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(Received DATE UPDATED)

The interacting vorticity wave formalism for shear flow instabilities is extended here
to the magnetohydrodynamic (MHD) setting, to provide a mechanistic description for
the stabilising and destabilising of shear instabilities by the presence of a background
magnetic field. The interpretation relies on local vorticity anomalies inducing a non-local
velocity field, resulting in action-at-a-distance. It is shown here that the waves supported
by the system are able to propagate vorticity via the Lorentz force, and waves may inter-
act; existence of instability then rests upon whether the choice of basic state allows for
phase-locking and constructive interference of the vorticity waves via mutual interaction.
To substantiate this claim, we solve the instability problem of two representative basic
states, one where a background magnetic field stabilises an unstable flow and the other
where the field destabilises a stable flow, and perform relevant analyses to show how this
mechanism operates in MHD.

Key Words: ***do this on submission website***

1. Introduction

Shear flows are ubiquitous in fluid systems, and shear flow instability, nonlinear de-
velopment and its transition into turbulence remains an active area of research to the
present day. We focus here on magnetohydrodynamic (MHD) shear instabilities, relevant
to astrophysical systems such as, for example, the solar tachocline, the magnetopause,
and atmospheres of hot exoplanets. In particular, we are interested in the physical mech-
anisms leading to ideal parallel shear instabilities in MHD.

The argument generally is that, in the presence of a background magnetic field that
has a component parallel to the background flow, fluid instabilities have to do work to
bend field lines, thus the presence of a background magnetic field should be stabilising.
This is generally found to be true in planar geometry when the background magnetic field
is uniform (e.g., Chandrasekhar 1981; Biskamp 2003). However, this argument does not
account for the observed destabilisation of hydrodynamically stable flows in the presence
of spatially varying background magnetic fields (e.g., Stern 1963; Kent 1966, 1968; Chen &
Morrison 1991; Tatsuno & Dorland 2006; Lecoanet et al. 2010), or the fact that a uniform
field can destabilise some wavenumbers that are hydrodynamically stable (e.g., Kent
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FIGURE 1. A pictorial representation of the wave interaction mechanism for the case of two
Rossby waves. Here, ¢ ~ —AQn, where g is vorticity, 7 is displacement, and A() is the magnitude
of the vorticity jump of the background flow profile. Taking into account the sign of AQ at each
jump, the g anomalies resulting from the 7 distribution are labelled accordingly. The top wave
has a self-induced propagation to the left relative to the mean flow, and vice versa for the bottom
wave, and both waves propagating counter to the mean flow. The waves interact with the other
via the non-local velocity field induced by local vorticity anomalies, and the induced velocities
decay with distance from vorticity anomalies, represented here by the length of the arrows. The
waves may be held steady owing to counter-propagation relative to the mean flow, together with
the mutual interaction between the waves, resulting in a phase-locked configuration. The waves
can then constructively interfere and lead to instability. A phase difference regime diagram
is given on the left, where the phase-difference is defined as Ae = ez — €1, the lower wave
displacement relative to the upper wave; the configuration here has Ae = —7/2.

1966, 1968; Ray & Ershkovich 1983). Further, in two-dimensional spherical geometry (no
radial motion), a flow close to the observed solar differential rotation is hydrodynamically
stable, but is destabilised by the presence of an azimuthal background magnetic field
varying in latitude (e.g., Gilman & Fox 1997; Gilman & Cally 2007). To reconcile these
contrasting effects, the negative-energy wave interpretation (e.g., Cairns 1979), based on
wave resonance and energetic arguments, is sometimes invoked (e.g., Ruderman & Belov
2010). The aim here is to provide an intuitive mechanistic interpretation that reconciles
the contrasting influences of the magnetic field on MHD shear instabilities.

We present here an interpretation of shear instabilities in terms of interacting vorticity
waves. This interpretation includes as a special case the Counter-propagating Rossby
Waves (CRW) mechanism (e.g., Bretherton 1966; Hoskins et al. 1985), a mechanism
well-known in geophysical fluid dynamics, and has been argued by Baines & Mitsudera
(1994) to be an equivalent approach to the negative-energy wave explanation for shear
instability. A basic schematic of the mechanism is recalled here for the Rossby wave case
in figure 1, with a description of the mechanism given in the caption.

The main ingredients required for instability in this interpretation are phase-locking
and constructive interference, achieved via counter-propagation of waves relative to the
mean flow, action-at-a-distance by the non-local velocity field induced by local vorticity
anomalies, and an appropriate phase-shift between the two waves. Normal mode instabil-
ity may also occur whenever the waves are phase-locked with relative phase-difference (de-
fined here in terms of wave displacement) satisfying Ae € (—,0). If the self-propagation
speed of each wave is large compared to its local mean flow, the action-at-a-distance inter-
action should hinder the waves’ propagation speed to maintain phase-locking; this occurs
when Ae € (—m/2,0), and generally characterises long wavelength dynamics. By contrast,
the self-propagation speed of short wavelength waves counter to the mean flow is gener-
ally weak, hence instability is obtained when the waves help each other’s propagation to
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overcome the background flow while growing, and this occurs when Ae € (—7, —m/2).
Essentially, the mechanism may be summarised as “the induced velocity field of each
Rossby wave keeps the other in step, and makes the other grow” (Hoskins et al. 1985).
For more details, we refer the reader to the recent review of Carpenter et al. (2013) and
references within.

In the case of figure 1, we have illustrated the fundamental mechanism using Rossby
waves, but this is not the only possibility. As long as we have wave modes that counter-
propagate against the mean flow and they propagate vorticity, it is perfectly possible
for a configuration displayed in figure 1 to occur. Harnik et al. (2008), Rabinovich et al.
(2011) and Guha & Lawrence (2013) have shown that, in the context of shear instabilities
in stratified fluids, displacement of an interface leads to an induced buoyancy field, that
in turn induces an appropriate vorticity field via baroclinic torque, thus Rossby—gravity
waves may also propagate vorticity. When two vorticity and/or density interfaces are
present, the interaction of the relevant wave modes leads to instability of the Kelvin—
Helmholtz type (two vorticity interfaces; e.g, Drazin & Reid 1981, Baines & Mitsudera
1994), Holmboe type (essentially one vorticity and one density interface; Holmboe 1962,
Baines & Mitsudera 1994), and the Taylor-Caulfield type (two density interfaces; Taylor
1931, Caulfield 1994). For recent reviews and studies of shear instabilities in stratified
fluids and their interpretation in terms of wave interactions, see Balmforth et al. (2012),
Carpenter et al. (2010, 2013) and Guha & Lawrence (2013).

We show here that a similar interpretation holds in MHD. Wave displacement changes
the magnetic field configuration, and since the Lorentz force is generally rotational; this
in turn generates vorticity anomalies, so Alfvén waves may propagate vorticity. We can
thus use the vorticity wave interaction framework as an interpretation for MHD shear
instabilities. Furthermore, this dynamical framework explains why we have stabilisation
or destabilisation by the magnetic field: the choice of basic state and parameter values
affects the properties of the wave modes, and the presence of instability depends on
whether supported wave modes can phase-lock and achieve mutual amplification.

Previous works on this topic have, for elucidation purposes, mainly considered piecewise-
linear basic states with interfacial wave solutions of the form ¢(z,y,t) = §6(y—L)el*@=¢t)
where y = L is the location of ‘jump’ in the profile. If one can show that the vorticity
generation is non-zero only at these jumps, then interfacial wave solutions are exact solu-
tions. A small number of jumps in the basic state results in a dispersion relation that is a
low order algebraic equation with closed form solutions. Further analysis of the solutions
may be carried out in a relatively straight-forward manner (e.g., Rabinovich et al. 2011).
One notable exception to this exactness in the hydrodynamic setting is the Charney
problem (e.g., Heifetz et al. 2004b), where the presence of differential rotation /3 results
in non-localised vorticity generation. A similar phenomenon occurs for the MHD case.
Although this does not pose a problem for the numerical computation of the eigenvalues
and eigenfunctions, extra care is required when interpreting the results and the physical
mechanism. This subtlety is explained in detail here, and the regimes where the inter-
facial wave assumption is a reasonable approximation to the full solution are explored
accordingly for the instability problems we consider.

The layout of this article is follows. We provide the mathematical set up in §2, and
explain how even simple Alfvén waves propagate vorticity via the Lorentz force. Ad-
ditionally, we demonstrate the non-local nature of vorticity generation. For conceptual
understanding of how waves in the system propagate vorticity, we consider the dynamics
of interfacial waves in §3. To demonstrate the instability mechanism, we solve the insta-
bility problem for two piecewise-linear basic states, for comparison with previous work
employing the interacting vorticity wave formalism, and to test the performance of the in-
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terfacial wave assumption. In §4, we consider the case where a background magnetic field
stabilises the flow, taking the background flow to be the Rayleigh profile demonstrated
in figure 1, together with a uniform background magnetic field. We first give details for
the numerical method we employ, then analyse in some detail the full solution, providing
plots of eigenfunctions and showing how the schematic in figure 1 is modified by MHD
effects. Analytic solutions resulting from the interface assumption are derived, compared
with the full solutions, and analysed accordingly. We give a similar account in §5 for the
case where a linear shear flow is destabilised by a spatially varying background magnetic
field. We conclude and discuss our results in §6.

2. Mathematical formulation

The crux of the mechanism displayed in figure 1 is that waves supported by the system
and choice of basic state propagate vorticity, and their interaction leads to instability.
In this section, we provide the general mathematical formulation, and explain how even
simple Alfvén waves, supported when the background flow and field are uniform, may
propagate vorticity via the Lorentz force. We consider the dynamics of waves when the
flow and field are sheared in the next section.

2.1. Two-dimensional MHD and action of Lorentz force

We are interested here in ideal MHD instabilities. The homogeneous, incompressible
MHD equations are

1o} 1 1
M w-Vu=——Vp+ —j* x B, (2.1a)
ot Po )
a%+u~VB*:B"‘~Vu, (2.10)
V.ou=0, V-.-B" =0 (2.1¢)

Here, 7° = V x B* is the current. In Cartesian co-ordinates, an analogue of Squire’s
theorem holds (see e.g., Hughes & Tobias 2001, and discussion within), thus we may
formulate the problem in two-dimensions. The domain is taken to be the (x, y)-plane, with
periodicity in x, and as yet unspecified in y. The incompressibility condition allows us to
write the velocity u and magnetic field B = B*/,/fopo (where pg is the permeability of
free-space and pg is the constant density) in terms of a streamfunction ¢ and magnetic
potential A, defined here as u = e, x V¢ and B = e, x VA. From this, the vorticity
g=-e, -V xuand current j = e, - V x B satisfy the relations ¢ = V21 and j = V2A4,
and equations (2.1) take the equivalent form
Dq . DA
D= V- (jB), D = 0. (2.2)
To see how the Lorentz force V - (jB) results in rotational motion, we suppose we
have, for argument sake, Bye, with By = const > 0, and

J(zo,y0)ex = joe-, Jj(z1,91)es = jie., (2.3)

where j1 > jo, 1 > xo, y1 = yo; this is a scenario where 9(jb,)/0z > 0, and note here
that 7 and b, are ‘full’ quantities as we have not yet linearised about a basic state. In
general, the Lorentz term is F' = 3 x B, and, with the right-hand-screw convention, the
current distribution above produces

F(x0,y0) = Foey, F(x1,51) = Fiey, (2.4)
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FIGURE 2. A pictorial representation of how the vorticity is generated by the Lorentz term
j x B =V -(jB) in two-dimensional incompressible MHD; see text for details.

with F; > Fp > 0. A material line connecting (zo,yo) and (z1,y1) is rotated anti-
clockwise, i.e., this gives us a positive vorticity anomaly, and is consistent with positive
forcing in equation (2.2); this is shown pictorially in figure 2. An analogous interpretation
explains how J(jb,)/0y > 0 results also in positive vorticity (e.g., rotate figure 2 anti-
clockwise by /2).

2.2. Linearisation and Alfvén wave dynamics

We now linearise (2.2) about a general basic state U(y)e, and B(y)e, (and thus Q =
—9U /0y and J = —0B/0y), which results in the system of equations

0 g0, 0@ov poi  9T0a
(3t+U3:1:> =~ yor Par Ty an (2:5a)
9 —0\ , —o

where all quantities with no overbars are perturbation quantities. We note that B(0j/0x)
and (0J/0y)(0A/0x) are the linearised forms of 9(jb,)/0x and 9(jb,)/dy respectively,
so they result in vortical motion as in figure 2. The cross-stream displacement 7 is given
by

oY 0 =0
= —_—— = —_— —_— 2'
U= b (8t+U6x> ™ (2:6)
and, substituting this into (2.5) and integrating results in the relation
A= Bn+ Ao(y); (2.7)

we will take the non-advective contribution Ag associated with non-conservative effects
to be zero for the rest of this work.

For simple Alfvén waves (e.g., Biskamp 2003), we take the case U = 0, and B =
constant > 0 without loss of generality. With this, the governing equations become
dq/0t = B(0j/0x) and dn/dt = O /dx. We observe that n ~ A from relation (2.7),
i.e., a positive displacement is correlated with a positive A anomaly. Furthermore, since
V2A = j and the Laplacian is a negative definite operator, this implies the relation
n~—j.

One main difference between Alfvén waves and Rossby waves is that the former are
governed by a second rather than first order differential equation, thus two initial condi-
tions need to be specified, in this case on ¢ and 7. In figure 3 we consider the cases where
the initial conditions (in black) are in phase and in anti-phase. Focussing on figure 3a
where 1 ~ ¢, since n ~ —j, we have the appropriate B(Jj/0x) at the wave nodes, and
thus results in the appropriate dq/dt tendencies for the ¢ configuration in the lower panel
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dq dq dq dq dq Jq
E>O ‘ 87t‘<0 ‘ ((Tt‘>0 ‘ ‘ a>0 ‘ &‘<O ‘ a—t‘>0 ‘

FIGURE 3. Pictorial representation for wave dynamics associated with B(dj/dz), with B > 0
without loss of generality. The top and bottom panels are the n and ¢ initial conditions, where
(a) n ~ g, and (b) n ~ —q. Black colours are tendencies associated with the chosen initial
condition, blue is the influence of the n profile on ¢, and red is the influence of the ¢ profile on
7. See text for description.

(in blue); this moves the ¢ profile to the right. At the same time, the ¢ initial condition
together with the relation ¢ ~ —q implies a velocity field that moves the n profile also to
the right (see also the waves in figure 1), and thus the whole wave propagates in concert
to the right. An analogous argument for figure 3b where the initial condition has n ~ —q
shows the wave propagating instead to the left. A superposition of these equal amplitude
right and left going waves results in a standing wave configuration (see, e.g., appendix
B of Harnik et al. 2008). It may be seen from the resulting linearised equations that, if
we consider modal solutions of the form e*(*=¢!) (we take the y-wavenumber to be zero
for simplicity), ¢, = +B for Alfvén waves, and ¢ > 0 implies we have n ~ —j ~ ¢, whilst
¢ < 0 implies that n ~ —j ~ —q; these relations are consistent with the schematic pre-
sented in figure 3a, b respectively. More generally, as long as the n and ¢ initial conditions
are not in quadrature with each other, we obtain travelling wave solutions associated with
the B(9j/0z) term.

2.3. Green’s function formulation

Wave interaction via action-at-a-distance may be represented mathematically by a Green’s
function formalism, employed by previous authors (e.g., Harnik et al. 2008). Noting that
j = V2A and ¢ = V2q, and taking the domain to be z-periodic, a Fourier transform

leads to
. 0? 9?
J:( k2 + 5 2)A q=<—k2+2>w, (2.8)

where k denotes the z-wavenumber. (2.8) may be formally inverted to give

( ) Jew ( D &, (2.9)

where G(y,y’) is a Green’s function chosen to satisfy the boundary conditions. Then,
with the governing equations (2.5a), (2.6), and substituting for the appropriate terms
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using relations (2.7) and (2.9), the problem is completely specified in terms of ¢ and 7,
and all intermediate effects from changes in A and j are implicit.

For the piecewise-linear profiles we consider in the subsequent sections, we note this
approach of using Green’s functions guarantees the continuity of the total pressure and
displacement everywhere. The kinematic condition for the continuity of the interface is
already invoked in (2.6). From the y-component of the linearised momentum equation,
we observe that the inverted v and b, from ¢ and j are guaranteed to be continuous by
properties of the Green’s function, so the total pressure p is also continuous since U and
B are continuous.

2.4. Generation of vorticity away from interfaces

If the background profiles are piecewise-linear, and, without loss of generality, a ‘jump’ is
located at y = L, then ¢ ~ §6(y— L) is exact if it can be shown that vorticity generation is
non-zero only at that location. One notable exception, however, is the Charney problem,
(e.g., Heifetz et al. 2004b) where vorticity generation is non-local, and we demonstrate
here this occurs in the MHD case also. To show this, we take the Laplacian of (2.5b),
and the resulting linearised equation for j is given by

0 =20 oQ 0A —0q a9J = oy

<8t+U8m> ( +2Q— ) x+Bax <8y+2J8y>8 (2.10)
Then, even if (0Q/dy, 0T /dy) = (AQ, AT)d(y—L), with (4,q) ~ (7,§)d(y—L) at t = 0, if
@ and J are non-zero at y # L, this generates non-zero j away from y = L, which in turn
results in non-zero g away from y = L from the vorticity equation. So d-function solutions
are generically not self-consistent solutions (one example where d-function solutions are
exact solutions is when B is zero everywhere except at isolated locations, e.g., current
sheet profiles), thus interfacial wave solutions fail to capture all the dynamics, since we
are setting to zero contributions away from the interfaces and we do not know a priori
whether the neglected contributions are significant to the dynamics. Further, non-local
generation of vorticity implies that critical layers will play a role in the dynamics (e.g.,
Rabinovich et al. 2011).

Although we will choose ¢ and 7 as the fundamental variables for the bulk of the dis-
cussion, this is not the only possibility. It turns out there are some numerical advantages
in utilising ¢ and j as the variables when computing for the full numerical solutions.
The two choices are of course equivalent as far as the full solution is concerned. A brief
discussion of the (g,j) equations is given in appendix B shows how they differ when
interfacial wave dynamics are the focus.

3. Interfacial wave dynamics

In this section, we assume solutions in g an j take the form of J-functions to elucidate
how we may expect waves to propagate vorticity. We do this primarily for conceptual
progress, to provide links between the wave eigenstructure and the underlying physics.

We consider an unbounded y-domain; the Green’s function for this setting is given by

1 . . ’
Gly.y') = —gpe™ L. (3.1)

We take piecewise-linear U and B (thus piecewise-constant @ and .J), with

aQ 07—
o —AQo(y— L), ZL=ATé(y— L) (3.2)
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Equations (2.5a) and (2.6) then become

(gt + iw) g = ik[~AQYd(y — L) + Bj + ATAd(y — L)), (3.30)
N\
Q%+MU)nmw (3.30)

This set of resulting equations bears some formal resemblance to the analogous stratified
problem (e.g., Harnik et al. 2008); this formal analogy is detailed in appendix A.

Bearing in mind the limitations already discussed in §2.4, we consider solutions of the
form

g=qe "y~ L),  j=je *s(y—L). (3.4)
With the inversion relation (2.9), the Green’s function (3.1) for this domain, and taking
modal solutions for ¥ and A, we obtain the relations

W) =—5r  AL)=-2- (3.5)

Using A = By from (2.7), this results in j = —2kB(L)n(L). Together, (3.3) becomes

_ AQ — (= AJ — 1
U—-¢)g=—"q¢q—2kB|B— — U— =——q 3.6
T-oi=52i-2%B(B-5 ) T-du=-ga GO

where all the functions associated with the basic state are taken to be evaluated at y = L.

Combining the two equations in (3.6) and solving the resulting quadratic equation in

(G/n), the eigenstructure and the dispersion relation reads

T g ﬂi,?f +B(B-50) @0

The ‘plus’ branch is the one where the plus sign is taken, and analogously for the ‘minus’
branch. We observe that, when the waves are neutral, the plus branch is associated with
a wave propagating to the right, relative to the mean flow, and vice-versa for the minus
branch.

3.1. A physical description of interfacial wave dynamics

The eigenstructure (3.7) tells us how ¢ is related to n directly from the equations. To
understand the relation in terms of changes in the magnetic field configuration and how
it results in vorticity anomalies and wave propagation, it is informative to consider how
the individual components act. In (3.7), the presence of the AQ, B and BAJ terms
are associated with the first, second and third terms on the right hand side of equation
(2.5a) respectively. The first term of the three is the standard Rossby wave mechanism,
for which the restoring force comes from the background vorticity gradient. The wave
propagation is that already described in figure 1. The second term is essentially the
Alfvén wave case described in the previous subsection; the eigenstructure relation (3.7)
may be seen to be consistent with the schematic presented in figure 3.

The third term on the right hand side of (2.5a) is
oJOA aJ —a.J dn
ot _ 9y el :
oy 0x Oy Y Oy Ox’ (3:8)

upon using the relation (2.7); we again take B > 0 without loss of generality. We show
in figure 4 a schematic depiction of how the b,(0.J/0y) term acts from the 7 initial
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Jq dq dq I
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|
by <0 (=n;47) by >0 by <0 (=n;+j) I
|

! I l >
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() B(y)=0

T L — T 1
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dq dq dq |
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|
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FIGURE 4. Pictorial representation for wave dynamics associated with b, (9.J/dy), the third term
on the right hand side of (2.5a), with () BAJ < 0 and (b) BAJ > 0; without loss of generality,

B > 0. The initial conditions are given in black, and the resulting tendencies arising from the
choice of initial conditions are given in blue. See text for more details.

condition. In figure 4a, we have a case where BAJ < 0. We still have n ~ —j (see
paragraph just after equation 2.7), and the distribution of b, at the nodes of the wave
(in black) then follows from the relation b, = B(89n/0x). With this, the initial condition
results in a b, (0.J/dy) distribution which in turn implies dg/0t tendency at the nodes (in
blue). This configuration is exactly like the one in figure 3, and thus we have travelling
wave solutions. If instead we have BAJ > 0 as in figure 4b, the 0q/0t tendencies at the
nodes are reversed. Similar arguments used in figure 3 then show that the n and ¢ initial
conditions propagate in opposite directions to each other unless they are in quadrature,
for which no travelling wave configuration is possible.

When the n and ¢ initial conditions are in quadrature, this implies that we have a
growing/decaying standing wave configuration. For the hydrodynamic stratified setting,
the schematic presented in figure 4b is formally similar to an interpretation of Rayleigh—
Taylor instability (e.g., Harnik et al. 2008). Although this suggests a local instability
even in the absence of a background flow (this is not impossible, since magneto-static
profiles can suffer ideal MHD instabilities, e.g., Ch. 19 of Goldston & Rutherford 1995), a
theorem due to Lundquist states that, in the case where the background magnetic field in
magneto-hydrostatic equilibrium has straight field lines, the perturbation energy cannot
grow, and the background state is stable (Lundquist 1951, paragraph of equation 29). This
stability condition is satisfied in planar geometry by B(y). The prediction of instability
at the local level when the state is globally stable presumably stems from the fact that we
are considering isolated d-function solutions for the purposes of elucidating the physics
linking vorticity anomalies with wave displacement. The neglected contributions and the
resulting mutual interactions will presumably suppress this apparent instability.

In the presence of a background shear flow, however, instability is possible. As high-
lighted in Stern (1963), taking a profile with BAJ < 0 everywhere in the domain results
in instability when the background flow is stable in the hydrodynamic setting. Simi-
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lar investigations in planar geometry of the destabilising nature of the magnetic field
have mainly considered profiles where BAJ < 0 in the domain, so here, for one of the
examples, we also take a basic state that satisfies this condition.

4. Unstable profile stabilised by uniform magnetic field

Having demonstrated how we expect waves to propagate vorticity anomalies, we now
consider two instability problems to demonstrate the instability mechanism, one where
the field stabilises an unstable flow, and the other where the field destabilises a stable flow.
Both basic states are chosen so that there is only one non-dimensional parameter, given
by M = B / U, where the tildes denotes the relevant Alfvén speed and velocity scales. We
note that, from linear analysis, there is a stability theorem which states that |B| > |U]
pointwise everywhere guarantees the absence of exponentially growing instabilities (e.g.,
Hughes & Tobias 2001); the basic states are tailored so that the case M > 1 is equivalent
to the aforementioned condition, with M = 1 the case where we have equality.

We first provide details to the numerical method we employ to obtain our full solu-
tions, then analyse these solutions and explain how the instability mechanism detailed in
figure 1 is modified by MHD effects. To test the validity of taking only a small number
of interfaces, we consider the approximated problem where only two interfaces are taken;
closed form solutions may be obtained from the resulting low order algebraic system, and
these are compared with the full solutions accordingly.

4.1. Numerical method

The governing equations depend on the choice of variables we employ for the numerical
scheme. If we describe the dynamics in terms of ¢ and 7, the governing equations are
(2.5a) and (2.6). Upon using j = V2A = V?(Bn), where we have used the identity (2.7),
and with ¢ = [¢(y')G(y,y’) dy’, the resulting system of equations (2.5a) and (2.6) may
be written in discretised form as

9 (q> - <U+QIG _BZ(_k2|+D2)+QBJD1> <q> (1)
ot \n -G U U

where, for example U = U(y;) x |, a prime denotes a y-derivative, and D, 2 are the appro-
priate discretised differential operators for y-derivatives. Taking uniform grid spacing Ay,
we take for example 0Q /0y = AQ/Ay at the y; entry when 0Q /0y = AQS(y — y;). If a
quantity J is discontinuous at y;, we take J(y;) = [J(y;j—1) + J(y;j4+1)]/2. The discretised
Green’s function is given by (Harnik et al. 2008)

Ay

2%
this is a dense matrix. The system may be advanced in time accordingly if one considers
an initial value problem in the context of non-modal instabilities (e.g., Constantinou
& Toannou 2011). For (q,n) = (g,7)e *@=) the eigenvalues and eigenvectors of the
system (4.1) are the normal mode solutions.

Tt turns out it is numerically more stable to solve the problem in (g, j) variables, thus

we couple equation (2.5a) with (2.10) instead of (2.6). A similar manipulation using
A= [j(y)G(y,y') dy results in

j— — _ —/
a<q.>:—ik _uxQee o BJG (q.>7 (4.3)
ot \J —B+JG+2i¢ U-QG6-2Q6") \J

_k?‘ym._y'nl; (4.2)

Gm,n =
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where, in this case, G’ is the derivative of the Green’s function, with discretised form
defined to be

H(Ay/2)e Fum=vm) |y >y,

Glm,n = _(Ay/2)6+k(ym_y")7 Ym < Yn, (44)

0, Ym = Yn-
The value of 0 is taken at y,, = y, because the wave supported on y,, does not induce any
w or by, at y,,. The lack of derivative operators in this latter matrix (4.3) results in a lower
condition number when compared to the (¢,n) formulation in the test examples we have
considered. The two formulations are of course equivalent, and the relevant eigenfunctions
may be obtained from both formulations; here, the numerical results presented were
obtained by solving (4.3).

Results presented here have been subjected to domain size and resolution tests. A
domain size of y € [—5, 5] was employed. A resolution of Ay = 10~2 (in non-dimensional
units) was found to be sufficient for modes away from marginality, while for modes
close to marginality, a resolution of Ay = 5 x 1072 was employed instead to avoid the
appearance of spurious instabilities. The linear algebra problem was solved using the
eig(A) command in MATLAB, and we pick out the mode with the largest imaginary
part. Sample tests shows the most unstable eigenvalues obtained are well separated from
the rest of the spectrum and, further, occur in conjugate pairs (a more general result
for ideal instabilities which may be shown via consideration of the adjoint form of the
governing equation; see, e.g., Drazin & Reid 1981).

4.2. Basic state and full numerical solution

We consider first the Rayleigh profile as the background flow, with a uniform background
magnetic field. In dimensional form, we take

AL, y> L,
—AL, y<-—L,

For this problem, J = 0 and d.J/dy = 0. Scaling by

B = By, T:%, L=1L, U=AL, (4.6)
the resulting non-dimensional parameter is M = B / U, a ratio of the typical Alfvén
velocity and the shear velocity, effectively a measure of the field strength, and B — M
and j — Mj in (4.3) (as well as 4.1) upon rescaling. M > 1 corresponds to the regime
where there are no linear, normal mode instabilities. The linear stability properties of this
basic state has been studied by Ray & Ershkovich (1983), who focused on computation of
the growth rates of the instabilities via a shooting method, however not on the structure
of the eigenfunctions.

We show in figure 5 the growth rates of the full solution (kc;)sa over parameter space;
we note that ¢, = 0 for all unstable modes here, a result arising from the symmetries
possessed by the basic state. The calculated growth rates are in agreement with the results
documented in Ray & Ershkovich (1983) after taking into account the different scalings
used. The explanation for the shape of the instability region is that, at M = 0, there
is no phase-locking for short waves since they are too slow to overcome the background
advection. At moderate M, these short waves are now sufficiently fast (from the non-
dimensional version of 3.7) to overcome the background advection, become phase-locked,
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FIGURE 5. Growth rates (kc¢;)ran of the full numerical solution associated with the basic state
(4.5), with the thick red curve denoting the stability boundary. Here, ¢, = 0 for all unstable
modes. The red cross and circle correspond to the parameter location associated with the eigen-
function displayed in figure 6a, b respectively. The resonance condition is plotted as the dashed
blue line.

and constructively interfere. At large enough M, all waves become too fast, and phase-
locking is not possible.

Sometimes it is informative in such investigations to plot the so called resonance condi-
tions (e.g., Carpenter et al. 2013). These are the locations where the counter-propagating
interfacial waves have matching phase speeds, taking into account advection by the back-
ground flow. In this setting, these are the values of k where

ey (M, k) =1+ c,(M, k), cf (M, k) = -1 —c,(M,k) (4.7)

are equal for some given M, with ¢, = —(1/4k) — \/(1/4k)? + M? the non-dimensional
phase-speed of the counter-propagating waves; the signs in (4.7) take into account the
fact that ¢, is negative. The idea is that, if interacting interfacial counter-propagating
waves are the only things contributing to the dynamics, then the location where the
resonance condition is satisfied should be near to the location of optimal growth; if this
is not the case, it shows other dynamics (e.g., critical layers, pro-propagating modes)
are important. It also gives an indication of where in parameter space the interaction
required for instability can be expected, especially at large k. We overlay the location
where the resonance condition is satisfied in figure 5, and we see that the agreement with
the location of optimal growth is only reasonable for small M, so we expect dynamics
away from the interface to not be negligible at larger M and also at larger k. This is
confirmed by plots of the eigenfunctions; we show in figure 6 two eigenfunctions, one
configuration that is generic for parameter values away from the stability boundary, and
one at the same wavenumber, but at increased M, and is a sample configuration for a
case close to marginality; the parameter choices are given by the red cross and circle in
figure 5 respectively.

In figure 6a, the eigenfunction configuration is generic in that the dominant contribu-
tions to vorticity comes from the two interfaces at y = +1, and the contributions in the
ly| # 1 region are comparatively small (note the colour axis scales of the corresponding
sub-panels). The outer two vorticity contributions have a phase-shift that is close to /2
(0.25 in the normalised units used in the diagram), and the middle tilted structure has
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FIGURE 6. Representative eigenfunctions (normalised by the maximum absolute value of ¢) of
the profile given in (4.5), both for £ = 0.4, but with (a) M = 0.5, and (b) M = 0.9. The red and
blue shading are for positive and negative g respectively, and 7 is plotted as labelled contours;
note the difference in the colour scales used between the sub-panels. The y-scale is continuous
between the panels (note the displacement contours are continuous in magnitude) but is not
linear for display purposes.

vorticity contributions that have opposite signs in between two like-signed vorticity con-
tributions from the interface. The vorticity eigenfunction is, going from top to bottom,
in anti-phase, in quadrature and in phase with displacement, i.e., ¢ ~ (—n, —in, +7) re-
spectively. The outer two waves are really counter-propagating vorticity waves, and the
inner wave resembles a standing wave. We have further carried out a decomposition of
the vorticity eigenfunction into its constituents using equation (2.5a); in this case, the
non-zero terms are —(9vy/0x)(0Q/dy) and B(9j/0x), divided by U — c. At the interface
locations, the vorticity contribution comes from both terms, with the — (9 /0z)(0Q/dy)
term being the dominant contribution; the effect of the B(9j/0z) contribution is to alter
the magnitude and the phase-difference between the two waves.

Figure 6a is represented schematically in figure 7. With the configuration depicted, we
see that the presence of the middle standing wave counteracts the effects of the vorticity
anomalies associated with the outer counter-propagating waves. If we were to make the
interface assumption, we would neglect the contributions away from the interfaces and
remove this centre contribution, and we would expect to over-estimate (i), the growth
rates, and (ii), the propagation speed, the region where phase-locking is possible and
thus the size of the instability region. We would expect the over-estimation to be most
significant when the field strength is large, and for short waves; this is because the inter-
action decreases exponentially with wavenumber, so the overall constructive interference
between the counter-propagating waves is weaker for short waves than long waves, and
it is short waves that are too slow to overcome the background advection.

The phase relation for the middle contribution g ~ —in may be obtained from consid-
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FIGURE 7. Schematic of how the critical layer contribution plays a role in the dynamics. Without
the centre contribution denoted by the green parts, the dynamics of the two waves (¢ ~ —n and
q ~ +n) are as in figure 1. The centre wave acts as a standing wave with ¢ ~ —in, with a resulting
vorticity configuration as depicted in the figure. Then it is seen that the extra contributions acts
against the vorticity anomalies associated with the counter-propagating waves, and is thus a
stabilising effect.

ering the vorticity equation (2.5a). Away from y = £1, we have, for this problem,

M2
g= ——J (4.8)
U —¢) —ig

We may suppose that ¢ is likely to be maximised at the location where U — ¢, = 0, which
is y = 0 here since ¢, = 0, resulting in the relation q ~ iM?j/c;. From relation (2.7),
we have j ~ V?p, and so ¢ ~ —iM?n/c;, as required. This is analogous to what was
found in the stratified setting for Rabinovich et al. (2011). The effect of the critical level
is expected to be more pronounced when we are near marginality.

As we approach marginality via increasing k and/or increasing M, the tilting of the
middle structure increases, becomes thinner in the cross-stream extent, and eventually
splits into three tilted structures. A sample case for which we approach marginality by
increasing M is shown in figure 6b. The first thing to note is that vorticity generation
is significant at the location where U(y) — ¢, = 0, but also at around y = +M. The
mechanistic interpretation for instability and stabilisation however is not significantly
altered. There is perhaps some cancellation of the contributions due to the tilted struc-
tures, but, schematically, we still have two counter-propagating waves, with a standing
wave in between that counteracts the vorticity contributions associated with the counter-
propagating waves, again as in figure 7.

The structures at y = =M are perhaps not too surprising once we note that Alfvén
waves are non-dispersive and have non-dimensional phase speed ¢, = +M in our setting,
regardless of the wave number. Thus, from a physical point of view, we have forced,
short wavelength standing Alfvén waves since U(y) — ¢, = 0 at these locations. From a
mathematical point of view, we recall that, equivalently, the modal problem with general
basic state in two-dimensional incompressible MHD in non-dimensional form is governed
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by the second-order differential equation (e.g., Hughes & Tobias 2001)

L(2oE) -estin=0  $20) =T - -G, (19)
Yy dy

If we take the view that critical levels are where the governing eigenvalue differential
equations break down, the critical levels can occur when U(y) — ¢ = 0 and also where
U(y) — ¢ = £M B(y), with the latter associated with Alfvén waves. The appearance of
multiple critical levels is not an isolated feature in MHD, and appears for example in
shear flow problems on the f-plane (e.g., appendix B of Lott 2003).

The second point to note for figure 6b is the change in the phase-shift of the counter-
propagating components compared to figure 6a, even though the same wavenumber was
chosen. The stabilisation does not come solely from increasing the strength of the centre
contribution, unlike in one of the examples considered by Rabinovich et al. (2011). By
changing the field strength, we change both the strength of the critical layer contribution
and the wave properties at the interfaces. Although the critical layer contribution is now
stronger, the phase-shift between the vorticity contributions of the outer waves are also
approaching an anti-phase configuration, so both effects contribute to the reduction in
growth rate. It is also interesting to recall that, when the two outer vorticity contributions
are in anti-phase, this implies that the corresponding displacement is in phase (e.g.,
Heifetz et al. 2004a), as seen in the n eigenfunction. In other words, the whole region is
undulating as one; this is physically consistent in that, as we increase the field strength,
the magnetic field imparts more ‘stiffness’ to the fluid, and the fluid is forced to undulate
as a whole.

As a final point, figure 6b is generic for eigenfunctions near marginal stability in the
sense that, as ¢; goes to zero, the tilted structures become thinner and the configura-
tion goes to one where there is no longer constructive interference due to the vorticity
associated with the counter-propagating modes being in phase or in anti-phase. We have
shown here the case where vorticity becomes increasingly out of phase, but of course
they may also become increasingly in phase, depending on where we are on the stability
boundary. There is an intermediate region where the stabilisation is solely due to the
strengthening of the centre contribution, but this is a somewhat special case and, gener-
ically, both the changes to phase-shift and strengthening of the critical layer contribute
to the neutralisation of the instability.

4.3. Interfacial wave dynamics

From figure 6a, we observe that the contribution in the centre can be small, so we may
suppose that taking solutions of the form

q=@0(y—1)+G@dy+1),  j=75n0y—1)+jdy+1) (4.10)

has the potential to be a reasonable approximation to the full solution, at least away
from marginality. Since this neglects the standing wave contribution that counteracts
the two counter-propagating waves, we expect the resulting solutions have, compared to
the solutions presented in figure 5, larger growth rates and a larger region of instability.

We start from the (¢, ) formulation with equation (2.5a) and (2.6). From the inversion
relation (2.9), we have, in non-dimensional form,

~ “ — 1 A A —
Ji2+ Jeae k), Yro=—=(G12 + doe” ). (4.11)

A =
1,2 2%

2 =5

Our vorticity equation (2.5a) will have j involved so we also need expressions for 31,2.
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Using A = Bn from (2.7), we obtain from equation (4.11)

2k

T o= (2 — 2,10 2k). (4.12)

Jro=-—
Substituting accordingly, the governing equations (2.5a) and (2.6) becomes

0 2ky 2k M? 2y

i

<8t + ik> G2 = :l:2 (Gr,2 + Gzue” ") — m(nm — mg1e” 2R, (4.13a)
9 Lk e (4.13b)
ot My = 5 q1,2 T 421 . .

In writing equations (4.13), the fundamental assumption is that the other interface exists,
which results in the appearance of exponential factors (1—e~*%)~! multiplying some of the
7 terms. This is unlike the stratified case considered in Rabinovich et al. (2011). Although
the displacement is related to the perturbation magnetic potential and buoyancy for the
respective cases, in the MHD case the current also appears in the vorticity equation;
there is no analogue of this in the stratified case.

Considering modal solutions, the system (4.13) has closed form solutions given by

1 1—e % 1 1 —e4k\?
where
1 1—e ™  14e %
e =R g (4.15)

When M = 0, (4.14) reduces to the hydrodynamic solutions ¢ = £+/(1 — 2k)2 — e~ /2k
(e.g., Drazin & Reid 1981). For k <« 1, a straight forward asymptotic analysis of (4.14)
yields ¢ = iy/1 — M2, which is the vortex sheet result in incompressible MHD (e.g.,
Chandrasekhar 1981).

Figure 8a shows the growth rates (kc¢;)int of the unstable branch of (4.14). Like the
full solution, the unstable modes here have ¢, = 0. In figure 8b we show contours of the
weighted error E = 1 — (k¢;)gun/(k¢i)int; when E = 0, the approximated solution (4.14)
agrees completely with the full solution, whilst £ = 1 shows the approximated solution
predicts instability when it is otherwise absent in the full solution. In agreement with
the hypotheses, we over-estimate growth rates as well as regions of instability, with the
over-estimation being most significant in the short wave regime and near the stability
boundary. In this instance, the resonance condition from equation (4.7) shows better
qualitative agreement with the location of optimal growth, which is to be expected since
we have artificially removed the contributions away from the interfaces.

Previous authors analysing the stratified problem (Harnik et al. 2008; Rabinovich et al.
2011) have observed that, since there are two wave branches, the modal solutions will
have a pro- and counter-propagating component. The existence of the two components
are due to the fact that there is an intermediate step linking displacement with vorticity.
In our schematic presented above in figure 7, the instability results from the interaction
of counter-propagating modes, so it is informative to investigate the role of the pro-
propagating mode. A similar analysis to Rabinovich et al. (2011) may be carried out
here, by taking into account the asymmetric non-dimensional eigenstructure given by

2
1 1
~t + ~t +
4 = 2]90?;771 ) @ = —2kciny, Cra = ik + <4k‘> + M. (4.16)
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FIGURE 8. Results from taking only two interfaces, for the profile given in (4.5). (a) shows the
growth rates (kc;)int of the approximated solution from (4.14). (b) shows the weighted error
E =1— (kei)sun/(kci)ins. The thick red line here is the stability boundary of the full solution in
figure 5, while the resonance condition from equation (4.7) is shown as the blue dashed curve.

We may transform the system of equations (4.13) into a system of equations in terms of
(nf,ni) via a direct substitution, a self-similarity transform (e.g., Harnik et al. 2008),
or otherwise. We come to essentially the same conclusions as Rabinovich et al. (2011),
where, when there is an instability, the pro-propagating mode should satisfy the relation
(nimy) = —x(ns,ny ), where x € [0,1], i.e., the pro-propagating mode on one flank
is smaller by a factor of x and in anti-phase with the counter-propagating mode on
the other flank. The existence of the pro-propagating mode provides extra hindering
to the counter-propagating modes, with its effect being most significant in the k£ < 1
regime. One could consider taking xy = 0 approximation that artificially removes the
pro-propagating mode; the resulting analytical solution is

M2e—4k 2 2kM?2 \? [ o2t \?
c==£ 1+cn+ — | cra — .o(4a7
ﬂ e ) (e rew) () e

We show in figure 9 several line plots of the analytical solution (4.14) and the y = 0
solution (4.17). The differences between the solutions in this case are so slight that they
are only distinguishable at high values of M. This points to the scenario that, although
the pro-propagating mode must exist as part of the physics, its effect on the instability
for this profile is almost negligible compared to the counter-propagating mode. One may
obtain the numerical values of x by computing the eigenfunctions (which are just complex
numbers in this case), and taking x = |n;"|/|n5| = |05 |/|n; |; although not shown here,
we have x < 0.1 over most of the region where there is instability.

5. Stable profile destabilised by a spatially varying magnetic field
We now carry out a similar investigation for the case where a stable flow is destabilised
by a spatially varying magnetic field. We consider the dimensional basic state
+T'y, y>1L,
Uly)=Ay,  Bly)={+IL, Jy|<L, (5.1)
Ty, y<-L,
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FIGURE 9. Line plots of the growth rate kc; (top row) and the phase speed ¢, (bottom row)
associated with the growing and decaying solutions of the full solution (4.14), denoted by solid
lines, and the x = 0 solutions (4.17), denoted by dashed lines. These are evaluated at fixed M,
with (a) M = 0.5, (b)) M = 0.75, and (¢) M = 0.9. The x = 0 solution is, for the most part,
indistinguishable from the analytical solution.

and 0Q/dy = 0 here. Scaling by

%, L=L U=AL, (5.2)

the non-dimensional parameter is again M = B/U, and (B,J,j) — M(B,J,j) after
rescaling. This piecewise-linear magnetic field profile (resembling a wake) is chosen so
that it satisfies BA.J < 0. This profile choice is inspired partly by the parabolic magnetic
field profiles B ~ y? considered by Chen & Morrison (1991) and Tatsuno & Dorland
(2006) and the single interface profile considered by Stern (1963). One notable difference
however is that this profile has a well-defined region of maximum |0.J/dy|, whilst the
profiles considered previously generally have 9.J /0y = const throughout the domain, so
this profile is not intended to be directly comparable to those previous studies. This case
also has some similarities to the problem where there is a linear shear with two density
jumps (the Taylor—Caulfield type instability), considered previously by, for example,
Rabinovich et al. (2011); we have here instead two jumps in the current profile. Again,
M =1 is the cutoff for linear, normal mode instability.

Figure 10 shows contours of (kc;)pn for this instability problem, and, again, ¢, = 0 for
the unstable modes because of the symmetries possessed by the basic state. The shape of
the instability region in parameter space may again be appropriately justified. At small
M, waves are too slow to overcome the background advection except at k < 1. As M
increases, waves become sufficiently fast, overcome the background advection and achieve
phase-locking. For large enough M, all waves are too fast to phase-lock. The resonance
condition in this case are the locations where

B=rL, T=

1
ey (M, k) =1—ca(M, k), cy (M, k) = =1+ ca(M, k), ca =M1+ 5 (5.3)
are equal to each other. The conclusion is similar to the previous problem shown in
figure 5, where we expect dynamics away from the interfaces to be significant.
In figure 11 we show two eigenfunctions, one that is representative of a growing mode
away from the stability boundary, and one for a case close to marginality; again, the
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FIGURE 10. Growth rates (kc¢;)sun of the full numerical solution associated with the basic state
(5.1). Here, ¢, = 0 for all unstable modes. The red cross and circle correspond to the parameter
location associated with the eigenfunction displayed in figure 11a, b respectively. The thick red
line is the stability boundary, and the blue dashed curve is the resonance condition given in
(5.3); numerical noise is present at small k partly due to the form of the phase speed ca.

parameter locations are given respectively by the red cross and circle in figure 10. For
both cases, we notice that the same contour levels are used for all three sections, unlike
the previous instability problem displayed in figure 6. This immediately reinforces the
suggestion that considering interfacial wave solutions only at y = +1 as in (4.10) is going
to be an overly drastic approximation, since we will be neglecting contributions that are
comparable in size to those at the interface.

Like the previous case, we have significant structures appearing at y = £M, the
locations where we have forced, stationary Alfvén waves with ¢, = =M (note this is not
ca given in equation 5.3). What is different in this case is that the schematic presented
in figure 7 applies for the inner tilted structures, and so it is Alfvén waves at y =
+M rather than the waves supported by the interfaces that drive the instability. There
are several extra interactions between the structures (affecting wave propagation and
interaction) that lead to the overall instability eigenfunction in figure 11. Comparing
between figure 11a, b, we observe again that it is a mix of changes to the overall phase-shift
between the structures that lead to the neutralisation of the instability. Notice also that,
since we are approaching marginality by increasing M in figure 11b, the displacement
contours become increasingly in phase, as in the previous example in figure 6b.

We should stress here that the instability in figure 11 really does require the presence
of two current jumps to operate, while the B(9j/0x) term acts to modify the resulting
interaction. To support this claim, we have carried out calculations for which we only
have one jump. In this setting there is no instability, since the contributions on the other
interface, its adjacent tilted structure so the standing wave in the centre are absent.
The resulting vorticity eigenfunction has the interface and adjacent tilted structure in
anti-phase, and there is no constructive interference there. Removing both the jumps
(i.e., linear shear flow with a uniform background magnetic field) also does not result
in instability. For the profile (5.1) we consider here, the strength of the current gradient
and background magnetic field are simultaneously controlled by M. We considered a
modified problem where the two parameters may be varied independently; we also arrive
at similar conclusions to the one presented here.
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FIGURE 11. Representative eigenfunctions (normalised by the maximum absolute value of the
vorticity) of the profile given in (5.1), both for £k = 0.25, but with (a) M = 0.8, and (b)
M = 0.98. The red and blue shading are for positive and negative vorticity respectively, and
the displacement is plotted as labelled contours. In (b), the y-scale is continuous between the
panels (note the displacement contours are continuous in magnitude) but is not linear for display
purposes.

We may take a similar approach to the work detailed in §4.3, by neglecting contribu-
tions away from the interfaces, which results in analytical solutions that may be analysed
accordingly. However, we do not expect this to provide an accurate approximation for
this particular choice of basic state, since we are neglecting contributions that are of the
same order of magnitude as the ones at the interface. A comparison of the full numerical
solutions with the resulting analytical solution shows that the analytical solution grossly
over-estimates growth rates and the region of instability. In light of the poor comparison
of the analytical result with the correct full numerical solution, we omit here the results
that are counterparts to those presented in §4.3.

6. Conclusion and discussion

We have extended the interacting vorticity wave formalism to the MHD setting to
provide a physical interpretation of the instability mechanism for MHD shear instabilities.
In this framework, the existence of instability depends on whether the choice of basic state
allows vorticity waves to resonate; whether the field stabilises or destabilises is dependent
on how the resulting configuration affects wave properties. We have demonstrated that
vorticity generation occurs at the locations where the background magnetic field and the
background shear are both non-zero so, unlike certain hydrodynamic cases, critical layers
must play a role in the dynamics even for piecewise-linear basic states.

To demonstrate the modifications to the underlying instability mechanism by MHD
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effects, and to compare with previous results and to evaluate the limitations of the in-
terfacial wave assumption, we considered the instability characteristics of two piecewise-
linear basic states, one where the field stabilises the unstable flow, and the other where
the field destabilises the stable flow. The first example considered is the Rayleigh profile.
The growth rate contours of the full solution agrees with the previous results of Ray
& Ershkovich (1983); our contribution here is to rationalise the shape of the instability
region via the properties of the phase-speeds of the wave propagation. The resonance
condition and its lack of agreement with the locations of optimal growth suggests that
dynamics away from the interfaces are important; this is confirmed by plots of the eigen-
functions, which shows that we effectively have a standing wave structure at U(y) —c = 0
in between two counter-propagating modes, schematically represented by figure 7. Ad-
ditionally, we are able to predict the phase relations of this standing wave contribution
from the equations. As we approach marginality, one interesting feature is that we have
additional structures appearing at the levels where U(y) — ¢ = =M B(y); these are crit-
ical levels that correspond to locations where we have forced, stationary Alfvén waves.
Changing the field strength affects both the strength of the critical layer and phase-shifts
of the waves. Although there will be special cases where marginality is achieved when
the critical layer contribution overwhelms the other contributions, generically speaking,
it is a combination of the two effects that leads to neutralisation of the instability. In this
example, we argued that the dynamics of two interfacial waves can serve as a reasonable
approximation to the full problem. We predicted and found that such an approximation
over-estimates the growth rate and the region of instability. Appropriate analyses in the
manner of Rabinovich et al. (2011) were performed to explore the instability character-
istics under the interfacial wave assumption.

The second example we considered is a linear shear flow destabilised by a spatially vary-
ing background magnetic field. The magnetic field profile was inspired by the parabolic
profile B(y) ~ y? considered by both Chen & Morrison (1991) and Tatsuno & Dorland
(2006), although we stress that the results are not entirely comparable since 9.7 /9y is con-
stant throughout the domain for the parabolic profiles. With regards to the eigenfunction,
a robust feature is that, like the previous example, tilted structures with significant contri-
butions of vorticity exists at the critical levels. The schematic in figure 7 however applies
instead to the forced, stationary Alfvén waves located at U(y) — ¢ = =M B(y) counter-
acted by the standing wave contribution associated with the critical level U(y) — ¢ = 0.
The principal interactions driving the instability are from these stationary Alfvén waves
away from the interfaces, rather than from interfacial waves.

Part of the reason for employing piecewise-linear profiles is to obtain a simplified prob-
lem for understanding the dynamics leading to instability, as well as for comparison with
previous works on a similar topic. One important point we highlighted is that one needs
to be careful when making the interfacial wave assumption, since vorticity generation
is generally not localised in the MHD case. The non-local generation of vorticity occurs
more generally when considering the instability problem for smooth basic states (arguably
more realistic for modelling purposes), and the resulting eigenstructure generically has a
spatial dependence on the cross-stream coordinate. Although waves are then not as well-
defined, one may wonder whether the same mechanistic interpretation summarised by
figure 7 here is schematically correct. One study that supports this was reported in one of
the authors’ PhD thesis (Mak 2013). For calculations of the profile U(y) = tanh(y) and a
uniform background magnetic field, plots of the eigenfunction showing structures similar
to figure 6a here were found. We expect analogous structures to appear in eigenfunctions
from calculations with other smooth basic states, demonstrating that shear instabilities
may be interpreted as the mutual interaction of vorticity regions. One other possible sce-
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nario for smooth profiles is that the overall eigenfunction could look schematically like
figure 4b, occurring for example when the basic state gradients are weak/non-existent,
although this has not been found for the examples considered here.

Beyond incompressible MHD, this wave interaction framework, together with the previ-
ous works on for the stratified case (Harnik et al. 2008; Rabinovich et al. 2011; Carpenter
et al. 2010, 2013; Guha & Lawrence 2013) may perhaps explain the observations made
in the previous work of Lecoanet et al. (2010), where they consider the shear instability
problem in a stratified fluid, with a background magnetic field. The field in that case
can stabilise or destabilise; we suspect this is most likely due to whether the vorticity
wave modes supported by the choice of the basic state can interact accordingly, leading
to instability; we suspect this is why the Richardson number or Miles-Howard criterion
(e.g., Miles 1961) is not necessarily applicable to stratified MHD shear flows.

Although we have focussed on modal instabilities here, the formulation is kept in the
on/ot = An form (where n denotes the state vector and A denotes the appropriate
operator) so that it may also be used to investigate non-normal mode instabilities and
transient growth (e.g., Constantinou & Ioannou 2011; Guha & Lawrence 2013). Further,
our profiles were chosen so that, when M > 1, |B| > |U| pointwise everywhere, and
a stability theorem forbids normal mode instabilities. Profiles violating this condition
locally do suffer instabilities, and, in particular, have been found for studies in both
two-dimensional, spherical, incompressible and shallow water MHD (see the recent re-
view by Gilman & Cally 2007). Although this particular scenario is not one we have
addressed here, a extension of our interpretation to spherical MHD appears possible (a
hydrodynamic extension in spherical co-ordinates was given by Methven et al. 2005).
These instabilities may be explained by energetic arguments, and an extension of our
mechanistic interpretation will serve to complement the existing explanation. Further,
shallow water MHD simulations on a rotating spherical planet show the emergence of
stable compact monopolar vortex structures of nested patches of opposite signed vorticity
whose stability is maintained by a strong vertical current (Cho 2008); this is noteworthy
since the same monopolar vortex structure in the absence of the aforementioned confining
magnetic effects are otherwise unstable (e.g., van Heijst & Clercx 2009). It is conjectured
here the instability chracteristics of such structures may also be attributed to interact-
ing vorticity waves. A formulation of the problem in spherical MHD allows for a more
appropriate comparison to the existing results, and this is currently under investigation
by the authors.
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the Rossby visiting fellowship of the International Meteorological Institute of Sweden.
EH is grateful to Michael Mond for fruitful discussion and to his teacher Alexander
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thanks James Cho, Peter Read and Paul Dellar for enlightening conversations on the
matter of magnetic vortex generation. Constructive comments from the three anonymous
referees are gratefully acknowledged. The order of authorship is alphabetical.

Appendix A. Some formal analogies with the stratified problem
Using (2.7) to rewrite (2.5a), the linearised vorticity equation in MHD is given by

9, g9\, _ 00 Foj (5OT\n
<8t+Uaa:>q_ 8y8x+33m+<88y)8x’ (A1)
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coupled accordingly by the kinematic condition; 1 and v here are, respectively, the

horizontal displacement and streamfunction in the zy-plane. For the analogous prob-

lem in the Bousinessq system, using the fact that (9/9t + Ud/0z)b = —wN?(z) and

(0/0t +U0/0x)¢ = w, integrating yields the relation that b = —nN?(2), where N2(z) is

the background buoyancy frequency. The resulting vorticity equation reads
(a a) Qo

&“LUax

T 9z Ox oz’ (A2)

Here, ¢ and ¢ are respectively the vertical displacement and streamfunction in the xz-
plane. Then the formal similarity is that —B(9.J/dy) ++ N2. The analogy is not entirely
complete here because of the B(dj/0x) term. Further, one may use the identity j =
V2A = V?(Bn) in (A1) and observe that the final term disappears, and instead we have
V21 terms (see also equation 4.1). This does not invalidate the physical interpretation
presented in §3 since we are merely looking at different forms of the same terms describing
the physics. Indeed, if there was no cancellation, then one may suppose there is some
region where |B(0j/0z)| < |(0A/0x)(8J/dy)|, and then the analogy with the stratified
problem holds, although the physics of the two systems are fundamentally different.
We note that, in the stratified problem, without assuming interfacial waves, the evo-

lution equation for the perturbation energy is given by

1

5%(( 2+w2)+N2Cz>——<uwaag> (A3)
where the angle bracket denotes a domain integral. So if N? < 0, it is still possible for
the perturbation kinetic energy to grow even in the absence of a background flow. In the
MHD case, a similar manipulation leads first to

ou —0u ou 0 ov  —0v — (0] 0
4 U— = —v—— = ("), LU= =B(Z )= =), A4
o Vo ey T w Ve (ay”“) gyl (A9
where the terms in (---) between the two equations are the same. Again, it is the ap-
pearance of the perturbation current that makes the analogy incomplete. If we however
assume that 9. /9y = AJ§(y — L) and j = jel**§(y — L), then it may be shown that, at
y=1L,
10 —— = oUu
§E<(u2+v2)+B(QkB—AJ)n2> = —<uv>, (A5)
and, in the absence of a background flow, if BAJ > 0, it is still possible for the pertur-
bation kinetic energy to grow at the expense of magnetic energy, resulting in instability.
With regards to the non-dimensional units, we recall that, in the stratified case, the
governing non-dimensional parameter is Ri = N?/(0U/9z)?. In MHD, the governing
non-dimensional number is
B2 B(L*B) -B(67/oy)

_ ~ Bl , A6
us 20’ (0U Joy)>? (46)

M2

and so M? has a formal analogy with Ri. We should stress that this is only a formal
analogy, since it does not take into account of the B(9j/dx) term, which results in wave
modes that are fundamentally different from the gravity wave modes. We note that, in
a similar vein, Stern (1963) defines what he calls the magnetic Richardson number as
(translated into our notation) Ri,, = (0B/dy)?/(0U /dy)?.
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Appendix B. Formulation in terms of ¢ and j variables

One alternative approach is to use ¢ and j as the fundamental variable over ¢ and
1 when considering interface solutions. One immediate issue is that, from the current
perturbation equation (2.10), @ and .J are not-well defined at the interface locations. A
further approximation that one might make is that the terms with the coefficient Q and
J are small compared to dQ/dy and 9.J/0y; this may be appropriate if we have reason
to believe that interfacial waves are the most important aspect to the dynamics, perhaps
when the basic state gradients are strong. With this assumption, we obtain the system
of equations

0 G0, 080w poi 0704
<8t+U(')J:) =~y or Par Ty (Bla)
9 G0N, 0804 pon dTou
(8t+U6x>j_+8y6x+Bax oy o1 (B10)

With this, we notice that, if we define a generalised streamfunction and vorticity as
¢T = (1 + A)/2 and QF = (¢ %+ 7)/2, then we have VZ¢T = Q* and that

0 = = 0] e (0Q, 0T\ 9T

This has some formal similarities to employing Elsasser variables (e.g., Biskamp 2003) in
writing the MHD equations, although this is of course different since we have made an
approximation by dropping certain terms in the j equation.
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