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Examining the dynamics of stroke ischemia is limited by the standard use of 2D-volume or voxel-based analysis
techniques. Recently developed spatiotemporal models such as the 4D metamorphosis model showed promise
for capturing ischemia dynamics. We used a 4D metamorphosis model to evaluate acute ischemic stroke lesion
morphology from the acute diffusion-weighted imaging (DWI) to final T2-weighted imaging (T2-w). In 20 rep-
resentative patients, wemetamorphosed the acute lesion to subacute lesion to final infarct. From the DWI lesion
deformation maps we identified dynamic lesion areas and examined their association with perfusion values in-
side and around the lesion edges, blinded to reperfusion status.We then tested themodel in ten independent pa-
tients from the STroke Imaging Repository (STIR). Perfusion values varied widely between and within patients,
and were similar in contracting and expanding DWI areas in many patients in both datasets. In 25% of patients,
the perfusion values were higher in DWI-contracting than DWI-expanding areas. A similar wide range of perfu-
sion values and ongoing expansion and contraction of theDWI lesionwere seen subacutely. TherewasmoreDWI
contraction and less expansion in patients who received thrombolysis, although with widely ranging perfusion
values that did not differ. 4Dmetamorphosismodeling showspromise as amethod to improve use ofmultimodal
imaging to understand the evolution of acute ischemic tissue towards its fate.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The change in ischemic stroke lesions from acute presentation to
final tissue damage is highly variable between individual patients as
seen onmagnetic resonance diffusion and perfusion imaging. Following
the occlusion of a cerebral artery, ischemic tissue damage is seen as hy-
perintense on diffusion-weighted imaging (DWI) often within a larger
area of hypoperfused at-risk, but potentially reversible tissue ischemia,
detectable on perfusion-weighted imaging (PWI). Thereafter the ische-
mic tissue may grow or diminish depending on known and unknown
factors. Subsequent growth of the lesion core, considered to be repre-
sented by DWI, is generally attributed to persistently reduced perfusion
values around the core, whereas recovery of ischemic tissue is generally
attributed to improvement in perfusion (Wardlaw, 2010).
ciences, Brain Research Imaging
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Many imaging studies have investigated stroke lesion evolution
mainly using 2D lesion volume or voxel-based analyses, but these may
not capture the full spatiotemporal dynamics of perfusion and diffusion
lesions as theymay under-sample information about the location, direc-
tion ormagnitude of the lesion dynamics in space and time (Rekik et al.,
2012). Recently, we applied 4D shape deformation modeling methods
to examine the highly contracting and expanding areas in DWI and
PWI lesions (Rekik et al., 2013, 2014).

Of theses methods, the metamorphosis model (Trouvé and Younes,
2005; Younes, 2010; Rekik et al., 2014) handled both multi-
component and solitary lesions and incorporated image intensity values
from different sequences, and demonstrated elegance and accuracy of
deforming the source image into a subsequent image, while tracking,
point by point, a) the image intensity values inside and outside the le-
sion edges and b) the velocity of lesion deformation between
timepoints. Notably, the proposed metamorphosis model in (Rekik
et al., 2014) could follow ischemic stroke lesion change in perfusion
weighted imaging from the acute to final infarct. It enabled to explore
the perfusion dynamics in ischemic stroke and their relation to final
T2-w lesion outcome (at ≥1 month). However, the role of diffusion
weighted imaging, which is fundamental to understanding stroke
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dynamics, was overlooked. In this paper, we aim to investigate diffusion
lesion local dynamic changes in relation to perfusion values in the af-
fected hemisphere.

By applying this model to longitudinal images, the present study
aims to: (1) model changes in the acute ischemic DWI lesion from the
acute timepoint into the final infarct lesion, in both solitary and multi-
component lesions; and (2) extractmeasurements of themost dynamic
parts of the lesion to see the most rapid or largest areas of the DWI le-
sion expansion/contraction areas in relation to PWI values and clinical
features such as stroke severity.We tested ourmodel on stroke imaging
data acquired in an observational study in one center (Rivers et al.,
2006; Kane et al., 2007) and then validated the model in multicenter
data obtained from STIR (Ali et al., 2007).

2. Material and methods

2.1. Patient selection

2.1.1. Development dataset
We first applied the metamorphosis model to 20 representative pa-

tients from a prospective observational study of MRI in hyperacute
stroke (Rivers et al., 2006; Kane et al., 2007). Patients were first imaged
b6 h of stroke and represented a typical range of stroke severities
(NIHSS,median=10, IQR: 6–14), ages (74.9±9.2 years), acute DWI le-
sion volumes (34.6 ± 32.2 cm3) and mean transit time (MTT) volumes
(126.6 ± 102.2 cm3). None of the 20 patients received rt-PA treatment,
thus they represent the natural history of stroke lesion evolution, in-
cluding any effects of spontaneous reperfusion. We included patients
who had DWI images at acute (~5 h) and subacute (~5 ± 1 days)
timepoints after stroke, a perfusion mean transit time (MTT) map at
least at the acute timepoint, and T2-w lesion at ≥1 month after stroke.
All patients had an MTT lesion at the first timepoint but only 12 had
an MTT lesion visible at the second timepoint. Twelve patients had
multi-component DWI/MTT lesions and eight had solitary lesions.

2.1.2. Exploratory dataset
We selected from STIR the first 10 of 290 potential cases with three

MRI scans at acute (b6 h), subacute (5 days) and final (≥1 month). The
first 10 patients that met the study criteria (age 59.6 ± 16.4 years, me-
dian admission NIHSS of 7 (IQR: 5–12)) had all received standard IV tPA
thrombolysis. All had perfusion imagingb6h but perfusion imagingwas
included per protocol at subacute (5 days).

2.2. MRI pre-processing

Weused theMTT perfusionmap as it is easily obtained and generally
shows the PWI lesion as large (Rivers et al., 2006; Kane et al., 2007). The
modeling was blind to all clinical data and imaging values. Arterial re-
canalization status and collaterals were not taken into account in the
modeling as angiographic data were not available for all patients. STIR
exploratory data were processed identically to the derivation data un-
less stated otherwise. Full details of image acquisition and processing
were described previously (Rivers et al., 2006; Luby et al., 2006).We ob-
tained MTT areas from the contralateral hemisphere by mirror reflec-
tion of the MTT lesion to the unaffected hemisphere. For each patient,
we generated relative MTT (rMTT) lesion maps by dividing the value
of each lesion voxel by the mean perfusion value of the contralateral
MTT values. The resulting intensity ‘rMTT’ has no unit. An expert radiol-
ogist visually checked that tissue swelling did not distort the DWI lesion
boundary.

2.3. Two-image based metamorphosis model

In our previouswork (Rekik et al., 2014),we extended the image-to-
imagemetamorphosis into a spatiotemporalmetamorphosis that exact-
ly fits the baseline image to subsequent observations in an ordered set
ℑ = {I0, I1, …, IT} of images, which we applied to perfusion data in
acute stroke. This model registers one source image to a target image
while estimating two optimal evolution paths linking these images:
(1) a geometric path encoding the smooth velocity of the deformation
of one image into another, and (2) a photometric path representing
the variation in image intensity. Both paths characterize the dynamics
of the image metamorphosis from the source to the target image in
small discrete time and space intervals.

Basically, a baseline image I0 morphs under the action of a velocity
vector field vt that advects the scalar intensity field It (i.e. time-
evolving image intensity) (Trouvé and Younes, 2005). Solving the ad-
vection equationwith a residual allows to estimate both image intensity
evolution and the velocity at which it moves.

We estimated the optimal metamorphosis path (It, Iv starting at I0,
while constraining it to smoothly and exactly go through any available
intermediate observation, till reaching the final observation IT. This
was achieved through minimizing the following cost functional U
using a standard alternating steepest gradient descent algorithm
(Rekik et al., 2014):

U I; vð Þ ¼ ∫T0
���vt

���
2

V
d t þ 1

σ2 ∫
T
0

��� dI tð Þ
dt

þ ∇It :vt
���
2

L2
dt

σ weighs the trade-off between the deformation smoothness (first
term) and fidelity-to-data (second term). The term ∇It. vt represents
the spatial variation of the moving image It in the direction vt. Further-
more, the moving intensity scalar field It is defined under the action of
the diffeomorphism (invertible smooth mapping) ϕt on a baseline
image I0 : It = ϕt. I0. We associated to the action ϕ a velocity v that sat-
isfies the flow equation rooted in the in-vogue large deformation
diffeomorphic metric (LDDMM) framework (Trouvé, 1998):

dϕt
dt

¼ v ϕt xð Þð Þ; t ∈ 0; T½ �
ϕ0 xð Þ ¼ x

8<
: :

In the present study, we used the estimated velocity vector field vt to
estimate the total DWI lesion deformation map in two phases.

1) In the first phase, we morphed acute (b6 h) DWI lesion to subacute
(~5 days) DWI lesion in 20 patients; and

2) In the second phase,wemorphed the subacute (~5 days) DWI lesion
into the final T2-w (≥1 month) in the 12/20 patients with subacute
perfusion imaging. Retaining these two distinct phases, ‘acute to
subacute’ and ‘subacute to final’, facilitated testing of acute
separately from subacute clinical information against the lesion
parameters.

2.4. Extracting highly dynamic regions of DWI lesion

For both phases, in each patient, we generated a total 3D lesion de-
formation map, computed as the squared sum of the estimated speed
along the metamorphosis path, and identified contracting and
expanding DWI regions (as the ‘negative’ and ‘positive’ deformation
values respectively) during each phase (Fig. 1). In the exploratory
dataset (STIR), we were only able to estimate the acute to subacute
phases since subacute perfusion imagingwas not available for all 10 pa-
tients.We then automatically thresholded the two totalmetamorphosis
deformation maps generated for the acute-subacute and subacute-late
phases of DWI lesion evolution to compute the proportion by volume
of the total DWI lesion boundary that was rapidly contracting or
expanding for the acute-subacute and subacute-late phases.

2.5. rMTT values relation to DWI lesion dynamics

For each patient, for both phases, for every rMTT voxel value within
the acute perfusion image we computed the mean amount of DWI



Fig. 1. Phase-based DWI lesionmetamorphosis in light of spatiotemporal perfusion values. (a) Acute–subacute phase data: Axial images of acute MTT (left), acute DWI (middle) and sub-
acute DWI (right). (b) Subacute-final phase data: Axial images of subacuteMTT image (left), subacute DWI image (middle) and final T2-w image (right). During acute–subacute phase,we
metamorphose acute DWI lesion to subacute DWI lesion. During subacute-final phase, we deform the latter into final T2-w lesion. We estimate the deformation maps for both phases of
DWI lesion evolution (images under the black arrows). The red arrows point to highly expanding (red) areas and blue arrows point to highly contracting (blue) areas.
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lesion contraction or expansion.We then plotted the acute rMTT values
against their correspondingmeanDWI contraction or expansionmagni-
tudes (Fig. 2). In most cases, both resulting rMTT distributions were
Gaussian. Therefore, we used Gaussian least squares fit to approximate
the relation between acute rMTT values and the mean amounts of DWI
lesion deformation: one for contraction (purple curve in Fig. 2) and one
Fig. 2.Distribution of rMTT perfusion values (x-axis, ratio, therefore nounit) and theDWI lesion
one patient. Blue dots are rMTT values in expanding areas of the DWI lesion and pink dots are
(purple line) represents the rMTT value associated with the maximum mean contraction m
representing the peak of the Gaussian curve minus its standard deviation and p2 the Gaussian
a range for perfusion values associatedwith themost rapidly contracting diffusion areas. Same p
for expansion (pink curve in Fig. 2). For phase one, the Gaussian fitting
root-mean-square deviation (RMSE) reached 0.0035 ± 0.0042 for con-
traction and 0.006±0.014 for expansion, noting that when thefitting is
exact RMSE = 0 (no residuals or perfect test). For phase two, the data
also best fitted a Gaussian distribution (RMSE = 0.0029 ± 0.0032 for
contraction and 0.0039± 0.0058 for expansion). These Gaussian curves
mean deformationmagnitude (y-axismm/4 h)between the acute and subacute images for
rMTT values in contracting areas of the DWI lesion. The peak of the fitted Gaussian curve
agnitude. The black arrows point to two perfusion thresholds on the purple curve: p1
peak plus its standard deviation. The perfusion confidence interval from p1 to p2 defines
arameters are estimated from the red line fitting the pink dot distribution (for expansion).



Fig. 3. Acute rMTT values associated with rapidly deforming DWI lesion areas graphed for
all patients—ordered left to right by increasing admissionNIHSS score (values on topof the
vertical bars). The center dot = rMTT values associated with the maximum of DWI lesion
mean deformation magnitude (=peak of Gaussian curve in Fig. 2). The limits of the verti-
cal blue and red bars represent the lower and the upper acute rMTT values (interval [p1,
p2] in Fig. 2) associated with rapidly contracting (blue) vs. expanding (red) DWI lesion
areas between the acute and subacute timepoints.
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allowed us to estimate the rMTT values associated with rapidly
expanding or contracting DWI regions—along with a confidence inter-
val around these peak values: the upper bound represents the mean
of the Gaussian curve minus its standard deviation and the lower
bound represents the mean of the Gaussian curve plus its standard
deviation.

3. Results

3.1. Derivation dataset lesionmetamorphosis and perfusion values: acute to
subacute phases

The model showed that the mean rMTT values in areas of DWI ex-
pansion across patients (mean 0.8±0.82SD,maximum3.18)were sim-
ilar to mean rMTT values in areas of DWI contraction (mean 0.74 ±
0.63SD, maximum 2.17), Table 1. In general, the range of rMTT values
in all parts of the DWI lesion boundary was wide such that in most of
the 20 derivation dataset patients (15/20), the rMTT values in DWI
lesion areas that were contracting were nearly identical to the values
in DWI areas that were expanding (correlation coefficient r = 0.86,
p = 0.8), shown as the overlap of the red and blue vertical bars in
Fig. 3. Only in 5/20 patients (25%) were the blue and red vertical bars
distinct, indicating that acute perfusion was clearly better in areas of
DWI contraction than in areas of DWI expansion (Fig. 3). In some pa-
tients (7/20 in Fig. 3), the red bars extended beyond the blue bars indi-
cating that perfusion values associated with most rapidly expanding
DWI areas encompassed a wider range of MTT perfusion values than
in rapidly contracting DWI areas.

3.2. Lesion metamorphosis and perfusion values: subacute to final phase

A similar general pattern of rMTT values was seen in the 12 patients
who had rMTT data available from the subacute to final phases (~5 days
to N1 month, Table 1, Fig. 4). The rMTT values were very similar in DWI
expanding and contracting areas inmost patients (r= 0.91, p=0.8). In
3/12 patients (25%), subacute rMTT values in DWI contracting areas
were higher than in DWI lesion expansion areas indicating better
perfusion in contracting areas. Table 1 also indicates that a) DWI lesions
were still expanding into some areas and regressing in others and
b) perfusion values remain very variable during the subacute to final
phase.

3.3. DWI dynamic evolution features

We assessed the proportion of the DWI lesion that highly contracted
or expanded at each phase (Table 1). During both phases, 11/20 (55%)
Table 1
For contraction and expansion rMTT maxima, each column successively shows their min, max
lesion volumetric proportion of highly dynamic areas, we show the min, max and median valu
contraction is higher than the mean of the speed of contraction within the DWI lesion minus
of expansion is higher than themean of the speed of contraction of the DWI lesion plus its stand
subacute DWI lesion and subacute-final phase defines the metamorphosis of the latter into fin

Contraction rMTT value Min
Max
Mean ± std

Expansion rMTT value Min
Max
Mean ± std

DWI lesion volumetric proportion of highly contracting areas⁎ (%) Min
Max
Median

DWI lesion volumetric proportion of highly expanding areas⁎ (%) Min
Max
Median
patients had more highly expanding than contracting areas, although
the difference in median volumetric proportions of the DWI lesion
was not significant (p = 0.62 for acute–subacute and p = 0.13 for
subacute-final phases). Also some DWI lesions continued to expand
rapidly in some areas and to contract in others in quite similar propor-
tions, highlighting the dynamism of acute and subacute stroke lesions
(Table 1).

3.4. DWI metamorphosis, perfusion and clinical features

During the acute–subacute phase, there was no association between
acute NIHSS and rMTT values found in expanding (r = 0.11, p = 0.63)
or contracting (r = 0.06, p = 0.77) DWI lesion areas. Similarly, during
subacute-final phase, there was no association between admission
NIHSS and rMTT values found in contracting (r = 0.007, p = 0.99) or
expanding (r = −0.021, p = 0.95) DWI lesion areas. We also investi-
gated the association between the proportion of the DWI
lesion volume that was highly contracting or expanding during acute–
subacute and subacute-final phases and various clinical factors
(acute NIHSS, acute MTT volume, acute DWI volume), but found no sig-
nificant correlations. For all, we obtained: (i) acute–subacute phase:
and mean ± standard deviation values across patients in two different datasets. For DWI
es. ⁎Highly contracting areas are voxels within the DWI lesion boundary whose speed of
its standard deviation. Highly expanding areas are voxels of the DWI lesion whose speed
ard deviation. †Acute–subacute phase defines themetamorphosis of acute DWI lesion into
al T2-w at ≥1 month.

Derivation data STIR data

Acute-subacute phase† Subacute-final phase† Acute-subacute phase

0.1 0.85 0.91
2.17 2.12 2.72
0.74 ± 0.63 1.36 ± 0.47 1.34 ± 0.55
0.1 0.73 0.8
3.18 2.02 2.94
0.8 ± 0.82 1.33 ± 0.41 1.32 ± 0.32
0.28 0.33 0
9.09 7.98 13.08
3.39 3.25 4.16
0.36 0.42 0
12.61 14.95 8.73
4.38 3.69 1.81



Fig. 4. Subacute rMTT values associatedwith rapidly deforming DWI lesion areas graphed
for all patients ordered left to right by increasing admission NIHSS score (values on top of
the vertical bars). The center dot = rMTT value associated with the maximum of DWI le-
sion mean deformation magnitude. The limits of the vertical blue and red bars represent
the confidence interval (in Fig. 2) associatedwith rapidly contracting (blue) vs. expanding
(red) DWI lesion areas between the subacute and final timepoints.
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contraction r = 0.082, p = 0.731; expansion r = 0.258, p = 0.271 and
(ii) subacute-final phase: contraction r = 0.181, p = 0.444; expansion
r = 0.255, p = 0.277.
3.5. Evaluation of the model in the exploratory dataset from STIR

In the 10 STIR stroke patients, the rMTT values in contracting or
expanding DWI lesion areas were highly positively correlated (r =
0.98, p = 0.0001) (Table 1, Fig. 5). However, a larger proportion of
the DWI lesion was contracting (median: 4.16% of the acute DWI lesion
volume), and a smaller proportion expanding (median: 1.81% of the
acute DW lesion volume) in the STIR exploratory dataset than in the
derivation dataset (median: 3.39% contracting, median: 4.38%
expanding), possibly reflecting the effects of thrombolysis in the STIR
patients.
Fig. 5. Acute rMTT values associated with rapidly deforming DWI lesion areas graphed for
STIR patients ordered left to right by increasing admission NIHSS score (values on top of
the vertical bars). The center dot= rMTT values associatedwith themaximumof DWI le-
sion mean deformation magnitude (=peak of Gaussian curve in Fig. 2). The limits of the
vertical blue and red bars represent the lower and the upper acute rMTT values (interval
[p1, p2] in Fig. 2) associated with rapidly contracting (blue) vs. expanding (red) DWI le-
sion areas between the acute and subacute timepoints.
4. Discussion

We show that a dynamic metamorphosis model (Rekik et al., 2014;
Trouvé and Younes, 2005; Younes, 2010) has promise for modeling is-
chemic stroke lesion evolution using acute and subacute DWI, rMTT
and final T2-w images in space and time. This enabled us to visualize
and extract dynamic features of the ischemic lesion, such as the magni-
tude of contraction and expansion of the DWI lesion as a function of le-
sion volume and in relation to rMTT values.

In our heterogeneous, small, but representative samples, we found
that (i) dynamic changes in the DWI lesion were not confined to the
first few hours after stroke but continued for days or weeks, accompa-
nied by wide-ranging perfusion values; (ii) a similar wide range of per-
fusion values were associated with large DWI lesion deformations from
acute to subacute timepoints within individual patients, meaning that
in most patients (75%) the rMTT values covered the same range in
contracting and expanding DWI regions; in about 25% of patients in
both datasets, the perfusion values were higher in contracting than
expandingDWI regions; (iii) therewas large variation between patients
in the perfusion values in DWI lesion areas that undergo the largest de-
formations, evenwhere therewas greater DWI contraction after throm-
bolysis; and (iv) there was large between-patient variation in the
amount of DWI lesion change in acute to final phases after stroke, al-
though we found more DWI lesion contraction in patients in STIR who
received thrombolytic treatment than in the observational study
where no patients received thrombolysis.

Our findings suggest that PWI values are more heterogeneous than
has been suggested using average values obtained from DWI and PWI
data obtained from regions of interest at individual timepoints (Dani
et al., 2012). The variation is consistent with the wide variation in per-
fusion levels found in the literature (Kane et al., 2007; Dani et al.,
2012), andwith the recent concept of perfusion strata (or confidence in-
tervals) as a biologically plausible representation of infarct risk maps
(Nagakane et al., 2012). The absence of a clear difference between per-
fusion values in expanding versus contractingDWI lesion areas in 75% of
our small but representative group of 30 patients points to a need to
identify other factors that influence DWI lesion progression or reversal.
The influence of lesion swelling, perfusion heterogeneity at capillary
level (Ostergaard et al., 2013), collaterals, completeness of arterial oc-
clusion at the primary occlusion site (Rekik et al., 2012; Phan et al.,
2009) and perfusion levels assessed with other perfusion parameters,
should be examined in future studies.

Since our sample lacked statistical power due to its small size, the
method should be applied in larger datasets of stroke patients with var-
ied lesions, timepoints, treatments and outcomes and with other perfu-
sion parameters. Although we did not explicitly model the effect of
arterial patency, the perfusion being delivered to the tissues was cap-
tured in the voxel-level rMTT values. These observations of stroke lesion
‘natural history’ in the 20-patient derivation dataset and ‘thrombolysis-
enhanced’ in the 10 patient exploratory dataset, highlight the complex-
ity and the variability of ischemic stroke lesion dynamics (Scalzo et al.,
2013). Further refinement of the 4Dmodel and inclusionof other factors
such as recanalization and lesion swelling would further advance our
understanding of these dynamics, explain inconsistencies between
past studies (Dani et al., 2012), and provide a more nuanced under-
standing of how perfusion values influence DWI lesion progression to
different fates.

5. Conclusion

In this work, we used themetamorphosis model that tracks both in-
tensity and shape changes in evolving images to examine the influence
of local voxel-wise perfusion values on ischemic lesion core dynamics
(i.e. contraction and expansion) visible on diffusion weighted imaging.
The wide range of perfusion values and lack of difference between
contracting and expanding areas emphasizes the very dynamic nature
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of stroke and explains difficulty in using threshold values to discrimi-
nate tissues states. Indeed, the noted observations add up to the grow-
ing evidence of the wide spectrum of heterogeneous perfusion values,
and question the true extent of their contribution into determining
final infarcted tissue boundary. As noted in (Rekik et al., 2012), we be-
lieve that applying highly advanced, accurate and robust medical
image analysis methods will help neurologists and stroke researchers
converge to a unified vision of stroke dynamics and what truly drives
tissue death. More clinical factors remain broadly unknown and
others can be included into honing these models in future studies
(e.g., swelling or spontaneous reperfusion). Patient-specific dynamic
modeling could be of potential use in future larger studies to determine
what factors influence stroke lesion evolution and responses to treat-
ment in individual patients. Such advances are necessary to determine
in future which patients are most suited to which treatments— i.e. per-
sonalized medicine.
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