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 17 

Highlights 18 

 No in vitro model of osteoarthritis has been validated against the native disease 19 

 Cytokine and compression models are most commonly used 20 

 Cytokine based models often use concentrations far greater than values measured in vivo 21 

 Supraphysiological loads are also used often to exaggerate the response 22 

 The development of an in vitro model might require a combinatorial, multi-modal approach 23 

Abstract 24 

Osteoarthritis (OA) is a prevalent disease of most mammalian species and is a 25 

significant cause of welfare and economic morbidity in affected individuals and populations. 26 

In vitro models of osteoarthritis are vital to advance research into the causes of the disease, 27 

and the subsequent design and testing of potential therapeutics. However, a plethora of in 28 

vitro models have been used by researchers but with no consensus on the most appropriate 29 

model. Models attempt to mimic factors and conditions which initiate OA, or dissect the 30 

pathways active in the disease. Underlying uncertainty as to the cause of OA and the different 31 

attributes of isolated cells and tissues used mean that similar models may produce differing 32 

results and can differ from the naturally occurring disease.  33 

This review article assesses a selection of the in vitro models currently used in OA 34 

research, and considers the merits of each. Particular focus is placed on the more prevalent 35 

cytokine stimulation and load-based models. A brief review of the mechanism of these 36 

models is given, with their relevance to the naturally occurring disease. Most in vitro models 37 

have used supraphysiological loads or cytokine concentrations (compared with the natural 38 

disease) in order to impart a timely response from the cells or tissue assessed. Whilst models 39 

inducing OA-like pathology with a single stimulus can answer important biological questions 40 

about the behaviour of cells and tissues, the development of combinatorial models 41 

encompassing different physiological and molecular aspects of the disease should more 42 

accurately reflect the pathogenesis of the naturally occurring disease. 43 
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Introduction 46 

Osteoarthritis (OA) is the most common form of arthritis and is one of the leading 47 

causes of disability worldwide. Most mammalian populations are affected, including humans 48 

and domesticated animal species including sheep (Vandeweerd et al., 2013), horses (Ireland 49 

et al., 2013), cats (Clarke et al., 2005) and dogs (Clements et al., 2009). Estimates in human 50 

populations suggest that 9.6% of men and 18% of women over the age of 60 years have 51 

symptomatic OA (Woolf and Pfleger, 2010). In 2006-2007 in the United Kingdom 94% of 52 

hip and 97% of knee replacements were carried out for relief of OA, costing an estimated 53 

£809 million
1
. Consequently OA is a major concern, particularly in ageing populations 54 

(Nguyen et al., 2011). 55 

 56 

Symptoms of OA most commonly include pain, swelling and stiffness in the affected 57 

joint, resulting from the degradation of articular cartilage (Madry et al., 2012), changes in the 58 

composition of the subchondral bone (Sniekers et al., 2008; Saito et al., 2012) and synovitis 59 

(Goldhammer et al., 2010). Historically, OA was primarily observed in elderly individuals 60 

which led to the idea that OA was a ‘wear-and-tear’ type disease (Berenbaum, 2013). 61 

However, this idea is now less favoured because younger patients often display symptoms of 62 

OA secondary to injuries or because of a genetic predisposition to the disease (Da Silva et al., 63 

2009).  64 

 65 

OA is a multifactorial disorder and no single aetiological mechanism has been found 66 

common to all forms of the disease (Iliopoulos et al., 2007). Large genetic studies have 67 

identified numerous genetic risks for OA (Reynard and Loughlin, 2013), although the odds 68 

ratios for most single nucleotide polymorphism (SNP) associations are low, and rarely do 69 

                                                           
1
See: http://www.arthritisresearchuk.org/arthritis-information/data-and-statistics/osteoarthritis.aspx (accessed 24 

November, 2014) 

£1 = approx. US$1.50, €1.36 at 06 April 2015. 
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they apply to more than one form of the disease. The mechanisms which underpin genetic 70 

risks are often unidentified, and in vitro models are critical if we are to expand our 71 

understanding of their role in disease progression. 72 

 73 

Both in vivo and in vitro models of OA have been used in the past (Goldring et al., 74 

2008; Grenier et al., 2014; Fang and Beier, 2014). Whilst models can be broadly grouped 75 

according to the primary mechanism by which the catabolic process is stimulated, each with 76 

their own strengths and weaknesses (Table 1), subtle variations mean that an almost infinite 77 

number of variations exist for a single model (Benam et al., 2015). Similarly, whilst in vivo 78 

models may give the most accurate reflection of the naturally-occurring whole-joint disease, 79 

the ease of manipulating an in vitro system, as well as a shift towards the 3R philosophy of 80 

refining, reducing and replacing the use of animals in animal science (Madden et al., 2012) 81 

makes in vitro modelling of the disease desirable. The observation that spontaneous OA in 82 

domestic animals has a similar pathogenesis to that observed in humans (Clements et al., 83 

2006), and the availability of naturally-occurring, early-stage diseased tissue, for example at 84 

slaughter in food animal species or following a veterinary surgical intervention in companion 85 

animals (Clements et al., 2009) makes domestic animals an important source of clinical 86 

material for such models. 87 

 88 

Additionally, models of OA offer the opportunity to study early features of the 89 

development of the disease, prior to the development of a fulminant catabolic process, which 90 

have been difficult to dissect because of the lack of available tissue from early disease and the 91 

limited molecular changes associated with it (Aigner et al., 2006). No consensus on the most 92 

appropriate model for the representation of particular features of OA has been made, as each 93 

model has its own mechanisms for the induction of a general catabolic process. Furthermore, 94 
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the molecular phenotypes of different forms of OA also show distinct differences (Xu et al., 95 

2012), and such subtleties can be considered when designing models of OA rather than 96 

ignoring them when using more general in vitro models.  97 

 98 

The relevance of in vitro models to clinical disease always needs to be interpreted 99 

with caution. For example, numerous publications report the chondroprotective effects of 100 

glucosamine and chondroitin sulphate on in vitro models (Dechant et al., 2005; Chan et al., 101 

2007), but clinical trials have failed to show such effects in vivo (Wandel et al., 2010; 102 

Sawitzke et al., 2010). Whilst some effects of the differences can be ascribed to delivery, 103 

complexity, duration and variation of the phenotype, ultimately in vitro models should be 104 

designed to better reflect the natural in vivo disease. This particularly applies to the disease 105 

state, where almost all models are designed to replicate the symptoms of end-stage OA with 106 

little or no regard to the early disease where chondroprotection is likely to yield greater 107 

benefits.  108 

 109 

This review summarises the two most commonly used in vitro models of OA, namely, 110 

cytokine-based models and load-based models, and then discusses their various merits and 111 

how they reflect the naturally-occurring processes.  112 

 113 

Cytokine induction of OA-like processes 114 

Classic research on OA has focused on cartilage, but other tissues such as bone, 115 

synovium, ligament, infrapatellar fat (Maccoux et al., 2007) and periarticular muscles (Geyer 116 

et al., 2009) are also involved (Fig. 1). The changes seen in these tissues are attributed to 117 

diffusible factors, including proteolytic enzymes, such as matrix metalloproteinases (MMPs) 118 

and members of the ‘a disintegrin and metalloproteinase with thrombospondin-motif’ 119 
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(ADAMTS) family that are present in the joint environment during the disease (Little et al., 120 

2005; Clements et al., 2006).  121 

 122 

Cytokines in OA 123 

During OA, synoviocytes, mononuclear cells or chondrocytes may increase their 124 

expression of catabolic proteins (Fernandes et al., 2002) following stimuli such as cytokine or 125 

chemokine exposure, including interleukin (IL)-1β and tumour necrosis factor (TNF)-α, 126 

which are present in the joint following synovial inflammation (Sohn et al., 2012). Pro-127 

inflammatory cytokines make ideal candidates for the induction of OA-like biological 128 

changes in articular cells or tissues in culture, in which temporal and concentration effects 129 

can be explored. 130 

 131 

Models of OA where cytokines are the primary method of induction are very common 132 

and are generally well understood. The model is usually inexpensive and is very easily 133 

manipulated. The ability to expand cells in vitro also means that many replicates are possible, 134 

allowing multiple hypotheses to be tested from single sources of tissue. Nevertheless, cells in 135 

culture (particularly chondrocytes) are prone to dedifferentiate to fibroblasts after only a 136 

small number of passages (Caron et al., 2012; Minegishi et al., 2013), and isolating cells from 137 

their matrix removes possible matrix-effects. Additionally, inter-tissue crosstalk is difficult to 138 

characterise in vitro and both time- and concentration-dependent effects are not well 139 

understood (Table 1). 140 

 141 

Evidence for a role of IL-1β in OA is well established, and it has been used as a 142 

potential therapeutic target, for example through the design of vectors activated by IL-1 that 143 

protect against its catabolic effect (Campbell et al., 2005) or through the antagonism of the 144 
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IL-1 receptor (IL-1R) (Chevalier et al., 2009). Exposure to IL-1β stimulates chondrocytes and 145 

synovial cells to produce catabolic proteases (Maccoux et al., 2007) with apocrine signalling 146 

further enhancing MMP release and the resulting degradative cascade. The catabolic response 147 

can be blocked by the inhibition of IL-1β through antagonism with the IL1-R antagonist (IL-148 

1Ra) (Bujak and Frangogiannis, 2009).  149 

 150 

Inflammatory molecules produced by chondrocytes in response to IL-1β, include 151 

prostaglandin (PG)E2, cyclooxygenase (COX)-2, IL-6, IL-8 and leukaemia inhibitory factor 152 

(LIF). IL-1β also leads to the accumulation of reactive oxygen species, through expression of 153 

inducible nitric oxide synthase (iNOS) by the transcription factor nuclear factor kappa B (NF-154 

κB), ultimately leading to apoptosis (Fig. 2a). This mechanism can also be accelerated by IL-155 

1β-mediated damage to mitochondrial DNA, leading to a further release of reactive oxygen 156 

species and enhancing apoptosis (Loeser, 2011). 157 

 158 

IL-1 plays a role in bone pathophysiology relevant to OA, particularly IL-1α which is 159 

also known as osteoclast activating factor (Lee et al., 2010). In bone, there is an increase in 160 

the activity of PGE2 in osteoblasts and stromal cells, as well as an increase in the expression 161 

of receptor activator of NF-κB Ligand (RANKL). RANKL is critically involved in the 162 

activation, maturation and survival of osteoclasts (Tanaka et al., 2005). IL-1 has also been 163 

shown to induce multinucleation of osteoclasts, thus potentiating the function of the cells. In 164 

vivo, when adult rats were injected with a moderate amount of IL-1β (1 µg/kg bodyweight), 165 

an increase in serum and urinary Ca
2+ 

concentration was noted, as well as an increase in 166 

osteoclast number, implying an increase in bone resorption (Nguyen et al., 1991) 167 

 168 
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TNF-α has also been used to induce OA-like changes in in vitro experiments, because 169 

it is found in diseased synovial fluid (Horiuchi et al., 1999; Fujita et al., 2005), and is able to 170 

induce catabolism and inhibit anabolic pathways in joint tissues and cartilage cells (Liacini et 171 

al., 2003). While IL-1β and TNF-α are the most commonly used cytokines in modelling OA, 172 

other cytokines may also play important roles. Concentrations of IL-6, IL-8, vascular 173 

endothelial growth factor (VEGF) and monocyte chemoattractant protein-1 (MCP-1) are all 174 

increased in the synovial fluid of OA joints (Sohn et al., 2012). Osteoclasts are recruited by 175 

IL-6, and thus it may be an important modular of the bone remodelling observed in OA 176 

(Silfverswärd et al., 2004). However, in model designs, these cytokines are rarely considered, 177 

possibly because they are characterised as chondrocyte-derived and thus they can be induced 178 

by other cytokines such as IL-1β or TNF-α (Bunning et al., 1990). Using cytokines in 179 

combination may allow for the induction of OA-like cell and tissue responses that more 180 

closely replicate the natural disease, particularly in lieu of synovial effects in the model 181 

design.  182 

 183 

In vivo determination of cytokine concentrations  184 

Cytokine-based models use a wide variety of concentrations and durations of cytokine 185 

stimulation, namely those which produce a measurable downstream effect, rather than a 186 

concentration that reflects that in naturally occurring disease. Besides, OA is a slowly-187 

progressing disease, and relatively small increases in cytokine concentrations have been 188 

identified in naturally-affected joints.  189 

  190 

When OA synovial fluid is assayed, the quantities of IL-1 (< 2 ng/mL) and TNF 191 

(almost 3 ng/mL) are highly variable between experiments, but are low in comparison with 192 

those used to exert an effect in vitro (Table 2). The variation in physiological concentrations 193 
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is evident and may be the result of several factors, including the method used to quantify the 194 

cytokines, or the phenotype of the disease. In contrast, the concentrations used in models are 195 

typically much higher at up to 100 ng/mL of IL-1β (Macrory et al., 2009), and up to 50 196 

ng/mL of TNF-α (Gabriel et al., 2010).  197 

 198 

Explant-based models of cytokine stimulation 199 

Explant-based models are simple and easy to produce, and have the major advantage 200 

that they can be used to examine the response of cells in their natural extracellular matrix 201 

and, once removed from their extracellular matrix, the cell phenotype is altered (Zien et al., 202 

2001). Using explanted tissue also allows features such as matrix degradation to be observed. 203 

However, the use of tissue explants creates new problems; for example, cells at the explant 204 

edge die (Hunziker and Quinn, 2003; Gilbert et al., 2009), there are limitations to the number 205 

of samples which can be obtained from the same source and more than one tissue might be 206 

required to maintain viability (Amin et al., 2009). 207 

 208 

  Cartilage is highly sensitive to TNF-α and physiologically relevant concentrations as 209 

low as 0.25 ng/mL (Westacott et al., 1990) are sufficient to increase the release of 210 

glycosaminoglycans (GAGs) from OA cartilage (human) when compared with healthy 211 

cartilage in a 14 day period (Westacott et al., 2000). Species-specific differences may exist in 212 

the stimulation required to elicit a particular response (such as GAG release); thus, GAG 213 

release from feline cartilage explants requires stimulation with both recombinant human IL-214 

1β and oncostatin-M (OSM) in combination (Gabriel et al., 2010), although a feline-specific 215 

stimulus may have elicited a different response. 216 

 217 
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A possible autocrine network has been suggested because both IL-β and TNF-α show 218 

strong positive protein staining in the superficial zone of cartilage as well as in the synovial 219 

fluid in late-stage OA. Meanwhile, deep zone cells only demonstrate marginal staining in the 220 

most severe cases (Tetlow et al., 2001), illustrating the differential responses of chondrocytes 221 

in disease. Notably, the early stages of disease rarely demonstrate any chondrocyte 222 

expression of cytokines, implying that any inflammatory cytokines present in the joint at the 223 

early stage of the disease are most likely to be synovial in origin (Tetlow et al., 2001). 224 

  225 

Chondrocyte culture-based cytokine models 226 

The choice of whether to use a monolayer, a cell scaffold or intact tissue will 227 

influence the cells’ response to the cytokine stimulus applied. The sensitivity of chondrocytes 228 

to their molecular and loading environment dictates that ideally they should not be isolated 229 

from their matrix, or if they are, the matrix in which they are embedded should closely match 230 

the behaviour of normal, healthy tissue. However, the low cellularity of cartilage tissue 231 

necessitates the demand for large explants, thereby reducing the number of replicates which 232 

can be obtained from a single tissue source. Monolayer cultures allow the expansion of the 233 

cellular resource, although this is finite for tissues such as cartilage (Nicholson et al., 2007), 234 

as the cell phenotype changes in monolayer culture (Zien et al., 2001). 235 

 236 

The ease of using chondrocytes in monolayer combined with their rapid response to 237 

cytokine stimulation has resulted in this being the most widely used model. Numerous 238 

models that use cytokines added to cell or tissue culture medium have been shown to produce 239 

OA-like responses in chondrocytes in monolayer, such as a decrease in the expression of type 240 

2 collagen and aggrecan, and an increase in the expression of MMP-13, across multiple 241 

species (Miyaki et al., 2009; Novakofski et al., 2012; Yang et al., 2014). 242 
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  243 

Alternatively, stimulating chondrocytes with the synovial fluid from OA patients 244 

(Hoff et al., 2013), a more physiologically-relevant stimulus, produces similar results, 245 

including the expression of the pro-inflammatory cytokines IL-6, IL-8, IFN-γ, MCP-1, 246 

granulocyte-colony stimulating factor (G-CSF) and VEGF. However, this method of 247 

stimulation is also limited by the imprecise understanding of the relative contribution of 248 

different mediators which are driving catabolism in this model, and the lack of repeatability 249 

because of the limited synovial fluid volume that can be obtained from a single source. 250 

 251 

Co-culture-based cytokine models  252 

Recognising that OA is a disease that affects and involves the interaction between 253 

multiple tissues are co-culture experiments that permit the study of these interactions in vitro. 254 

Cytokine or osmotic pressure stimuli can be easily applied to co-culture models, though the 255 

tissues might require different culture conditions, necessitating some compromise on the 256 

culture conditions used when cultured together. The co-culture of synovial membrane with 257 

chondrocytes is one method by which the complexity of the pro-inflammatory cascade can be 258 

reproduced in vitro, because synovium is the primary source of these mediators (Ushiyama et 259 

al., 2003).  260 

 261 

Co-culturing synovium from OA patients with healthy cartilage explants produces an 262 

increase in the expression of IL-1, IL-4, IL-7, IL-8, IL-10, IL-13 and osteoprotegerin (OPG), 263 

similar to synovial fluid from OA joints, as well as reducing GAG production in the cartilage 264 

(Beekhuizen et al., 2011). Whilst it may be desirable to use synovium to model OA in vitro, it 265 

is composed of two different, but interacting, cell types and shows highly variable lesion 266 

patterns both across different OA joints, and within a single joint with clinical OA (Rhodes et 267 
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al., 2005; Goldhammer et al., 2010; Smith, 2011). Consequently, deconstructing the effects 268 

within the synovial co-culture model is complex, although characterisation of the factors 269 

responsible for the response will help to standardise across experiments. The use of bone in 270 

co-culture experiments is also important, because it appears to have a role in maintaining the 271 

long-term viability of chondrocytes in the superficial zone of articular cartilage (Amin et al., 272 

2009).  273 

 274 

Bone cytokine models 275 

 Evaluation of the response of bone to cytokine stimulation in models of OA is scarce, 276 

which is unsurprising because it is difficult to ascertain the precise cytokine environment to 277 

which bone cells are exposed to in OA. Most data on cytokine roles in bone focus on the 278 

specific roles of TNF-α, IL-6 and IL-1 release during osteocyte injury (Komori, 2013). 279 

Further, generation of RANKL is induced by IL-6 and IL-1, and mice lacking RANKL 280 

completely lack osteoclasts (Kong et al., 1999). Osteoclasts driven to apoptosis release 281 

soluble RANKL, and conditioned media from these cells further induce osteoclastogenesis 282 

(Al-Dujaili et al., 2011). Notably, bone plays a larger role than previously considered in 283 

cartilage health, and removal of cartilage explants from the underlying bone tissue leads to a 284 

higher percentage of cell death in chondrocytes than if chondrocytes were left attached to the 285 

bone (Amin et al., 2009).  286 

 287 

Mouse calvarial cultures incubated with IL-1 showed bone resorption, demonstrating 288 

that cytokines act on cultured bone (Gowen et al., 1983), and cultured osteoblasts actively 289 

synthesised NO in response to IL-1α in a dose-dependent fashion, although IL-1β, TNF-α and 290 

IFN-γ failed to elicit a response (Ake et al., 1994). Evidently, cytokines play a role in bone 291 

turnover, and bone is responsive to inflammatory stimuli. IL-1β has been shown to induce the 292 

Page 13 of 36



14 
 

release of PGE2, MMP-3 and MMP-13 from osteoblasts (Pecchi et al., 2012), although this 293 

can be inhibited with chondroitin sulphate.  294 

 295 

Load-based models of inducing OA 296 

Chondrocytes are sensitive to load, and must always be under sufficient force to 297 

maintain extracellular matrix homeostasis, yet below that which induces apoptosis or 298 

stimulates an inflammatory cascade within the tissue (Henrotin et al., 2012). Subchondral 299 

bone is also mechanosensing, and responds in vivo by changing its thickness and reducing its 300 

resorption when loading is increased (Murray et al., 2001). Identifying the load thresholds 301 

that alter the balance from maintenance of homeostasis to injury is important to our 302 

understanding of the magnitude of a beneficial or deleterious load. 303 

 304 

Load models are easily manipulated and, as a result, high throughput experiments can 305 

be performed. Signalling pathways associated with mechanotransduction are becoming well 306 

understood (Millward-Sadler and Salter, 2004; Mobasheri et al., 2005), allowing better 307 

appreciation of the processes associated with this model. Removing cells from their native 308 

matrix and embedding them into an artificial scaffold alters, at least theoretically, the native 309 

signalling network, and the force used in the experiment is innately dependent on the ability 310 

of the scaffold to withstand that force.  311 

 312 

Cell loading models require high cell numbers that might not be available from some 313 

sources. Using entire tissues overcomes this problem, and allows cells to use natural cell-314 

matrix interactions and cross-tissue communication as well as much greater forces. 315 

Conversely, native tissue experiments are limited to larger species and lower numbers of 316 

replicates. Additionally, cells have been shown to undergo substantial cell death at the cut 317 
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edge (Huntley et al., 2005; Huntley et al., 2005a) so distorting observations at these sites 318 

(Table 1). 319 

 320 

In vivo determination of cartilage load 321 

 Several in vivo studies have attempted to determine the physiological pressures 322 

experienced by articular cartilage during loading. The pressure passing through the load-323 

bearing region of a human acetabular prosthesis has been determined to be approximately 3.5 324 

MPa during locomotion (Hodge et al. 1989), and the articular contact pressure of the human 325 

knee does not exceed 8 MPa, even when the menisci have been removed (Fukubayashi and 326 

Kurosawa, 1980). Loads of a similar magnitude have been reported in both the medial and 327 

lateral compartments of canine elbow joints, with mean contact pressures between 3.0 and 4.0 328 

MPa and peak pressures between 6.6 and 9.1 MPa (Cuddy et al., 2012). These data suggest 329 

that the articular loading experienced by different joints in different species are 330 

physiologically comparable, and concurs with estimates of the articular cartilage compressive 331 

stress in different mammalian species, which only vary within one order of magnitude from 332 

mice to cows (Simon, 1970). 333 

  334 

Chondrocytes sense the loading of their environment through integrin receptors 335 

(Bader et al., 2011). When activated, the integrins stimulate stress pathways leading to 336 

cytoskeletal disruption and release of inflammatory cytokines, such as IL-1β and TNF-α 337 

(Valhmu et al., 1998; Durrant et al., 1999; Bader et al., 2011). Cytokine-induced proteolytic 338 

enzyme release is mediated by nitric oxide, PGE2 and reactive oxygen species. The 339 

extracellular proteins cleaved by the activated proteases are then capable of further induction 340 

of both proinflammatory cytokines and matrix proteases, though the receptors activated by 341 

collagen fragments remain elusive (Klatt et al., 2009).  342 
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 343 

The signalling pathways induced by static loading and cytokine induction are similar 344 

and the mechanism that governs both is similar in both models (Fig. 2b). The compression 345 

pathway, however, appears reliant on the magnitude and duration of the stress (Fanning et al., 346 

2003).  347 

 348 

Explant based models of cartilage loading 349 

The use of tissue explants, assessing the response of cells embedded in the natural 350 

matrix, is the simplest method for assessing the effects of load. Load is applied to tissue 351 

explants through various methods, based on the variable in question. Most typically, ‘drop 352 

towers’ in which a free weight is released from a predetermined height onto the tissue are 353 

used to impart a single impact load. This is believed to replicate the development of ‘post 354 

traumatic’ OA, which occurs following an injurious articular load. Load can also be applied 355 

in a cyclical manner with devices such as pneumatic or hydraulic loading chambers.  356 

 357 

Static loading can induce similar deleterious changes in cartilage explants when 358 

applied at an appropriate magnitude. For example a compressive strain of 50% applied to a 359 

cartilage explant results in a decrease in the synthesis of collagen type II and proteoglycans 360 

(Chen et al., 2001). Static compression of calf patellofemoral cartilage to 25% or 50% strain 361 

for 24 h produces deleterious changes in cartilage metabolism, resulting in an increase in 362 

expression of MMP3, 9 and 13 mRNA and decrease in COL2A1 and aggrecan (ACAN) within 363 

1-2 h post loading (Fitzgerald et al., 2004). IL-1 receptor activation and activation of the 364 

extracellular-signal related kinase 1/2 (ERK1/2), p38, mitogen-associated protein kinase 365 

(MAPK) family member pathways in a time-dependent manner meditate these changes 366 

(Fanning et al. 2003). 367 
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 368 

A load equivalent to 1.5 × bodyweight placed on a human knee joint caused only 10% 369 

strain in the patellofemoral cartilage following 10 min of static loading (Wong and Sah, 370 

2010). Similarly, intact human femoral head cartilage loaded to the equivalent of a single leg 371 

stance (less than 2.3 × bodyweight) is subject to a strain of 33% (Greaves et al., 2010). 372 

Consequently the use of higher strains in in vitro models exaggerates the maximal normal 373 

physiological load experienced by a joint in vivo, although this reflects the requirement to 374 

induce an effect within a shorter timeframe. Furthermore, the elastic (Young’s) modulus 375 

varies across cartilage within a joint (Shepherd and Seedhom, 1999), and thus the load 376 

required to induce a specific strain, or strain produced from a specific load will also differ 377 

across samples from the same joint. 378 

  379 

In vitro studies have been used to determine the critical stress thresholds of cartilage 380 

explant, in which apoptosis, collagen degradation and nitrite accumulation are observed. 381 

Values range between 4.5 MPa for cyclic loading (six compressions to a final strain of 30-382 

50%, held for 5 min rested for 25 min, Loening et al., 2000) and 15 MPa for a single impact 383 

load (Torzilli et al., 1999) for bovine cartilage, although the results between experiments are 384 

highly variable. Notably, bovine cartilage explants subjected to a 0.5 MPa cyclic loading 385 

increase proteoglycan synthesis across various cycle lengths (Parkkinen et al., 1992) 386 

supporting the hypothesis that moderate loading is beneficial to cartilage health. 387 

  388 

Chondrocyte culture-based loading models 389 

 The response of cells to load can be dissected further by isolating cells in culture, 390 

embedding them in an artificial matrix, and compressing them using a bioreactor. This has 391 

the advantage of permitting very precise changes in loading parameters, as it is highly 392 
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reproducible, as well as looking at the effects of different matrices on the cellular response. 393 

However, a large caveat to such experiments is that the cell response observed in vitro may 394 

not represent that observed in vivo where the interaction of the matrix is critical to the effect 395 

produced.  396 

 397 

In vitro loading of isolated chondrocytes seeded in a 3-dimensional (3-D) culture 398 

(typically agarose) results in both an increase in cell proliferation and proteoglycan synthesis 399 

when cyclically loaded at a physiological strain of 15% (Lee and Bader, 1997). 3-D culture 400 

also allows for the application of bi-axial cyclic loading (direct compression or tension, and 401 

shear) (Pingguan-Murphy and Nawi, 2012), and addresses the observation that in vivo several 402 

loads may simultaneously impact on a joint during normal activity. When subjected to biaxial 403 

loading (10% compressive strain with 1% sheer strain) for two 12 h periods, separated by a 404 

12 h resting period, both cell proliferation and an increase in GAG production were observed, 405 

demonstrating the importance of closely representing the joint environment in in vitro 406 

experiments. 407 

 408 

Cyclic loading of bovine chondrocyte-embedded calcium polyphosphate scaffolds at 409 

1 kPa and 1 Hz for 30 min, activates Erk1/2 and c-Jun N-terminal kinase (JNK) as seen with 410 

static loading, and causes an increase in activator protein-1 (AP-1) binding. This stimulus 411 

induces MMP-3 and 13 expression and results in MMP-13 mediated extracellular matrix 412 

(ECM) degradation. However, following the loss of functional tissue, collagen type II and 413 

aggrecan gene expression occurs after 12 h, and synthesis occurs by 24 h post loading (Fig. 414 

2c) (De Croos et al., 2006). 415 

 416 

Co-culture based loading models 417 
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Co-culture methods have been used to explore the effect of loading on articular 418 

tissues in parallel, although they are challenged by the necessity to use different culture 419 

conditions for each tissue, or to compromise the culture conditions. For example, alginate-420 

embedded chondrocytes cultured on a porous filter above mechanically stretched osteoblasts 421 

become more hypertrophic during stimulation of the osteoblasts. This change was most 422 

pronounced when the osteoblasts were subjected to tensile loads, suggesting molecular 423 

‘cross-talk’ occurs between the two cell types in response to mechanical stress in bone (Lin et 424 

al., 2010).  425 

 426 

Co-culture of OA osteoblasts with healthy alginate bead-embedded chondrocytes 427 

result in a phenotypic shift to chondrocyte hypertrophy and matrix mineralisation, which does 428 

not occur with healthy osteoblasts stimulated with IL-1, IL-6 or OSM (Sanchez et al 2005). 429 

This demonstrates the limits of artificially stimulating cells and the phenotypic differences of 430 

naturally-diseased cells and highlights the need for better characterisation of the soluble 431 

factors released by these cells as well as better definition of the molecular stimulation 432 

required to induce the OA phenotype in healthy cells.  433 

 434 

Bone loading models 435 

Osteocytes are the major mechanosensors of bone, although they are rarely included 436 

in models of OA because they are notoriously difficult to culture in vitro. Analysis of the 437 

osteocyte (in contrast to osteoblast) response to compression has been hindered due to this 438 

challenge (Kato et al., 1997). Osteocyte cell lines seeded into type I collagen gels layered 439 

with osteoblasts on their surface respond to mechanical loading, with co-cultured constructs 440 

increasing type I collagen expression with loading, and osteocyte embedded gels expressing 441 

PGE2 after mechanical stimulation (Vazquez et al., 2014).  442 

Page 19 of 36



20 
 

 443 

Relevance of load: From in vivo to in vitro models 444 

The validity of a loading model depends, at least to some extent, on its relationship 445 

with the natural environment of the joint and its loading in vivo. The loading parameters of a 446 

selection of cell and tissue loading models are presented in Table 3. The use of scaffolds can 447 

impart some structure to the cells for culture-based models, and permit cyclic loading of 448 

isolated cells, albeit within ranges that are governed by the strength of the matrix in which 449 

they are embedded. 450 

 451 

The heterogeneity of the cartilage structure means that precise reconstruction of the 452 

tissue in vitro may not be possible, and so compromises must be made when constructing a 453 

load based model (Gannon et al., 2012). The individual phenotype of each chondrocyte is 454 

related to their location in the tissue (Fujioka et al., 2013; Schuurman et al., 2015) and 455 

therefore in homogeneous tissue models, chondrocytes may not behave in the same manner. 456 

 457 

Future directions  458 

The multifactorial nature of OA should be considered when designing a model to 459 

reproduce it, even if it is only testing a single parameter, such as the response to a load or 460 

catabolic stimulus. A deeper understanding of the pathways evoked in in vitro models, and 461 

their relevance to the changes seen in naturally-occurring OA phenotypes is important in 462 

order to improve the translational relevance of the conclusions drawn.  463 

 464 

To date the vast majority of explant- and culture-based models have assessed cartilage 465 

in isolation. While this might reflect the ease of manipulating cartilage and the resilience of 466 

chondrocytes in cell culture, progress in tissue engineering and cell culture techniques will 467 
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allow for the development of more advanced models including other cell types. The 468 

responsiveness of bone to stimuli, and the cross talk that occurs between the different tissues 469 

in OA joints dictate that models should consider the role of multiple tissues when assessing 470 

the response to a given stimulus so as to enable more meaningful translation to the 471 

anticipated response in vivo. 472 

 473 

There is no all-encompassing model that is suitable for all studies of OA, and no 474 

single model can be used to perfectly simulate naturally-occurring events. Whilst models 475 

seek to answer specific biological questions, more standardised end-points for the molecular 476 

and physiological parameters assessed are necessary, as at present it is impossible to directly 477 

compare the outcomes of the many in vitro OA models published in the scientific literature.  478 

 479 

Other areas of articular health research, such as those looking at histological 480 

assessments of cartilage repair and damage
2
 (Glasson et al., 2010), have developed guidelines 481 

upon which assessments should be made through the consensus of experts and the publication 482 

of their recommendations. In molecular biology, similar guidelines have been developed for 483 

performing microarray and quantitative polymerase chain reaction studies (Brazma et al., 484 

2001; Bustin et al., 2009). Whilst the in vitro models of OA have many different functions 485 

and outcomes, guidelines could still be developed to determine the endpoints which are 486 

matrix- and chondro-protective, and the minimum number of features of a model (such as 487 

measures of matrix release and turnover, transcription changes and/or cellular morphometric 488 

changes) which are agreed to represent an ‘OA-like’ scenario. Similarly, models seeking to 489 

investigate the pathogenesis of OA must justify the nature of stimulatory conditions, relative 490 

to the in vivo disease, beyond simply that required to produce a response. At the very least in 491 

                                                           
2
 See: http://www.cartilage.org/_files/contentmanagement/ICRS_evaluation.pdf (accessed 7 April, 2015)  
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vitro models should be standardised to a particular disease phenotype, with reasoning for the 492 

source of the cells and/or tissues used and the outcomes to be measured, as there is no single 493 

OA phenotype which can be encompassed by all models.  494 

 495 

Conclusions 496 

The molecular pathways underpinning cytokine-stimulation and load-based in vitro 497 

models of disease are similar. The combination of different models types may permit the use 498 

of stimuli which are physiologically relevant, and which allow us to understand the 499 

development and progression of the disease, particularly the early phase, rather than simply 500 

the catastrophic downstream events after it has begun. Standardisation of the approaches, 501 

both within and between different species will allow the wider applicability of results 502 

between studies, which in turn will enhance our understanding of the disease. 503 
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Tables 886 

Table 1 887 

Advantages and disadvantages of some of the most commonly used in vitro models 888 

Model 

Type 

Variables that can 

be applied 

Advantages Disadvantages Examples 

Monolayer 

culture 

Cytokine stimulation, 

osmotic pressure 

Allows expansion of 

cellular resource from a 

single sample, 

investigation of distinct 

pathways in isolation 

Altered phenotype of 

isolated cells due to 

isolation from tissue and 

absence of normal 

extracellular matrix 

(Sylvester et al., 

2012; Novakofski 

et al., 2012) 

Co-culture Cytokine stimulation, 

osmotic pressure 

Considers cross-talk 

between cell types 

Altered phenotype of 

isolated cells 

Different cell types 

require different culture 

conditions, or 

compromise if culture 

together  

(Lin et al., 2010; 

Beekhuizen et al., 

2011; Vazquez et 

al., 2014) 

3D-culture Cytokine stimulation, 

osmotic pressure, 

physical injury and 

loading regimens. 

Affords structure and 

force to sensitive cells. 

Magnitude of force is 

scaffold dependent, and 

may not reflect that of 

the normal tissue 

Isolation and expansion 

of cell types first 

(Mizuno and 

Ogawa, 2011; 

Bougault et al., 

2012; Pingguan-

Murphy and 

Nawi, 2012) 

Explant Cytokine stimulation, 

osmotic pressure, 

physical injury and 

loading regimens. 

Inexpensive, easily 

produced, cells 

maintained in normal 

extracellular matrix. 

Cell death at cut edge of 

tissue, few replicates 

available from same 

source, more than one 

tissue type may be 

required to maintain 

viability, physical 

attributes may change in 

culture 

(Fitzgerald et al., 

2004; Bush et al., 

2005; Jeffrey and 

Aspden, 2006; 

Gabriel et al., 

2010) 
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Table 2 890 

Osteoarthritic synovial fluid interleukin (IL)-1β and tumour necrosis factor (TNF)-α 891 

concentrations in vivo 892 

Condition 
Cytokine 

IL-1β TNF-α 

Control (human)  

(Kahle et al., 1992) 
<20 pg/mL 2890 pg/mL 

Control (canine)  

(Fujita et al., 2005) 
490 pg/mL 

105.3 

pg/mL 

OA (human)  

(Kahle et al., 1992) 
21 pg/mL 80 pg/mL 

OA - Hip dysplasia (canine) 

(Fujita et al., 2005) 
2010 pg/mL 600 pg/mL 

OA - Mild (porcine)  

(McNulty et al., 2013) 
109 pg/mL - 

OA - Moderate (porcine)  

(McNulty et al., 2013) 
122 pg/mL - 
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Table 3 894 

A summary of load-induced changes in OA models 895 

Species 

studied 
Regimen tested 

Duration of 

experiment 
Findings of experiment Citation 

Dog (in vivo) 20-40 km/day 15 weeks 

Increased water content. 

Decreased collagen content. 

Decreased proteoglycan content. 

(Kiviranta 

et al., 

1992) 

Bovine 

explant 

Six on-off 

cycles of 30-

50% strain 

5 min 

compression: 

25 min release 

Apoptosis of cells. 

Degradation of collagen network. 

Glycosaminoglycan release. 

(Loening 

et al., 

2000) 

Bovine 

explant 

100 g, 500 g 

and 1 kg 

dropped from 2, 

5, 10 and 20 cm 

N/A 

Linear decrease in cell viability. 

Increased hydration of tissue. 

Partial depth fissures. 

(Jeffrey et 

al., 1995) 

Canine 

shoulder 

explant 

5 MPa at 0.3 Hz 20 or 120 min 

Cell death increased with 

increased loading time. 

Glycosaminoglycan and NO 

were not significantly altered. 

(Levin et 

al., 2001) 

Canine 

shoulder 

explant 

5 MPa at 0.3 Hz 
0, 2, 20, 120 

min 

Necrosis and apoptosis of cells 

increased with loading time. 

Proteoglycan increased in 2 and 

20 minute groups but decreased 

at 120 minutes. 

(Chen et 

al., 2001) 

Agarose 

embedded 

equine 

chondrocytes 

15% strain 

either statically 

or cyclically 

(0.3-3 Hz) 

48 h 

Dynamic strain increased cell 

proliferation. 

Static strain decreased 

glycosaminoglycan content, 

while cyclic strain increased 

glycosaminoglycan. 

(Lee and 

Bader, 

1997) 

Bovine 

explant 

25-50% strain 

over 3 min 

period 

Maintained for 

1, 2, 4, 8 and 24 

h 

Relative expression of matrix 

genes decreased. 

Relative expression of proteases 

increased. 

(Fitzgerald 

et al., 

2004) 

Human 

chondrocyte 

monolayer 

1, 5 or 10 MPa 

hydrostatic 

pressure at 1 Hz 

4 h per day for 

either 1 or 4 

days 

mRNA and protein expression of 

aggrecan and collagen type 2 

upregulated after 4 days. 

No difference at 1 day. 

(Ikenoue et 

al., 2003) 

Full 

thickness 

human 

cartilage 

explant 

Single 

mechanical load 

of 14 MPa for 

500 ms 

Measurements 

taken 96 h after 

injury 

DNA fragmentation in 34% of 

loaded chondrocytes (vs. 4% of 

control) 

GAG release increased in loaded 

explants (1.9% vs. 0.8% total 

GAG content) 

(D’Lima et 

al., 2001) 
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 897 

Figure legends 898 

 899 

Fig. 1. Healthy and diseased synovial joint showing the changes in the entire joint organ. 900 

Bone weakness and wearing has been reported, as well as synovial thickening and swelling, 901 

subchondral bone thickening, osteophyte formation and cartilage degradation. In addition, 902 

tendons can become weak and inflamed and ligaments can become lax.  903 

 904 

Fig. 2. Mechanistic pathways of in vitro models of OA. Both cytokines (a) and injurious 905 

loading (b) combine to cause the typical OA-like phenotype, showing apoptosis of cells, 906 

tissue degradation and inflammatory gene expression. In these cases, feedback loops occur 907 

either through inflammation, causing further cytokine stimulation, or abnormal loading, 908 

caused by tissue degradation. However, normal homeostatic loading is vital to tissue health, 909 

and works through similar pathways, as shown by the green line in (c), leading to tissue 910 

growth.  911 

 912 

MAPK, mitogen-activated protein-kinase; JNK, c-Jun N-terminal kinase; AP-1, activator 913 

protein-1; NFκB, nuclear factor kappa B; COX2, cyclooxygenase-2; PGE2, prostaglandin-E2; 914 

MMP, matrix metalloproteinase; ADAMTS, a distintegrin and metalloproteinase with a 915 

thrombospondin motif; ROS, reactive oxygen species. 916 
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