storing those descriptors that are different com-
pared to those already stored in the memory of a known action.

Fig. 4: Schematic representation of the required steps for
Structural bootstrapping. For explanation see text.

In the latter case, individual entries in matrix A turn into tuples
of descriptor sets [T .(da1, da2)]i,j . This whole procedure can
be repeated as soon as more actions are observed. A concise
description of the entire structural bootstrapping framework is
given in Algorithm 1.

Algorithm 1 Sensorimotor Structural Bootstrapping

Store first action in memory 〈· · · 〉.
〈 〉 = 〈 〉+ (E ,A)a1 with Aa1 defined by [T .d]a1i,j
Observe next action.
(E ,A)a2 with Aa2 defined by [T .d]a2i,j
Semantic Comparison.
ζE = ζ(Ea1,Ea2)
if ζE < τE (small similarity!) then

New Action! Create new memory (Accommodate).
〈(E ,A)a1〉 = 〈(E ,A)a1〉+ (E ,A)a2

else
Type-similar Action! Perform syntactic comparison.
for each event Ti,j 6= 0 do

for all descriptors d indexed by l do
ζdl = ζ([T .dl]a1i,j , [T .d

l]a2i,j)
Compare syntactic similarity.
if ζdl < τdl (small similarity!) then

New element! Assimilate into existing memory.
〈(E ,A)a1〉 with [T .dl]a1i,j = [T .(dl,a1, dl,a2)]a1i,j

end if
end for

end for
end if

Algorithm 1 requires that we can compare actions both at
the semantic event chain level [6] and at the action descriptor
level. In the current implementation we use object identities,
relative poses, and trajectories for comparisons at the action
descriptor level. While comparing identities and relative poses
is rather straightforward, the comparison of trajectories is more
difficult and is described in more detail below.

1) Comparison of movements encoded by DMPs: DMPs
provide a temporary and spatially invariant representation of a
movement. Even if the timing τ and the absolute position of
the movement (s and g) in space change, the parameters wl



stay the same. Thus trajectories with similar velocity profiles
will be fitted by similar shape parameters w = [wT

1 , . . . ,w
T
6 ]

T

[14]. Similarities between two trajectories encoded by DMPs
can be measured by computing the correlation between their
parameter vectors. The correlation is given by the cosine of
the angle between these two vectors:

wT
1 w2

‖w1‖‖w2‖
, (5)

where w1 and w2 are the parameter vectors of two different
movements. Thus, in the training phase we store a set of
prototype movements for each action primitive. Classification
is then performed by comparing the newly observed trajec-
tory extracted from SECs to the available prototypes. More
advanced methods like support vector machines could be used,
but this was not necessary in our experiments.

The proposed classification method can be applied to com-
pare DMPs describing the movements as long as the shape of
underlying motion trajectories does not change with respect
to the current configuration of the task. If this is not the
case, then we can use statistical generalization with respect
to the parameters of the task [17] to generate new movement
prototypes to which the newly observed trajectories can be
compared.

III. RESULTS

We have applied the structural bootstrapping algorithm
described above to the three example actions (Cutting, Chop-
ping, Stirring). The framework first extracts key events and
generates SECs for all action sequences as explained in
section II-A. Then action-encoder matrices (A) are determined.
Fig. 5 shows an incomplete, while graphical, rendering of the
action-encoder matrices for the Cutting and Chopping actions.

We use Cutting as our reference action (Action cut, see
also “In Memory”, Fig. 4) and commit it to memory 〈 〉 =
〈 〉 + (E ,A)cut. Then we define Chopping and Stirring as
action indices chop and stir, respectively.

Structural bootstrapping continues with a semantic com-
parison of the event chains in the spatiotemporal domain.
Fig. 6 (a) illustrates the similarity values for the different
actions. Similarity measures are basically computed by com-
paring rows and columns of two event chains using simple
sub-string search and counting algorithms. Relational changes
are considered while comparing the rows, whereas for the
columns the temporal order counts. We first search for the
correspondences between rows of two event chains since rows
can be shuffled. The searching process compares and counts
equal entries of one row against the other using a standard sub-
string search which does not rely on dimensions and allows
to compare arbitrarily long manipulation actions. We then
examine the order of columns to get the final similarity result.
Details for similarity calculations are given in [6].

If one compares Cutting with itself, similarity is of course
100%, but we also observe high similarity values (88%)
between Cutting and Chopping. On the other hand, the sim-
ilarity between Cutting and Stirring is only (55%). In our
earlier studies we had measured the discriminability of our

Fig. 6: Semantic comparison. (a) Similarity values between
the Cutting, Chopping, and Stirring actions. (b) Segment
categories showing which segments exhibit the same role in
type-similar actions.

Fig. 5: Action-encoder matrices (A) with extracted descriptors for the Cutting and Chopping actions. Movement is described
in table coordinate system, x and y - table plane coordinates (red and green), z - distance from the table (blue); solid lines
stand for the tool demonstrator’s hand holding, dashed lines for the tip of the cucumber.



similarity measure using identical actions performed somewhat
differently in a noisy environment [6]. From these studies
we know that the discriminative threshold is usually about
τE = 65%. When applying this threshold here we find that
Cutting and Chopping are regarded as similar, whereas Cutting
and Stirring are not. First we observe that this matches to
our lay-man’s expectations. In general, we observe that this
type of classification renders human-compatible semantics of
“same/similar” versus “different” actions. [18] provides a huge
confusion matrix showing the semantic similarities between
different actions (e.g. push, hide, uncover, stir, cut, etc.) based
on the manipulation action ontology. This huge confusion
matrix shows the here presented semantic representation can
distinguish actions to initiate the bootstrapping process.

The bootstrapping algorithm then proceeds differently for
different actions. For Stirring we perform Accommodation
and just commit the complete descriptor set to memory, i. e.
〈(E ,A)cut〉 = 〈(E ,A)cut〉+ (E ,A)stir.

For the type-similar actions Cutting and Chopping we
perform a (syntactic) comparison at the level of the individual
descriptors d. First we consider d1, the objects. We find
several objects (see Fig. 6 (b)). Note that noisy segment groups
observed in some action versions are not categorized as objects
since they can all be ignored after applying a SIFT-based
object recognition algorithm [19] in the segment domain.
Also different trajectories are observed. Fig. 5 shows sample
object and trajectory descriptors computed for the Cutting and
Chopping scenarios. For instance, as indicated by the shaded
boxes, in both actions the same relational transitions (i.e.
events) are observed from N to T and from T to N at index
numbers i = 4, j = 5 and i = 4, j = 8. Here we can perform
Assimilation. Specifically [T .d1]cut4,j = {knife, cucumber}
and [T .d1]chop4,j = {cleaver, carrot}. Assimilation renders:
〈(E ,A)cut〉 with [T .d1]cut4,j = [T .(d1,cut, d1,chop)]cut4,j . Here
we note that the “concept of cutting” [T .dcut]cut is extended
by “aspects of chopping” [T .(dcut, dchop)]cut (denoted by the
general versus the specific indices in this notation).

Furthermore, Fig. 7 shows that relative poses of manipulated
objects are rather weak cues to distinguish the cutting and
chopping actions. The main reason is that the pose of a cutting
tool is usually constrained to be perpendicular and in the
middle of the object to be cut. In this sense, no assimilation is
needed for pose. Note that each sample in Fig. 7 is recorded
when the cutting tool starts to touch the object to be cut.
However, the measured trajectory descriptors [T .d3]4,8, as
indicated with blue boxes in Fig. 5, are highly different in
both actions as a consequence of the nature of cutting and
chopping actions. Fig. 8 shows a correlation matrix between
different instances of these two trajectory samples according
to equation (5). On the other hand, descriptors [T .d3]4,5 in
both actions are quite similar since in both versions the hand
is approaching to vegetables in a similar way. Therefore, only
[T .d3]chop4,8 is added to the memory yielding: 〈(E ,A)cut〉 with
[T .d3]cut4,8 = [T .(d3,cut, d3,chop)]cut4,8 .

Fig. 7: Correlation between relative poses of the manipulated
objects in 15 instances of cutting and 20 instances of chopping
actions. Each instance is recorded when the cutting tool starts
to touch the object to be cut. Red corresponds to the maximum
correlation of 1.0 between the sample pair of poses and blue
corresponds to the correlation of 0.0.

Fig. 8: Correlation between 15 instances of cutting and 20
instances of chopping trajectories according to equation (5).
In red and blue are indicated the maximum (1.0) and minimum
(0.0 or below) correlations between two sample trajectories.

IV. DISCUSSION AND CONCLUSION

In this paper we have presented two complementary ap-
proaches. (1) We have extended the Semantic Event Chain
framework by action descriptors and (2) we have used the new
framework to compare actions at different levels of semantic
depth. This allowed us to subsume cutting and chopping into
the same action category (still named “cut”) allowing to share
most of the cutting- and chopping-action description within
the same memory structure. On the other hand we were also



able to realize that cutting and stirring are more fundamentally
different such that for both different memory representations
have to be stored in their entirety. This distinction arises
from a structural comparison either at the level of the SECs
or “inside” the action descriptors d, which is called here
Structural Bootstrapping. So far this study is based on only
three actions. This is due to the fact that all these experiments
take quite long and require storing various action-information
combining different methods. Our current goal was to show
the principles of accommodation and assimilation for which
three actions suffice, but we are currently in the process of
developing a more complete action-library based on the here
presented encoding principles. Next we will now try to embed
our study in the state of the art to show similarities and
differences to other approaches.

A. State of the Art - Action Classification

Learning from Demonstration (LfD) has been successfully
applied both at the control [1], [2] as well as the symbolic
level [3], [4], [5]. Although various types of actions can be
encoded at the control level, i. e. trajectory-level, this is not
general enough to imitate complicated actions under different
circumstances. On the other hand, at the symbolic level
sequences of predefined abstract action units are used to learn
complex actions, but this might lead to problems for execution
as many parameters are left out in the resulting representa-
tion. Although our approach with SECs is a symbolic-level
representation, SECs are enriched with additional decisive
descriptors (e.g. trajectory, pose, etc.) and do not use any
assumption or prior knowledge in the object or action domain.
Ideas to utilize relations to reach semantics of actions can be
found as early as in 1975. For instance, [20] introduced the
first approach about the directed scene graphs in which each
node identifies one object. Edges hold spatial information (e.g.,
LEFT-OF, IN-FRONT-OF, etc.) between objects. Based on
object movement (trajectory) information events are defined to
represent actions. The main drawback of this approach is that
continuous perception of actions is ignored and is substituted
instead by the idealized hand-made image sequences. This,
however, had not been pursued in the field any longer as
only now powerful enough image processing methods became
available.

Thus, still there are only a few approaches attempting to
reach the semantics of manipulation actions in conjunction
with the manipulated objects [21], [22], [23]. The work
presented in [21] represents an entire manipulation sequence
by an activity graph which holds spatiotemporal object in-
teractions. The difficulty is, however, that complex and large
activity graphs need to be decomposed for further processing.
In the work of [22], segmented hand poses and velocities
are used to classify manipulations. A histogram of gradients
approach with a support vector machine classifier is separately
used to categorize manipulated objects. Factorial conditional
random fields is then used to compute the correlation between
objects and manipulations. [23] introduced visual semantic
graph (inspired from our scene graphs) to recognize action

consequences based on changes in the topological structure
of the manipulated object. Although all those works to a
certain extent improve the classification of manipulations
and/or objects, none of them extracts key events of individual
manipulations.

[24] is one of the first approaches in robotics that uses the
configuration transition between objects to generate a high-
level description of an assembly task from observation. Config-
uration transitions occur when a face-contact relation between
manipulated and stationary environmental objects changes. In
our case, each relational transition is considered as a temporal
anchor point, at which additional action descriptors are stored.
All temporal anchor points are then used in the bootstrapping
algorithm. In this sense, to our best knowledge, our work is
the first attempts to evaluate semantics of manipulations in a
Piagetian sense.

B. State of the Art - Link to Child Language Development

Apart from the aspect of action classification, there is
another important link existing of our work to – in this
case – an entirely different field, much unrelated to robotics.
Structural Bootstrapping, as shown here, is strongly influenced
from processes that dominate child language acquisition.

Children acquire the meaning of new words and construc-
tions in their language using two related mechanisms. The
primary process is semantic bootstrapping where the child as-
sociates “meaning-from-the-outside-world” with components
of sentences. For example, if the word open is consistently
uttered in situations where opening occurs (whatever else
is going on), then the meaning of the word can be proba-
bilistically inferred from the conceptual representation of the
observed event ([25]). Once a certain amount of language has
been acquired, a second process of syntactic bootstrapping
can speed up this process by exploiting structural similarity
between linguistic elements. This can take place even entirely
within language (hence in a purely symbolic way without
influence from the world). The most probably meaning of
a new word can be estimated on the basis of the prior
probability established by previously encountered words of
the same semantic and syntactic type in similar syntactic and
semantic contexts. For example, if a child knows the meaning
of “open the box” and then hears the sentence “open the
closet”, it can infer that a “closet” denotes a thing that can
be opened (rather than a word meaning the same thing as
“open”) without ever having seen one ([25], [26] see [27] for
a comparison between semantic and syntactic bootstrapping).
Essentially this amounts to inference of the syntactic and
semantic type of an unknown word from its grammatical role
and the surrounding context of probabilistically known words.
These two generalization mechanisms are very powerful and
allow young humans to acquire language without explicit
instruction. It is arguable that bootstrapping is what fuels the
explosion in language and conceptual development that occurs
around the third year of child development [28], [26].

There is also a link between action and language. [29]
provided a generative grammar describing the structure of



action. This grammar has both computational applicability and
a biological basis.

C. Conclusion

In the current paper we combined computer vision based
action representation and classification with a bootstrapping
process to accelerate (non-linguistic) acquisition of action
knowledge in a robot. As discussed above, structural boot-
strapping performs a comparison of the meaning (semantics)
of actions at the level of SECs and – if required – then in a
second step a comparison of its individual syntactic elements
(descriptors d). This way it becomes for the first time possible
to perform the rather complex aspects of Accommodation and
Assimilation [9] in a formal and algorithmically sound way
with a robot-compatible action encoding. The resulting cate-
gorization allows for a better understanding of the underlying
actions and their cognitive meanings. In [10] we demonstrate
that the here-introduced action representation can be used to
execute the respective action with a robot. Thus, learning the
representation from observation together with robot execution
does - we think - provide a substantial contribution to the field
of cognitive robotics
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