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Abstract

Decentralised planning in partially observable multi-agent
domains is limited by the interacting agents’ incomplete
knowledge of their peers, which impacts their ability to work
jointly towards a common goal. In this context, communica-
tion is often used as a means of observation exchange, which
helps each agent in reducing uncertainty and acquiring a more
centralised view of the world. However, despite these merits,
planning with communicated observations is highly sensitive
to communication channel noise and synchronisation issues,
e.g. message losses, delays, and corruptions. In this paper, we
propose an alternative approach to partially observable un-
coordinated collaboration, where agents simultaneously exe-
cute and communicate their actions to their teammates. Our
method extends a state-of-the-art Monte-Carlo planner for
use in multi-agent systems, where communicated actions are
incorporated directly in the sampling and learning process.
We evaluate our approach in a benchmark multi-agent do-
main, and a more complex multi-robot problem with a larger
action space. The experimental results demonstrate that our
approach can lead to robust collaboration under challenging
communication constraints and high noise levels, even in the
presence of teammates who do not use any communication.

Introduction

Collaborative planning is an important challenge for many
interactive systems, where multiple agents must work to-
gether to achieve a common goal. This problem becomes
harder when agents do not have the benefit of centralised
coordination, or when the task involves collaboration with a
priori unknown teammates. For example, consider a rescue
scenario where various robots programmed by different en-
gineers are deployed to a disaster site in an emergency situ-
ation. In this setting, generating a commonly agreed plan of
actions may be infeasible due to tight time constraints and
limited knowledge of the environment. Instead, the robots
may be forced to plan from an egocentric perspective, by
using their own internal models to select robust actions.

When the above constraints on collaboration arise, agents
must reason about the actions of their peers by gathering and
processing data on their behaviour. In a general multi-agent
planning setting with no centralised coordination, there are
two types of input that can be acquired by an agent:

1. Direct observations of the teammates, e.g. images from a
camera, sonar readings, or other sensory inputs.
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2. Inter-agent communication, i.e. messages received from
teammates about their own (past or future) actions, obser-
vations, plans, or intentions.

Each of these input types is significant for uncoordinated
collaboration, but also carries its own challenges and limi-
tations. On the one hand, sensory observations are collected
and processed internally by each agent, so they are not gen-
erated by unknown external protocols or mechanisms. How-
ever, many domains of practical interest are characterised
by partial and/or limited observability, so agents may not
be able to view their teammates (reliably and noiselessly)
at all times. On the other hand, a communicated message
provides direct insight on the planning process used by the
sending agent, thus helping the receiving agent in selecting
its own actions with regard to the overall team goal. How-
ever, limited bandwidth or poor synchronisation issues may
lead to dropped or delayed messages during an interaction.
Furthermore, communication channels may be noisy or un-
reliable, giving rise to misinterpreted (or uninterpreted) mes-
sages that also impact an agent’s knowledge of its peers.

In light of the above constraints, an important challenge
in uncoordinated collaboration under partial observability
lies in combining the relative merits of observation- and
communication-based reasoning. Planning under limited ob-
servations has been widely studied using the Partially Ob-
servable Markov Decision Process (POMDP) formulation
(Kaelbling, Littman, and Cassandra 1998), which however
does not explicitly model communication (Figure 1(a)). By
contrast, communication-based planning in multi-agent sys-
tems is a more open-ended problem, which is typically con-
cerned with the following issues:

1. When and how to communicate.
2. What to communicate.

With regard to the first issue, there is a distinction between
implementations assuming perfect synchronisation between
communication and planning phases (where agents can reli-
ably exchange messages before selecting their actions, as in
Figure 1(b)), and those accounting for stochastic communi-
cation (where messages can be lost or delayed). With regard
to what to communicate, a commonly employed approach is
observation-based communication (as in the work of Pyna-
dath and Tambe (2002)), where agents exchange their most
recent observations. The motivation behind this choice is
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(a) Planning with no communication (as in standard decen-
tralised POMDP planning implementations).
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(b) Planning with distinct (synchronised) action selection and
communication phases.
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(c) Planning with simultaneous action selection and commu-
nication phases (the approach followed in this paper).

Figure 1: Sketch drawings of different approaches to com-
bining decentralised planning and communication in par-
tially observable multi-agent domains. Illustrations are given
for the two-agent case, with superscripts ! and 2 being the
agent indices, and subscripts denoting time. Clouds: Ac-
tion selection/planning steps (A). Rectangles: Communica-
tion/message selection steps (C). Diamonds: State updates.
Circles: Communication updates. Other notation: actions —
a, observations — o, world states — s, message queues — ¢,
sent messages —m ™ , received messages — m; .

that agents obtain an approximate world model by combin-
ing the locally transmitted views, thus effectively reducing
collaboration to a centralised planning problem.

Despite these advantages, we also note some important
limitations of observation-based communication. First, plan-
ning becomes sensitive to stochastic communication, as de-
layed or dropped observation messages inevitably lead to an
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incomplete or outdated world model. Second, even when
communication is perfectly synchronised, there is an un-
derlying assumption that all agents use the same planning
mechanism (and thus interpret each other’s observations
identically), which however breaks down when heteroge-
neous teammates are called to collaborate (as in the rescue
scenario example introduced earlier). Third, reasoning about
other agents’ observations effectively means modeling their
own beliefs and uncertainty about the world state, which in-
creases the depth of reasoning and thus also the complexity
of the planning process.

In this paper, we propose a novel action-based commu-
nication model for uncoordinated collaboration in partially
observable domains. Our approach extends a state-of-the-art
online POMDP Monte-Carlo planner with a simple commu-
nication protocol, where agents execute and broadcast their
selected actions simultaneously (Figure 1(c)). Agents main-
tain a distribution (defined in terms of their own beliefs) over
selected teammate actions, which is updated when a new
message is received. The planner then uses this distribution
as a prior in action sampling during Monte-Carlo iterations,
and to perform a new type of factored policy learning, which
decouples observation- and message-based value updates.

As illustrated in Figure 1(c), our protocol implies that
transmitted messages are only received after the current
planning cycle. Thus, even when the communication chan-
nel is perfect and noiseless, agents will always have delayed
information on their peers. This motivates a looser coupling
between communication and planning, which, as we demon-
strate in our results, makes our approach more robust to three
types of noise:

1. Message losses.
2. Message delays.
3. Message corruptions/misinterpretations.

The latter type of noise has received less attention in par-
tially observable multi-agent planning, but we argue that it is
particularly important when considering collaboration with
heterogeneous agents, such as humans or human-controlled
robots. These settings typically involve complex speech gen-
eration and recognition processes that significantly constrain
communication within a team.

Another distinguishing feature of our approach is that
agents do not exchange their observations, and thus also do
not explicitly model each other’s beliefs and planning mech-
anisms. This keeps the computational complexity of our ap-
proach low and scalable to challenging domains.

In the remainder of this paper, we first review related
ideas and techniques from the literature, and we subse-
quently present our methodology, describing our planning
algorithms and communication protocol. We then evaluate
our approach in two multi-agent domains; a benchmark box-
pushing problem with a small action space, and a more chal-
lenging multi-robot kitchen planning scenario. Our results
demonstrate that planning with action communication out-
performs non-communicative implementations under most
noise configurations, while requiring comparable computa-
tion time. We conclude by summarising our key contribu-
tions and suggesting possible future directions.
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Related Work

Single-agent planning

Planning in partially observable single-agent domains is
usually described in terms of a Partially Observable Markov
Decision Process (POMDP) (Kaelbling, Littman, and Cas-
sandra 1998), (S, A, O, T, Z,R), where S, A, O are the
state, action, and observation sets, 7 : S x A x § — [0, 1]
is the transition function, Z : S x O x A — [0, 1] is the
observation function, and R : S x A x S — R is the reward
function giving the expected payoff for executing an action.

POMDPs can be used to model a wide range of decision
problems. However, analytical solutions are known to be
hard to compute (Papadimitriou and Tsitsiklis 1987), with
several problems requiring hours or even days to solve ex-
actly. This is a restricting factor for systems with tight com-
putational constraints and varying task specifications.

The complexity of finding offline analytical solutions has
led to the development of online POMDP planning methods,
which only consider the current state of the interaction and
use limited computation time. Partially Observable Monte
Carlo Planning (POMCP) (Silver and Veness 2010) employs
Monte-Carlo Tree Search to sample the problem space ef-
ficiently. This method models action selection as a multi-
armed bandit problem, by initially estimating the value of
random action sequences (referred to as rollouts), and then
balancing exploration and exploitation through the Upper
Confidence Bound (UCB) heuristic (Kocsis and Szepesvari
2006). POMCP has been successfully applied to problems
with large branching factors (Gelly et al. 2012), and imple-
mented in a winning entry of the 2011 International Planning
Competition (Coles et al. 2012).

Multi-agent planning without communication

A Decentralised POMDP (Dec-POMDP) (Bernstein et al.
2002) is a generalisation of a POMDP to multi-agent sys-

tems, defined as (Z,S, A, 0, T, Z,R), where T = {1..n}

is the set of agents, A = Xier A’ is the set of joint ac-
tions @ = {ay, ..., a,y, defined as the Cartesian product of

the agents’ individual action sets A, 0=x, ez O is simi-
larly the set of joint observations, with 7, Z, and R defined

as in POMDPs, with A and O substituting .4 and O.

Compared to POMDPs, Dec-POMDPs carry the addi-
tional limitation that action and observation spaces grow
exponentially with the number of agents, thus also be-
ing intractable. Furthermore, fast single-agent methods like
POMCEP cannot be directly extended to Dec-POMDPs, due
to the added constraint of reasoning about joint observations
and beliefs. In this paper, we describe an alternative, egocen-
tric method of adapting POMCP to multi-agent system con-
straints. Each agent keeps track of and updates values over
only its own history and observation space, with teammate
actions modeled at the rollout sampling level. This keeps
the complexity of the planning process low and scalable to
larger and more complex planning spaces.

Multi-agent planning with communication

In their general form, the POMDP and Dec-POMDP for-
mulations do not explicitly model communication between
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agents. To address this issue, several extensions combin-
ing decentralised planning and message passing have been
proposed. One of the earlier such approaches is the Com-
municative Multi-agent Team Decision Problem (Pynadath
and Tambe 2002), which presents a general framework
for teamwork with instantaneous communication. However,
this model assumes distinct pre-communication and post-
communication phases (similarly to Figure 1(b)) and perfect
noiseless channels without delays and losses.

Becker, Lesser, and Zilberstein (2005) consider communi-
cation with associated costs in a Decentralised MDP frame-
work, where agents must additionally decide when to trans-
mit their local states to their peers. This concept is extended
to partially observable domains by Roth, Simmons, and
Veloso (2005), leading to reasoning over joint beliefs based
on intermittently transmitted local observations. Despite
factoring communication costs, both of these works also
assume reliable communication channels, through which
agents are able to merge their local observations (or states)
and construct a more complete approximation of the world.

Planning with communication costs has also been stud-
ied in the context of coordinated multi-agent reinforcement
learning (Zhang and Lesser 2013). This method uses a loss
rate threshold to select sub-groups of agents that will coordi-
nate their actions (and communicate) at each time step. De-
spite addressing concerns of systems with larger numbers of
agents, this work makes stronger assumptions on inter-agent
coordination, while also not considering noise (and actual
message losses) in the communication channel.

The problem of decentralised planning with imperfect
communication has recently received more attention in the
literature. Within the Dec-POMDP framework, Bayesian
game techniques (Oliehoek, Spaan, and Vlassis 2007) and
tree-based solutions (Oliehoek and Spaan 2012) have been
proposed to deal with one-step message delays. This is ex-
tended to account for stochastic delays that can be longer
than one time step (Spaan, Oliehoek, and Vlassis 2008).
Our simultaneous communication model (Figure 1(c)) aims
to address similar effects, but does not assume any explicit
bounds on message delays. Furthermore, we also consider
other types of communication noise such as message losses
(which are effectively analogous to infinite-time delays).

Wau, Zilberstein, and Chen (2011b) introduce a model of
bounded message-passing, where the communication chan-
nel may be periodically unavailable. In this context, two
distinct protocols are evaluated; the first postpones com-
munication until the channel becomes available again, and
the second drops the communication attempt entirely. While
these constraints are similar to the ones we consider, we also
note some important differences. First, the bounded com-
munication model uses separate communication and action
phases, whereas we adopt a more constrained simultaneous
approach (Figure 1). Second, the above protocols assume
that agents know when the communication channel is un-
available; by contrast, our method makes no assumptions on
when, if, or how transmitted messages will reach other team-
mates.

A common feature of all the above works is that agents
communicate their local observations to each other, with
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the goal of combining them and forming a more complete
world model. As discussed in the introduction of this paper,
we adopt a different, action-based communication protocol,
which does not aim to “centralise” a decentralised decision
problem through observation exchange and joint-belief rea-
soning. Instead, agents maintain their own incomplete views
of the world, and use (any) communicated actions received
from their teammates to bias their own, egocentric plan-
ning process. As we demonstrate in our results, this proto-
col maintains a robust performance even under high levels
of communication channel noise. Moreover, our approach is
also tolerant to novel types of noise, such as message cor-
ruption, which have so far received little attention in decen-
tralised planning under partial observability.

Collaboration without prior coordination

Another common underlying aspect of the works presented
in the previous section is collaboration between identical
agents. However, many of these approaches break down
when the domains feature heterogeneous agents with differ-
ent planning, reward, or world modeling processes. To ad-
dress this issue, our method draws inspiration from the ad-
hoc teamwork problem (Stone et al. 2010), which consid-
ers collaboration without pre-coordination in the presence
of unknown teammates. In this context, the POMCP algo-
rithm has been combined with Markov games (Wu, Zilber-
stein, and Chen 2011a) and transfer learning (Barrett et al.
2013b) to generate team-level strategies. However, both of
these works assume full world observability and do not in-
volve inter-agent communication.

A communication protocol for ad-hoc teamwork has been
proposed by Barrett et al. (2013a), where message selec-
tion is integrated within the planning process. In particu-
lar, each agent has a fixed set of communicative messages
that are synthesised through the POMCP multi-armed ban-
dit framework. Despite taking some important first steps to-
wards combining planning and communication with hetero-
geneous agents, this work assumes full world observability
and noiseless channels, while also using distinct communi-
cation and action phases. To our knowledge, our method is
the first to address the combined existence of several of the
challenges described so far, i.e. uncoordinated collaboration
with unknown teammates in partially observable domains,
in the presence of imperfect communication.

Method

In this section, we first provide an overview of POMDP
and Monte-Carlo planning, summarising some key concepts
from Silver and Veness (2010). Then, we extend the single-
agent POMCP definitions to model egocentric planning in
multi-agent systems. We subsequently present our commu-
nication protocol, and then describe our approach to plan-
ning with communicated actions. We conclude by providing
detailed algorithms for our implementation.

Planning in single-agent POMDPs

Preliminaries An agent acting in a partially observable
domain cannot directly observe the state of the world, sy,
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but only knows a history of past actions and observations
up to the current time ¢, hy = {0g,ag,...,0t, at, 011},
and plans with respect to the belief B(s,h), which is a
history-dependent distribution over states. A policy m(h, a)
is a mapping from histories to actions, and the return R; =
> o, ¥ try is the obtained reward starting at time ¢, where
0 < v < lisadiscount factor, and each 7, is drawn from the
reward function R. The value function V™ (h) = E[R;|h]
is the expected return under 7 starting at history h, and
V*(h) = max, V™ (h) is the optimal value function. Addi-
tionally, Q™ (h, a) is the value of taking action a after history
h, and then following policy 7.

Monte-Carlo planning Due to the complexity associ-
ated with computing V* exactly, POMCP approximates
this value through sampling-based forward search from the
current history h. The planner uses a black-box simulator
(St4+1, 0041, 7e41) ~ G(s¢, ay) that generates successor val-
ues given the current state and action. The value of a state s
is approximated by the mean return of n simulations, or plan
samples, V(s) = %Z?:l R;, each searching the problem
space over a fixed time horizon #. Starting with O values,
the planner also maintains visitation counts N (h), N(h, a)
and Q-value estimates Q(h, a) for each history-action pair,
which are updated during plan sampling; visitation counts
are incremented by 1 each time a history or history-action
pair is sampled, and Q-values are updated as Q(h,a) «

Qh,a) + EF0
cent plan sample. When a history & has not been visited be-
fore, actions are chosen randomly based on a rollout policy,

a ~ Troliout (N). Otherwise, the optimal action is selected as

, where R is the return of the most re-

a* = argmaxaea Q(h,a)+ cy/log(N(h))/N(h,a), (1)

using the UCB heuristic with an exploration constant c.

Egocentric POMCP for multi-agent systems

Extending POMCP heuristics to multi-agent systems is not
straightforward due to the existence of joint actions and ob-
servations. For fully observable systems, Eq. 1 can be rewrit-
tenas @* = argmax__ z Q(s, @)+ c\/log(N(s))/N(s,a)
(Wu, Zilberstein, and Chen 2011a), replacing histories with
states and single-agent actions with joint ones. Unfortu-
nately, this does not apply to partially observable domains
with no communication because agents cannot observe joint
histories / (and actions @).

To overcome this problem (and avoid maintaining expen-
sive beliefs over the beliefs of others), we restrict our sam-
ple updates to single-agent NV and () values as in the original
POMCP framework. However, we modify the rollout policy
to generate random joint actions, @ ~ T,oi0ut (), though it
is still parametrised only by the planning agent’s history h.
Similarly, we parametrise the black-box simulator in terms
of joint actions, (S;11,0i41,7t4+1) ~ G(s¢,dy), though it
still generates observations and rewards for the planning
agent only. These modifications can be implemented at min-
imal additional computational cost, while also not making
any assumptions about other agents’ beliefs and histories.
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Simultaneous Action Communication

Communication protocol and structures Despite pro-
viding support for decision-making in the presence of other
agents, the above definitions do not model communication
within a team. To address this issue, we define a simple
protocol through which agents can communicate with each
other. In particular, let M denote the set of messages that can
be exchanged between agents, m™ a message sent by an
agent to its teammates, and m*— a received message. We as-
sume a simple broadcasting protocol, where the world state,
s, is augmented with a message queue, q, containing all the
currently available messages. When an agent sends a mes-
sage m™, it simply adds it to the front of ¢; when an agent
receives a message m <, it marks it for removal and m* is
erased from ¢ at the end of the current time step.

Message selection, exchange, and interpretation As dis-
cussed in previous sections, one distinguishing feature of our
approach is that agents communicate their actions (and not
their observations), and they do so simultaneously with ac-
tion execution (as illustrated in Figure 1(c)). In this context,
an agent selects the action a; to be executed at time ¢, an
deterministically sets its upcoming message to m;~> = a;.
Thus, the message set is identical to the action set, i.e.
M = A. Furthermore, we can straightforwardly extend the
action rollout policy, @ ~ Trouout(h), to obtain the joint
message rollout policy, ™ ~ Lroiiout (@) = @.

Similarly to actions, agents receive messages from their
teammates simultaneously to making observations on the
state of the world. At every observation/message reception
phase, each agent receives a set, {m*"}, of up to n — 1 mes-
sages, where 7 is the size of the team (so at most one mes-
sage per teammate is received). However, the size of {m "}
may be potentially smaller when messages are delayed or
dropped. The received messages are interpreted under the
assumption that all agents are communicating their actions;
we use a simple procedure a « ParseAction(m) that
converts a message m to an action a. When the channel is
reliable, ParseAct ion will return the (correct) action that
was originally transmitted by the sending agent. Neverthe-
less, as discussed in the following section, we also consider
the case where messages are corrupted during transmission
and thus interpreted incorrectly at the receiving end.

Putting everything together, the black-box G with simul-
taneous communication and state updates is rewritten as

(86415 Qt+15 0641, Ter15 {my1}) ~ G(St, qr, Gr, 1) (2)

Modeling imperfect communication Our protocol can
be extended to account for different types of imperfect com-
munication. When modeling message losses, a transmitted
message m; > is dropped with probability 0 < p(loss) < 1,
in which case the queue ¢ remains unchanged. For message
delays, m;~ is added with probability p(delay) to q after
the other updates for step ¢ are completed, which means that
it cannot be used by its teammates at decision step ¢ + 1.
Thus, our notion of delay is different to definitions assum-
ing distinct action and communication phases. In our frame-
work, all messages by default arrive with a one (planning)
step delay, so our definition of delay refers to an additional
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communication lag (leading to an overall delay of at least
two planning steps). Finally, a transmitted message is cor-
rupted with probability p(corrupt), in which case the re-
ceiving agent interprets it as an action other than the one that
was originally sent. For the latter type of noise, the number
of possible misinterpretations grows with the action set size.

Planning with Communicated Actions

One important open question in our framework is how to use
communicated messages to improve the quality of selected
actions. To address this issue, we propose two extensions to
the original egocentric POMCP framework. First, we intro-
duce a distribution over communicated messages, and use it
as a bias in the teammate action sampling process. Second,
we define and learn Q-values over the message space, thus
obtaining a factored approach to action selection.

Teammate action sampling In the non-communicate
egocentric POMCP variant, teammate actions are always
sampled based on the random rollout policy 7,100t HOW-
ever, when communication is available, the received mes-
sages can provide better insight on the actions chosen by the
other agents. To exploit this feature, we introduce a distribu-
tion A’(h,a) over communicated teammate actions for ev-
ery (single-agent) history h and action a. We model A’(h, a)
as an unweighted particle filter that is progressively popu-
lated from the received messages (similarly to how the be-
lief distribution B(h) is updated from the generated state
samples). When A’(h,a) is non-empty, teammate actions
are sampled directly from this distribution, otherwise we
use Trollout @S in the non-communicative approach. Thus,
action selection is biased towards the information extracted
from the received teammate messages, and the rollout policy
serves as a fall-back when communication is limited.

Factored value learning and action selection We model
communicated messages a special type of observation, over
which a separate set of Q-values is learned and used in ac-
tion selection. In particular, we define a value Q(h,a,m)
(and an associated visitation count N(h,a,m)) for every
history h, action a, and message m, thus introducing an
additional layer in the policy learning hierarchy. Like reg-
ular Q-values, message values are updated based on the re-
turn R generated by each plan sample, i.e. Q(h,a,m) «

Q(h,a,m) + W Moreover, Eq. 1 is updated as
*

a® =argmaxgeq (Q(h,a) + maxenm Q(h,a,m)
+ ¢v/log(N(h))/N(h, a))

to incorporate the learned message values. This leads to a
factored learning and action selection procedure, where the
planning agent performs distinct learning updates for the dif-
ferent types of input acquired during the interaction.

Summary of Algorithms

We conclude this section by providing implementations for
all the procedures described so far. Algorithm 1 summarises
the high-level search algorithm; when a history h has not
been visited before, states are sampled from the initial state
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Algorithm 1: SearchWithCommunication(h)

for i «— 1 to NumPlanSamples do
if h = empty then s ~Zg, ¢ —
else (s,q) ~ B(h)
Simulate(s,q,h,0)

return arg max (Q(h,a) + max Q(h,a,m))
acA meM

Algorithm 2: SelectAction(h)

return a* «— argmax (Q(h,a) + max Q(h,a,m)
aeA meM
[1og(N (h
+c- ]%f((h,(a)))]

Algorithm 3: Rollout(s,q, h,d)
if d > H then return O
C_i <« <a» al> ~ 71'rollout(h)a fn—)l_)
<é7 Cja o,r, > ~ g(57 q, C_ia m_))
return r + v - Rollout($,q, hao,d + 1)

~ Hrollout (C_i)

distribution Zg, and the message queue is empty. Algorithm
2 recaps the communication-based action selection formu-
lation, and Algorithm 3 gives the random rollout sampling
procedure. Finally, Algorithm 4 illustrates the main simula-
tion algorithm, where Q-values are initialised and updated.

Results

We evaluate our approach in two multi-agent domains; a
benchmark cooperative box-pushing problem from the Dec-
POMDP literature, and a more complex multi-robot kitchen
scenario with a significantly larger action space. The do-
mains are noisy, so actions and observations are perturbed
with 0.1 probability. In both problems, we compare a decen-
tralised POMCP agent with simultaneous action communi-
cation (denoted SAC) to an identical agent with no commu-
nication (NoComm); both agents follow the planning ap-
proach defined in the previous section, but NoComm does
not learn or use any message Q-values.

We assess the two algorithms in two-agent teams, divid-
ing our experiments for each domain in two phases. In the
first, same-agent team phase, we pair CAC and NoComm
with an identical agent, and compare the resulting teams un-
der varying message loss, delay, and corruption probabili-
ties. We test for the cases where each threshold (p(loss),
p(delay), p(corrupt)) is modified independently, and the
case where all types of noise are combined. In the sec-
ond, heterogeneous-agent team phase, we fix the three noise
thresholds to 0.1 (so they are equal to the action and ob-
servation noise probabilities), and compare performance in
collaboration with other, unknown agents. In this context,
the candidate teammates are an agent selecting random ac-
tions (Rand), and a problem-specific human-designed agent
(HumDes) running a robust hand-coded algorithm. Both
Rand and HumDes can communicate their actions to their
teammates, though their behaviour does not make any as-
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Algorithm 4: Simulate(s,q,h,d)

if d > H then return 0
if N(h) = 0 then
forall « € A do
N(h,a) < 0, Q(h,a) < 0, A'(h,a) « &
forall m € M do
L N(ILCI,,TTL) - 07 Q(h’7a7m) <0

return Rollout(s,q,h,d)
a «— SelectAction(h)
if A’(h,a) # & then o' ~ A'(h,a)
else <'7 al> ~ 71'7’ollout(h)
m_) ~ N'rollout(<a7 a/>)
<é) q)7 07 7)7 {m(_}> ~ g($7 q7 <a7 a/>7 m_))
Rer + ~-Simulate(s, ¢, hao,d + 1)
B(h) < B(h) u{s,q), N(h) < N(h) +1
N(h,a) « N(h,a)+1, Q(h,a) « Q(h, a)+ L Z0)
forall m e {m*“} do
N(h,a,m) « N(h,a,m)+ 1
A'(h,a) « A’(h,a) u ParseAction(m)
Qh,a,m) < Q(h,a,m) + L Fuem)

h,a,m)

return R

sumptions about the availability of communication.

To demonstrate the generality of our approach, we use
the same experiment parameters in both problems. For each
team, we average results over 100 runs with 1024 plan sam-
ples per decision step, recording the mean return (the re-
ward achieved by the team after each run) and the average
computation time per team per step. We set the time horizon
to H = 20 and the exploration constant to ¢ = 7,4,, Where
Tmae 1S the maximum reward of the domain. Experiments
were run on a dual core 3GHz PC with a 4GB RAM.

Cooperative box-pushing

In the cooperative box-pushing domain (Seuken and Zilber-
stein 2007), agents interact in a walled grid with one large
and two small boxes. Agents get a reward of +10 for pushing
a small box to the edge of the grid and +100 for doing this
for the large box. However, the large box can be moved only
if simultaneously pushed by both agents. Each agent has 4
actions (move, turn_left, turn_right, stay) and can only see
the square to its front, with the possible observations being
empty, other_agent, wall, small_box, large_box. Each agent
gets a reward of -0.1 for every step taken, and -5 for bump-
ing into a wall, its teammate, or a box it cannot move. When
any box reaches the edge, the problem resets to the start state
and the interaction repeats until the time horizon is reached.

The box-pushing results for same-agent teams under dif-
ferent types of communication noise are presented in Fig-
ure 2. The SAC + SAC team is seen to outperform the
NoComm variant under all possible noise thresholds, even
when the communication channel is always unavailable or
unreliable. Moreover, the performance is similar across the
different types of noise (and the case where all types of
noise combine), thus indicating that our method is not sen-
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Figure 2: Box-pushing domain - comparison of same-agent teams (SAC + SAC and NoComm + NoComm) for different types
of communication channel noise. p(loss): probability of message loss. p(delay): probability of message delay. p(corrupt):
probability of message corruption. (a)-(c): Returns obtained under a single type of noise - the other probabilities are set to 0.

(d): All types of noise combined (with p(loss) = p(delay)

sitive to any specific irregularities. Thus, the simultaneous
action communication approach benefits from the exchange
of messages when the channel is reliable, while not being
impacted by message losses, delays, or corruptions even un-
der severely restricted communication conditions.

An experimental evaluation of decentralised planning
with communication in the box pushing domain has also
been conducted by Wu, Zilberstein, and Chen (2011b). In
their results, they report considerably higher positive returns
for most noise thresholds, which however drop to negative
values when the channel is always unavailable (whereas
our method still manages to achieve a positive mean re-
turn). Nevertheless, a direct comparison with simultaneous
action communication is problematic for two reasons. First,
as discussed in the related work section, their approach
uses distinct action execution and communication phases,
where successfully transmitted messages always provide up-
to-date information on teammate observations. In our frame-
work, even where there is no additional noise, all messages
arrive with a one-step delay. Thus, our experimental setting
introduces considerably harder constraints on collaboration
that are not fully captured by the distinct phase model'. Sec-
ond, their method first solves a centralised MDP version of
the problem, and then uses it as a heuristic in the decen-
tralised algorithms, thus improving planning performance.
By contrast, our approach uses no such heuristics, follow-
ing a fully uncoordinated planning approach that does not
incorporate any prior centralised knowledge.

The results for collaboration with heterogeneous agents
in the box-pushing domain are given in Figure 3. Compared
to NoComm, the SAC agent achieves better returns when
paired with all other teammates. Moreover, the SAC + No-
Comm team outperforms both the SAC + SAC and the No-
Comm + NoComm combinations, thus indicating that our

'In practice, the distinct and simultaneous phase models are
aligned only in the maximal 1.0 loss rate case, when all messages
are dropped in both frameworks (in this case, only our method at-
tains positive returns in the box-pushing problem). For all other
noise levels < 1.0, the distinct-phase framework provides agents
with synchronised messages for at least some fraction of the time;
this advantage would however be lost in our experimental setting.
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Figure 3: Box pushing domain - results for heterogeneous
agent teams. The results are sorted in order of increasing
mean return. Boldface labels: teams with different agents.
Non-boldface labels: teams with the same agents. Commu-
nication noise: p(loss) = p(delay) = p(corrupt) = 0.1.
See text for description of the different algorithms.

method can achieve robust collaboration even with agents
who do not use any communication.

Multi-robot kitchen domain

The multi-robot kitchen domain is an extension of a single-
agent problem described by Petrick, Geib, and Steedman
(2009). In the multi-agent variant, two bi-manual robots are
tasked with transporting a tray between two different kitchen
locations. The kitchen has five locations (sideboard, stove,
fridge, dishwasher, cupboard), and each robot can move be-
tween them. A location can be opened or closed by a robot’s
left or right hands. The tray can be grasped or put_down at a
location, or transported between locations; these actions are
joint and fail if not simultaneously executed by both robots.
If a joint action fails at the start location, the tray is dropped
and needs to be placed_upright by one robot; if it fails at any
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Figure 4: Kitchen domain - results for different types of communication noise. See caption of Figure 2 for further explanations.
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Figure 5: Kitchen domain - results for heterogeneous agent
teams. See caption of Figure 3 for further explanations.

other location, the tray is moved back to the start. The tray
and teammate are visible only when in the same location as
the planning robot. The reward is +100 for successfully tak-
ing the tray to the goal, and -0.1 for every other step.

When aggregating all possible object/location/gripper
combinations, the kitchen domain has a total of 175 ac-
tions per agent. This represents a considerably larger prob-
lem space than the box-pushing domain, which impacts
both planning and communication (since, as previously dis-
cussed, the number of possible message misinterpretations
grows with the action space). Additionally, several distinct
joint actions are now needed to achieve the goal, i.e. grasp,
transport, and put_down (as opposed to just moving the large
box). Another distinguishing feature is that no goal can now
be attained by a single agent (as with small boxes previ-
ously), so robots must collaborate to get a positive reward.

The higher difficulty of the kitchen domain is illustrated
in Figure 4, where the SAC algorithm now performs worse
than NoComm in some of the more restricting noise cases.
This is particularly evident in Figure 4(d), where the perfor-
mance decline is more rapid. Nevertheless, even in this chal-
lenging problem, SAC outperforms NoComm under limited
communication noise, while exhibiting comparable sensitiv-
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ity to the different noise types (with 0.6 being the cut-off
probability threshold in Figures 4(a), 4(b), and 4(c)).

The SAC agent also maintains its ability to achieve supe-
rior collaboration with heterogeneous agents than NoComm
(Figure 5). When comparing with the box-pushing problem
results, SAC now also outperforms HumDes when paired
with Rand and NoComm, thus indicating better adapta-
tion to unknown teammates in this more challenging do-
main. Furthermore, the SAC approach demonstrates com-
parable efficiency to the other algorithms, as indicated by
the recorded computation times.

Conclusions

In this paper, we introduce a novel approach to collaboration
in partially observable domains, which is based on the simul-
taneous execution and exchange of actions between team-
mates. We extend a state-of-the-art, single-agent Monte-
Carlo planner to support egocentric reasoning in multi-agent
systems, where communicated messages are used to bias
the sampling process and learn policies through factored
value updates. Thus, unlike many existing methods that rely
heavily on observation and belief synchronisation within a
team, our work assumes a looser coupling between planning
and communication phases. As demonstrated by our results,
our approach outperforms a non-communicative variant in
a benchmark domain under varying noise types (message
losses, delays, corruptions), while achieving robust collab-
oration with unknown teammates even in a larger and more
complex collaborative planning problem.

We are currently working on integrating communication-
based planning with reinforcement learning techniques that
actively model the rewards of interacting agents. Our goal
is to develop fast, robust decentralised planning algorithms
that can be applied to challenging problems with varying
task specifications and team compositions. In particular, we
are interested in collaborative human-robot interaction ap-
plications requiring heterogeneous agents to work (and com-
municate) in teams towards a common goal, under limited
resources and tight coordination constraints.
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