

Edinburgh Research Explorer

Planning for Desktop Services

Citation for published version:
Petrick, RPA 2007, Planning for Desktop Services. in Proceedings of the ICAPS 2007 Workshop on Moving
Planning and Scheduling Systems into the Real World.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the ICAPS 2007 Workshop on Moving Planning and Scheduling Systems into the Real World

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43715298?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/planning-for-desktop-services(9185f9ed-6325-4001-a4fe-16833d718be4).html

Planning for Desktop Services

Ronald P. A. Petrick
School of Informatics

University of Edinburgh
Edinburgh EH8 9LW, Scotland, UK
rpetrick@inf.ed.ac.uk

Abstract

A user’s interaction with a computer operating system is most
commonly reflected in the use of “desktop” application pro-
grams. In this paper we investigate the prospect of building
plans that link together the services provided by such applica-
tions using an inter-process communication language called
DCOP (Desktop COmmunication Protocol). Such services
can be used to manipulate or query desktop applications, of-
ten in a manner similar to the standard user interfaces of those
applications, while offering the possibility of a practical in-
terface that a planning agent can utilize in a real software
setting. Using the knowledge-level conditional planner PKS,
we show how we can construct plans for controlling a set of
existing desktop applications in the open source K Desktop
Environment (KDE), and illustrate our approach with a series
of fully executable examples that include application control
and information gathering, under conditions of incomplete in-
formation and sensing.

Introduction
In an operating system environment, a user’s experience is
typically reflected in the use of desktop applications, pro-
grams such as e-mail clients, word processors, media play-
ers, and web browsers that provide the user with an ab-
stracted interface to the tasks that can be performed with
a modern operating system. From the point of view of an
agent (human or artificial) operating in such an environment,
application programs provide services that can be exploited
by the agent to fulfil its goals or objectives. Designing an
artificial agent that can use such services effectively in a
real software setting, however, is both a potentially bene-
ficial and particularly challenging task.

Planning in an operating system environment is not a new
idea. For instance, the Softbot project (Etzioni et al. 1993;
Etzioni & Weld 1994) focuses on the design of software
agents capable of functioning in the UNIX and Internet en-
vironments, where software actions such as ftp and lpr are
used as effectors for manipulating the environment, and ac-
tions like ls and finger are available as sensors for gather-
ing information from the environment. The knowledge-level
planning work of (Petrick & Bacchus 2002) similarly uses
UNIX as a domain for planning with incomplete informa-
tion and sensing actions. The extensive work on planning for
web services, and in particular the web service composition

problem (e.g., (Pistore et al. 2005; McIlraith & Son 2002;
Martı́nez & Lespérance 2004), among others), continues to
investigate how programs or devices available through the
World Wide Web can be used to achieve an agent’s goals.

In this paper we focus on the problem of constructing a
planning agent that is capable of interacting with a set of
common application programs in a desktop environment.
Unlike those approaches that focus on modelling low-level
UNIX commands, the desktop applications we are interested
in typically operate at a much higher level of abstraction. For
instance, a media player may work with playlists constructed
from meta-level properties like user preference, artist, and
genre, compared with programs like ls and lpr that directly
manipulate files and directories. Furthermore, since our fo-
cus is on the desktop environment, we are more concerned
with “local” services rather than external web services, ex-
cept for those desktop applications that provide immediate
interfaces to the external world (e.g., web browsers, me-
dia players that can play remote audio streams, etc.). Fi-
nally, since we are interested in constructing practical plan-
ning agents, we will focus on real applications running in a
real desktop environment, and use existing inter-application
communication facilities as much as possible, to take advan-
tage of technology already in use.

To this end, we will work within the K Desktop Envi-
ronment (KDE),1 an open source, freely available desktop
for UNIX-like systems. One of the novel features of this
platform is its rich inter-process communication language
DCOP (Desktop COmmunication Protocol), which provides
the infrastructure for applications to publish their services to
other programs running in the environment. What makes
this interface particularly interesting is that an application’s
published DCOP services are often quite similar to the func-
tions a human user can perform through the application’s
standard (usually graphical) interface. It is this high level of
abstraction that we hope to leverage for planning purposes.

To generate plans in this setting we will work with the
knowledge-level conditional planner PKS (Petrick & Bac-
chus 2002) and make use of PKS’s ability to reason about
incomplete information using limited, but expressive, repre-
sentations of the agent’s knowledge state. While previous
work has applied PKS to both the problem of planning with

1The KDE project website is located at www.kde.org.

Figure 1: The K Desktop Environment (KDE)

UNIX commands (Petrick & Bacchus 2004) and web ser-
vices (Martı́nez & Lespérance 2004), we also believe that
this approach can be successful in the desktop environment
described above.

This paper is organized as follows. First, we will describe
DCOP and its use in KDE-based applications. Second, we
will briefly describe the operation of PKS. Third, we will de-
scribe a series of planning examples in our desktop domain
that are fully executable using PKS and existing KDE ap-
plications, and briefly mention some details concerning plan
execution. Finally, we will discuss some issues related to our
approach and describe the future directions of this research.
Our goal in this paper is twofold: to highlight the desktop
services environment as a real-world (software) domain that
has been largely overlooked as a testbed for applying plan-
ning technology, and to provide results of our preliminary
experiments in this domain.

Desktop COmmunication Protocol (DCOP)
The Desktop COmmunication Protocol (DCOP) (Brown et
al. 2003) is a protocol that enables inter-process communi-
cation between applications running in the K Desktop En-
vironment (see Figure 1). DCOP allows KDE-based appli-
cations to publish some of their capabilities or services for
interoperability with other applications, by providing a pub-
lic interface to these features. In particular, developers are
free to decide what services their applications should make
available, with DCOP supplying the common interface to
these services. What makes DCOP different from other IPC
languages (e.g., CORBA, ICE, etc.) is that underlying sup-
port for the protocol is provided by KDE itself, where DCOP
forms an integral component of the desktop environment.

Although any feature of an application can be exported
as a DCOP service, in practice, many applications provide
services that are similar to those that can be performed by
a user working with the standard (usually graphical) inter-
face to the application. Since DCOP operates on particular
instances of running applications, these services typically in-
clude commands for changing or querying an application’s
state. For example, Figure 2 shows a fragment of the DCOP
interface for the Amarok media player. Functions like play

void mute()
void pause()
void play()
void setVolume(int volume)
void enableRepeatTrack(bool enable)
QString artist()
QString nowPlaying()
QString title()
... ...

Figure 2: A fragment of a media player’s DCOP interface

and setVolume provide a means of changing the state of the
application, while nowPlaying and title provide feedback
about the application and are more akin to information gath-
ering operations. Moreover, these services provide a very
abstract (and natural) interface to the application.

From a development point of view, the DCOP interface is
available in a variety of programming languages, including
C++, C, Perl, and Python. In addition, DCOP services can
also be accessed through a command line interface provided
by KDE, making them useful for writing scripts (Wheeler
2003). For instance,

$ dcop amarok player play

directs Amarok to play its current playlist using a DCOP
service available in the player category.2

In this paper we are interested in using DCOP as an
action-level language for planning, where the plans we
generate will contain operations that closely correspond to
DCOP services available in existing KDE applications.3
Thus, our plans will be similar to DCOP scripts, but with ex-
tra plan-level control directives. The prospect of planning at
the DCOP level is particularly appealing due to the level of
abstraction already built into many of the available services.
Building a formal action model for a planner that uses al-
ternate interfaces to the same application (e.g., UNIX-style
command-line options) may mean describing such actions
in much lower-level detail. As well, alternative interfaces
to the same set of features may not be available for many
applications, except through standard graphical interfaces.
Finally, the variety of programming languages available for
accessing the DCOP interface leaves us a great deal of flex-
ibility for executing plans.

Planning with Knowledge and Sensing (PKS)
To generate plans in this setting we will use PKS (Plan-
ning with Knowledge and Sensing), a conditional planner
that can construct plans in the presence of incomplete in-
formation and sensing actions (Petrick & Bacchus 2002;
2004). PKS takes a “knowledge-level” approach to plan
generation by reasoning about its own knowledge and how
its knowledge state—rather than the world state—changes
due to action. PKS also works with a restricted subset of
a first-order language, and a limited amount of inference in

2Services are typically categorized so that an applica-
tion/category/name triple is needed to identify a particular service.

3All the examples we describe in this paper use actual KDE
applications and DCOP interfaces, unless otherwise noted.

that subset, which allows it to support a rich representation
that includes non-propositional features such as functions
and variables, and to reason efficiently with that represen-
tation. This approach differs from planners that work with
propositional representations over which complete reason-
ing is feasible, or approaches that model incomplete knowl-
edge based on sets of possible worlds (e.g., BDDs (Bryant
1992), Graphplan-like structures (Weld, Anderson, & Smith
1998), clausal representations, or other such techniques). By
working at the knowledge level, PKS can often abstract its
reasoning away from irrelevant distinctions that occur at the
world level.

PKS is based on a generalization of STRIPS (Fikes &
Nilsson 1971). In STRIPS, the state of the world is modelled
by a single database; actions update this database and, by do-
ing so, update the planner’s world model. In PKS, the plan-
ner’s knowledge state, rather than the world state, is repre-
sented by a set of five databases, the contents of which have
a fixed, formal interpretation in a modal logic of knowledge.
Actions can modify any of the databases, which has the ef-
fect of updating the planner’s knowledge state. To ensure
efficient inference, PKS restricts the type of knowledge (es-
pecially disjunctions) that it can represent in each database.
We briefly mention these databases below.
Kf : This database is similar to a standard STRIPS database
except that both positive and negative facts are permitted and
the closed world assumption is not applied. Kf is used for
modelling the effects of actions that change the world. Kf

can include any ground literal `, where ` ∈ Kf means “the
planner knows `.” Kf can also contain information about
known function mappings.
Kw: This database models the plan-time effects of “binary”
sensing actions. φ ∈ Kw means that at plan time the planner
either “knows φ or knows ¬φ,” and that at execution time
this disjunction will be resolved. PKS is able to use such
“know-whether” information to construct conditional plans.
Kv: This database stores information about function values
that will become known at execution time. In particular, Kv

can model the plan-time effects of sensing actions that return
numeric values. Kv can contain any unnested function term
f , where f ∈ Kv means that at plan time the planner “knows
the value of f .” At execution time the planner will have
definite information about f ’s value. As a result, PKS is
able to use Kv terms as “run-time variables” (Etzioni et al.
1992) in its plans.

The fourth database, Kx, models the planner’s “exclusive-
or” knowledge of literals, namely that the planner knows
“exactly one of a set of literals is true.” Such knowledge
is common in many planning scenarios. The fifth database,
LCW , stores the planner’s “local closed world” informa-
tion (Etzioni, Golden, & Weld 1994), i.e., instances where
the planner has complete information about the state of the
world. We will not use Kx or LCW in this paper.

PKS actions are modelled as queries and updates to the
databases. Action preconditions are specified by lists of
primitive queries that ask simple questions about the state
of the planner’s knowledge: (i) Kp, is p known to be
true?, (ii) Kvt, is the value of t known?, (iii) Kwp, is p
known to be true or known to be false (i.e., does the plan-

Action Preconditions Effects
pickup(x) K(handempty) add(Kf , holding(x))

add(Kf ,¬handempty)
inspect(x) K(holding(x)) add(Kw, fragile(x))

Table 1: PKS actions

ner know-whether p?), or (iv) the negation of queries (i)–
(iii). An inference algorithm evaluates queries by check-
ing database contents, taking into consideration the interac-
tion between different types of knowledge. Action effects
are described as updates to the planner’s knowledge state,
and are specified by collections of STRIPS-style “add” and
“delete” operations that modify the contents of the individ-
ual databases. For example, add(Kf ,¬φ) would add ¬φ
to Kf , and del(Kw, φ) would remove φ from Kw. Actions
are permitted to have ADL-style context-dependent effects
(Pednault 1989), where the secondary preconditions of an
effect are also described by lists of primitive queries. Ac-
tions and goals can also make use of a limited form of quan-
tification, ∀Kx and ∃Kx, that ranges over known instantia-
tions of x.

PKS constructs plans by applying actions in a simple
forward-chaining manner: if the preconditions of an action
are satisfied by the planner’s knowledge state, then the ac-
tion’s effects are applied to the state to produce a new knowl-
edge state. Planning then continues from this new state. For
actions with context-dependent effects, secondary precon-
ditions are similarly evaluated against the knowledge state
to determine if their effects should be applied. PKS can also
add a conditional branch to a plan provided it has Kw knowl-
edge of a formula φ. Along one branch (K+), φ is assumed
to be known while along the other branch (K−), ¬φ is as-
sumed to be known. Planning continues along each branch
using the new knowledge states, until each branch satisfies
the goal, also specified as a list of primitive queries.

Consider the two actions in Table 1, pickup(x) and
inspect(x), and consider an initial knowledge state defined
by Kf = {handempty}, where the other databases are
empty. If the planner knows about an object vase then
since handempty is in Kf , the preconditions of pickup(vase)
would be satisfied. Applying this action results in the
new state represented by the updated database Kf =
{¬handempty, holding(vase)}. At this point the precondi-
tions to inspect(vase) are also satisfied since holding(vase)
is in Kf . Applying this action leaves Kf unchanged but
produces Kw = {fragile(vase)}, indicating that the plan-
ner knows whether the vase is fragile or not. At this
point the planner could construct a conditional branch in the
plan: along one branch it would assume that fragile(vase)
is known, while along the other branch it would assume
¬fragile(vase) is known. Planning can then continue along
each of these new branches.

Planning for Desktop Services
One of our aims in this paper is to demonstrate that we can
use PKS to construct plans whose actions closely correspond
to the DCOP services provided by common KDE applica-

Action Precond. Effects
amarok::playlist::
addMedia(x) K(media(x)) add(Kf , inplaylist(x))

add(Kf , track(x) = total + 1)
add(Kf , total = total + 1)

clearPlaylist add(Kf , total = 0)
add(Kf , current = 0)
∀Kx.del(Kf , inplaylist(x))
∀Kx.del(Kf , track(x))

amarok::player::
play K(total > 0) ⇒

add(Kf , playing)
K(current = 0) ⇒

add(Kf , current = 1)
next K(total > current) ⇒

add(Kf , current += 1)

Table 2: Amarok media player actions

tions. In this section we present a series of examples that
illustrate the practicality of the DCOP services provided by
real KDE applications, which we feel lends support to our
argument that generating plans at this level of abstraction is
both feasible and desirable.

In each example we consider a set of DCOP services, pro-
vide a PKS representation of those services, and describe
some simple plans we can generate using the PKS encod-
ing. From a planning point of view, these domains present a
number of interesting challenges, including reasoning about
incomplete information and sensing actions, resource man-
agement, function manipulation, and arithmetic evaluation.
In each example we will only model a portion of the to-
tal services available for a given application. Most impor-
tantly, we have attempted to make our domain encoding (and
subsequent plans) as true to the DCOP interface as possi-
ble. While we must still postprocess our plans for execution
purposes (described below), our aim is to keep this step as
minimal as possible. For exposition purposes, however, we
have simplified our examples in some cases, for instance us-
ing short identifiers for filenames and applications instead of
fully instantiated paths.

All of our examples were generated using the latest public
version of PKS (version 0.7) running on a 1.86 GHz proces-
sor with 2Gb of RAM available. All generated plans were
subsequently executed on the same system using KDE 3.5.7.

Controlling an application
In the first domain we consider a set of actions for control-
ling Amarok, a popular KDE media player.4 The DCOP in-
terface provided by Amarok consists of functions for manip-
ulating all aspects of the application, including the playlist,
music collection, and player state. In this example we will
only consider four DCOP services: addMedia(x), which
adds a valid media file to Amarok’s playlist; clearPlaylist,
which removes all entries from the current playlist; play,
which instructs the player to start playing the current
playlist; and next, which tells the player to advance to the

4The Amarok website is located at amarok.kde.org.

next track in the playlist. Table 2 lists these services and
their corresponding representation as PKS actions.5

The PKS actions in Table 2 do not require sensing, but use
PKS’s ability to manipulate functions and to perform simple
arithmetic reasoning. For instance, track(x) is a function
denoting the position of track x in the playlist, total stores
the total number of entries in the playlist, and current de-
notes the “active” track (which may or may not be playing).
The predicate inplaylist(x) indicates x is in the playlist, and
playing indicates whether or not a track is playing.

Using these actions, we can generate a number of inter-
esting plans that are immediately executable on KDE us-
ing the DCOP interface. We consider three simple exam-
ples. In each case the planner initially has knowledge of
three media files, denoted by the initial database Kf =
{media(track1), media(track2), media(track3)}, where all
other databases are empty.

If we present PKS with the goal K(playing), i.e., bring
the application to a state where it is playing, then PKS is
able to construct the plan:

amarok::playlist::clearPlaylist
amarok::playlist::addMedia(track1)
amarok::player::play

In other words, the media player can start playing provided
it has first added a track to the playlist.

We can also instruct PKS to achieve the more com-
plex goal K(playing) ∧ K(track(track3) = current) ∧
∀Kx.K(media(x)) ⇒ K(inplaylist(x)), i.e., ensure track3
is playing and all known tracks have been added to the
playlist. Doing so produces the plan:

amarok::playlist::clearPlaylist
amarok::playlist::addMedia(track3)
amarok::playlist::addMedia(track1)
amarok::playlist::addMedia(track2)
amarok::player::play

In this case PKS achieves the goal by ensuring track3 is the
first track added to the playlist. The occurrence of play as
the last action is completely arbitrary and PKS could alter-
natively build plans where play occurs at any point after the
first addMedia action.

Finally, if we provide the goal K(playing) ∧ K(total =
current) ∧ ∀Kx.K(media(x)) ⇒ K(inplaylist(x)), i.e., en-
sure all tracks are loaded and the last track is playing, then
PKS generates the plan:

amarok::playlist::clearPlaylist
amarok::playlist::addMedia(track1)
amarok::playlist::addMedia(track2)
amarok::playlist::addMedia(track3)
amarok::player::play
amarok::player::next
amarok::player::next

5We will use the notation app::category::service to refer to a
service’s full name. Thus, amarok::player::play would refer to
Amarok’s play service found in the player service category.

Action Precond. Effects
amarok::player::
isPlaying add(Kw, result(playing))
isOsdEnabled add(Kw, result(osd))
knotify::
notify(x, y) K(service(x)) add(Kf , notified(?x))

K(msgsend(x, y))
Domain specific update rules
K(result(x)) ⇒ add(Kf , msgsend(x, true))
K(¬result(x)) ⇒ add(Kf , msgsend(x, false))

Table 3: Amarok information state actions

In this plan the next action is required to advance the actively
playing track to the end of the playlist.

We note that the above examples only model some of
the basic controls provided by Amarok’s DCOP interface,
which permits much more sophisticated access to the ap-
plication. (For instance, we do not model automatic track
changes, or the many services available for accessing the
playlist and music collection.) Even so, these examples il-
lustrate the high degree of control that DCOP services can
provide over an application, and demonstrate their value in a
practical planning setting: these services closely correspond
to the actions a user could perform using the application’s
standard graphical interface.

Querying the state of an application

In the previous example we used a set of DCOP services to
change the state of the Amarok media player. In this ex-
ample we consider two DCOP services that let us access
Amarok’s internal state. In this case we will use such ser-
vices as information gathering actions and inform the user
as to the results gathered (also using a DCOP service).

The set of DCOP services we consider is listed in Ta-
ble 3, along with the PKS encoding of these services. The
isPlaying service queries whether or not the media player
is currently playing, while the isOsdEnabled service deter-
mines if the player’s on-screen display is enabled or not.
These two services are modelled as PKS sensing actions that
have the effect of adding information to the Kw database.
The notify(x, y) service is provided by an application called
Knotify which, among other things, is able to display an in-
formation dialogue box to the user. We have simplified our
encoding of this service for our particular purpose, where x
denotes a service name and y the message to be sent. The
domain specific update rules, which are automatically ap-
plied by PKS after each action application, are used as part
of our wrapper around notify.

If we consider the scenario where PKS knows about the
two Amarok services, denoted by the initial database Kf =
{service(playing), service(osd)} (where the other databases
are empty), then presenting PKS with the goal of sending a
notification for each known service, ∀Kx.K(service(x)) ⇒
K(notified(x)), results in the plan:

Action Precond. Effects
KWeatherService::WeatherService::
stationCode(x) Kv(x) add(Kw, validCode)

add(Kv, code)
temperature(x) K(validCode) add(Kv, stationTemp)

K(code = x)
external::kdialog::
inputbox add(Kv, stationName)

Table 4: Kweather domain actions

amarok::player::isPlaying
amarok::player::isOsdEnabled
branch(result(osd))
K+ :

branch(result(playing))
K+ :

knotify::notify(playing,true)
knotify::notify(osd,true)

K− :
knotify::notify(playing,false)
knotify::notify(osd,true)

K− :
knotify::notify(osd,false)
branch(result(playing))
K+ :

knotify::notify(playing,true)
K− :

knotify::notify(playing,false)

In this case, our plan wraps PKS-level controls around
DCOP-level services. The plan begins by querying
Amarok’s state using the two Amarok services, which pro-
vides the planner with “know whether” information about
result(playing) and result(osd). A conditional branch is
added to the plan at this point, based on result(osd), letting
the planner reason about the two possible outcomes of this
information: along the positive branch (K+), result(osd) is
assumed to be true (i.e., the on-screen display is enabled);
along the negative branch (K−), ¬result(osd) is assumed
to be true (i.e., the on-screen display is disabled). At this
point, the update rules are applied. Along the branch where
result(osd) is true, msgsend(osd, true) is also made true,
while along the other branch, msgsend(osd, false) is made
true. In other words, PKS comes to know what message
it should send depending on the status of the isOsdEnabled
service. The second nested branch for result(playing) per-
forms a similar task for determining what message should
be sent for the isPlaying service. The notify actions in the
plan handle the four possible combinations of outcomes, one
for each branch in the plan.

Desktop interfaces to web services
In the third domain we consider a desktop-based interface to
a web service: the Kweather applet that can access a remote
weather server. We are not concerned with the particular
web service in question, but instead with the DCOP services
this application offers for accessing the web service.

Table 4 lists two DCOP functions provided by Kweather.

stationCode(x) takes a name x of a weather station loca-
tion and returns a station ID code, provided the name is
valid. temperature(x) returns the temperature at a given sta-
tion specified by its ID code x, provided that code is valid.
The third service listed in Table 4, inputbox, is not a DCOP
service but a function provided by the kdialog application
which is typically used in script writing to prompt a user
for input. Executing this service causes a graphical dialogue
box to be shown, allowing the user to enter a string of text.

Table 4 presents a PKS encoding of the three services.
(The interaction between validCode and station codes has
been simplified and can be handled in a more general way).
This representation leans heavily on PKS’s ability to use
functions. For instance, code is used to represent a sta-
tion code, while stationName represents a station name.
validCode is a predicate indicating whether the current code
is valid or not. Our encoding of stationCode(x) also has an
effect that adds validCode to Kw. PKS can use such infor-
mation to add conditional branches to a plan (see below).

If PKS starts with an initial state where all of PKS’s
databases are empty, and is presented with the goal
Kv(stationTemp) ∨K(¬validCode), i.e., come to know the
temperature or report failure, then it can construct the plan:

external::kdialog::inputbox
KWeatherService::WeatherService

::stationCode(stationName)
branch(validCode)
K+ :

KWeatherService::WeatherService
::temperature(stationCode)

K− :
nil

The result is a conditional plan with a single branch. First,
the plan prompts the user for input using inputbox. Next,
it attempts to determine the station code from the user’s in-
put. The function stationName in this case is used as an
argument to stationCode as a type of run-time variable that
will be replaced by the actual value of stationCode at ex-
ecution time. The branch in the plan is structured to rea-
son about the outcome of validCode: along the K+ branch
validCode is assumed to be true, while along the K− branch
¬validCode is assumed to be true. In the first branch, the
temperature service is used to obtain the station’s tempera-
ture, where stationCode acts as a run-time variable. In the
other branch, the plan simply terminates.

The importance of this example lies in our use of local
desktop services to access external web services. In particu-
lar, DCOP provides an abstraction layer around much of the
uncertainty concerning remote services (e.g., network reli-
ability) and supplies a common interface that lets us avoid
having to manage multiple service description languages
and data exchange formats. Of course, we can only take
advantage of web services in this manner provided an appli-
cation with a suitable DCOP interface exists (or if we build
one). Since many applications blur the line between desktop
and network (especially the Internet), however, finding ways
to use such services effectively is a worthwhile endeavour.

Action Precond. Effects
external::dcop::
find(x) K(KdeApp(x)) add(Kw, running(x))
klauncher::
kdeinit exec(x) K(KdeApp(x)) add(Kf , running(x))

K(¬running(x))
app::mainwindow::
minimize(x) K(running(x)) add(Kf , minimized(x))

add(Kf ,¬maximized(x))
maximize(x) K(running(x)) add(Kf , maximized(x))

add(Kf ,¬minimized(x))
restore(x) K(running(x)) add(Kf ,¬minimized(x))

add(Kf ,¬maximized(x))

Table 5: Desktop management actions

Desktop-level application management

In the final domain we consider a set of DCOP services com-
mon to a wide range of applications, that manipulate desktop
applications as “entities,” rather than providing interfaces to
application-specific functions. As we noted above, DCOP
services require an executing instance of the application. In
particular, we illustrate plan-level control over application
execution, and manipulate a set of properties common to
most windows-based application interfaces.

Table 5 shows five desktop services. The first service,
find(x), is not strictly a DCOP service but abstracts be-
haviour provided by the DCOP mechanism itself: DCOP
can determine whether a particular KDE application is run-
ning or not. Here, our PKS encoding is a wrapper around
this service. The second service, kdeinit exec(x) is provided
by an application called klauncher which is able to control
application execution. In this case, the service directs an in-
stance of a particular KDE application x to be started. The
remaining three services, minimize(x), maximize(x), and
restore(x), fall into a class of common services provided by
many GUI-based applications, and are similar to the widget
controls found on applications with windowed interfaces.6

The PKS encoding of find in Table 5 models its effects
as a sensing action that adds knowledge of running to the
Kw database. Thus, after adding find(x) to a plan PKS can
construct a conditional branch based on running to reason
about the execution state of individual applications.

For instance, consider a scenario described by the ini-
tial database Kf = {KdeApp(app1), KdeApp(app2),
KdeApp(app3), running(app2)}, where all other databases
are empty. Thus, PKS knows about three applica-
tions, app1, app2, and app3, and knows that app2
is already running. If we present PKS with the
goal K(¬minimized(app2)) ∧ K(maximized(app3)) ∧
∀Kx.K(KdeApp(x)) ⇒ K(running(x)), i.e., ensure all
three applications are running, app2 is minimized, and app3
is maximized, then one possible plan PKS generates is:

6Although we group these services together, each application
typically provides its own set of DCOP mainwindow services.

external::dcop::find(app1)
external::dcop::find(app3)
apps::mainwindow::restore(app2)
branch(running(app3))
K+ :

apps::mainwindow::maximize(app3)
branch(running(app1))
K+ :

nil
K− :

klauncher::kdeinit exec(app1)
K− :

klauncher::kdeinit exec(app3)
apps::mainwindow::maximize(app3)
branch(running(app1))
K+ :

nil
K− :

klauncher::kdeinit exec(app1)

The plan first determines whether or not app1 and app3
are running by using find, which adds running(app1) and
running(app3) to Kw. Since app2 is already running,
restore(app2) ensures that it is not minimized. At the first
branch point, PKS reasons about the two possibilities for
running(app1). Along the K+ branch, running(app3) is
true and so it can simply maximize the application; along
the K− branch, ¬running(app3) is true and so app3 must
first be started using kdeinit exec(app3) before it can be
maximized. The remaining subplan along each branch is
then the same: PKS must again reason about the state of
running(app1) by introducing a new branch. If app1 is run-
ning then nothing needs to be done. Otherwise, the applica-
tion must be started using kdeinit exec(app1).

Execution of DCOP-based plans
All of the examples we describe in the previous section are
quickly generated by PKS, typically in less than 1 second.
What we are left with, however, is a plan that describes
DCOP-level actions with plan-level control directives like
branch, K+, K−, etc. Thus, such plans must first be con-
verted into an appropriate form before they can be executed.

For sequential plans with fully instantiated arguments
(i.e., no functions), such as those in our first example do-
main, the job of transforming such plans into an executable
form is straightforward: we can syntactically transform each
action app:category::service(arguments) into the form:

dcop app category service arguments

and run the resulting statements as a simple shell script. For
more complex plans, such as those with branches, we use
the Perl interface to DCOP. By doing so we can use if-else
control structures in place of plan branches, and standard
variables to denote plan-level run-time variables, which can
be assigned the execution-time return values of DCOP calls.

As part of our postprocessing stage, we also ensure that
the appropriate application instances have been started for
the services we require in a plan. While we have investigated
automatically starting applications at the planning level, in

the style of our last example domain, we have also done so
by simply scanning a generated plan, extracting the list of
applications used, and adding a prefix to the plan with the
appropriate klauncher::kdeinit exec actions.

Furthermore, we do not currently perform any plan execu-
tion monitoring, but instead we simply verify the final out-
come of executed plans as succeeding or failing. We leave
the plan monitoring task for future work.

Discussion
One of the difficulties arising from using a language like
DCOP as the basis for an action representation is that DCOP
was designed primarily for programming and script writing.
As such, its semantics are targeted at the application pro-
grammer and do not provide the means necessary for distin-
guishing between application-specific operations or indicat-
ing the relationships between the information such services
provide.7 Although some services are commonly available
across many applications (e.g., the mainwindow services),
developers are free to include whatever services they deem
necessary, making it difficult to automate the process of en-
coding actions from DCOP services.

Recent work has addressed some of these deficiencies for
the desktop. For instance, the NEPOMUK project8 aims to
develop a “Social Semantic Desktop” (see, e.g., (Richter,
Völkel, & Haller 2005; Sauermann et al. 2006)) that seeks
to enhance the standard desktop model by attaching meta-
level meaning to desktop information and services, mak-
ing it easier to exchange information between other desk-
tops and users—and more manageable by automated means.
In particular, an interesting NEPOMUK subproject aims to
adapt these ideas to the KDE desktop.9

DCOP itself goes a long way towards overcoming some
of the practical issues concerning software interoperability,
by providing a common language for interacting with appli-
cations. An interesting observation is the realization that the
interface to web services is typically through the desktop.
This observation is particularly important when we consider
that many applications do not distinguish between “desk-
top” and “network.” Instead, desktop applications routinely
use network transparency to shelter users from the trouble
of differentiating between a wide range of accessible files,
services, and devices. (For instance, many media players
seamlessly play both local files and remote streams, and web
browsers like Firefox or Konqueror also double as local file
managers.) Using desktop services to access web services
means that we can often ignore issues related to the trans-
port medium itself (i.e., the network), since such services
are viewed by the desktop interface as “local.”

DCOP is also important due to the large number of KDE

7It is often easy to determine how services should be modelled,
but not how the information provided by these services relates to
other services. For instance, services that return Boolean values
can usually be modelled using Kw, while those that return strings
can be modelled using functions and Kv .

8The project website can be found at nepomuk.
semanticdesktop.org.

9See nepomuk-kde.semanticdesktop.org.

applications that already use this interface. (Some of these
applications provide no software interface other than DCOP
and the standard graphical interface.) Moreover, a successor
to DCOP called D-BUS, which is based on DCOP, is be-
ing proposed as a desktop-independent standard by the open
source community (Pennington, Carlsson, & Larsson 2006).

There is also a question as to how planning technology
should be incorporated into KDE. An interesting approach
is the prospect of developing a KDE component that pro-
vides planning services (possibly through DCOP) to users
and other applications. How goals are conveyed to such a
component, and in what form, remains an open problem.

Although we have presented a set of examples demon-
strating the flavour of the plans we can already generate (and
some interesting behaviour), work still needs to be done to
extend our examples to model more challenging aspects of
desktop domains, in order to determine the scalability of our
approach. Some domains require additional forms of knowl-
edge. For instance, searching a media player’s song database
for all the tracks by a particular artist produces an instance
of local closed world knowledge, which could be modelled
by PKS’s LCW database. More work is also needed to en-
hance PKS’s use of functions and Kv knowledge, which to-
gether with arithmetic operations are often required for re-
source management in the domains we have considered. We
have also begun experimenting with interleaving planning
and execution. Although PKS manages many types of infor-
mation effectively, we have found that it is often useful to
execute partial plans in order to fill in PKS’s databases be-
fore constructing large plans, especially in response to large
domains. Based on our preliminary results, however, we re-
main positive that the knowledge-level approach to planning
can be successful in operating system environments.

Conclusions
In this paper we investigated the use of knowledge-level
planning techniques in a desktop services domain. Since
the desktop interface is the natural interface to many appli-
cations, and such applications are often suited to tasks for
which there might not be existing alternatives, the challenge
of harnessing these services for automated planning remains
a worthwhile task. While we have focused on a particular
inter-application communication language (DCOP) in a par-
ticular desktop environment (KDE), we have also focused on
meeting the planning needs of real services provided by ex-
isting applications. As such, we believe that this domain is a
useful testbed for furthering our goal of constructing agents
that can operate in complex operating system environments.

Acknowledgements
The work reported in this paper was partially funded by
the European Commission through the PACO-PLUS project
(FP6-2004-IST-4-27657).

References
Brown, P.; Ettrich, M.; Meine, H.; and Jansen, T.
2003. DCOP: Desktop COmmunications Protocol.
http://developer.kde.org/documentation/other/dcop.html.

Bryant, R. E. 1992. Symbolic boolean manipulation with
ordered binary decision diagrams. ACM Computing Sur-
veys 24(3):293–318.
Etzioni, O., and Weld, D. 1994. A softbot-based interface
to the internet. Communications of the ACM 37(7):72–76.
Etzioni, O.; Hanks, S.; Weld, D.; Draper, D.; Lesh, N.; and
Williamson, M. 1992. An approach to planning with in-
complete information. In Proc. of KR-92, 115–125. Cam-
bridge, MA: Morgan Kaufmann Publishers.
Etzioni, O.; Levy, H. M.; Segal, R. B.; and Thekkath, C. A.
1993. OS agents: Using AI techniques in the operating
system environment. Technical Report UW-CSE-93-04-
04, University of Washington.
Etzioni, O.; Golden, K.; and Weld, D. 1994. Tractable
closed world reasoning with updates. In Proc. of KR-94,
178–189. Bonn, Germany: Morgan Kaufmann Publishers.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. Artificial Intelligence 2:189–208.
Martı́nez, E., and Lespérance, Y. 2004. Web service com-
position as a planning task: Experiments using knowledge-
based planning. In Proceedings of the ICAPS-04 Workshop
on Planning and Scheduling for Web and Grid Services.
McIlraith, S., and Son, T. C. 2002. Adapting Golog for
composition of semantic web services. In Proc. of KR-
2002, 482–493. Morgan Kaufmann Publishers.
Pednault, E. P. D. 1989. ADL: Exploring the middle
ground between STRIPS and the situation calculus. In
Proc. of KR-89, 324–332. Morgan Kaufmann Publishers.
Pennington, H.; Carlsson, A.; and Larsson,
A. 2006. D-Bus Specification, Version 0.12.
http://dbus.freedesktop.org/doc/dbus-specification.html.
Petrick, R. P. A., and Bacchus, F. 2002. A knowledge-
based approach to planning with incomplete information
and sensing. In Proc. of AIPS-2002, 212–221. AAAI Press.
Petrick, R. P. A., and Bacchus, F. 2004. Extending the
knowledge-based approach to planning with incomplete in-
formation and sensing. In Proc. of ICAPS-04, 2–11. AAAI
Press.
Pistore, M.; Marconi, A.; Bertoli, P.; and Traverso, P. 2005.
Automated composition of web services by planning at the
knowledge level. In Proc. of IJCAI-05, 1252–1259.
Richter, J.; Völkel, M.; and Haller, H. 2005. DeepaMehta
– a semantic desktop. In Decker, S.; Park, J.; Quan, D.;
and Sauermann, L., eds., 1st Workshop on The Semantic
Desktop. 4th International Semantic Web Conference.
Sauermann, L.; Grimnes, G. A.; Kiesel, M.; Fluit, C.;
Maus, H.; Heim, D.; Nadeem, D.; Horak, B.; and Dengel,
A. 2006. Semantic desktop 2.0: The gnowsis experience.
In Proc. of the ISWC Conference.
Weld, D. S.; Anderson, C. R.; and Smith, D. E. 1998. Ex-
tending Graphplan to handle uncertainty & sensing actions.
In Proc. of AAAI-98, 897–904. AAAI Press.
Wheeler, S. 2003. KDE scripting with DCOP: Boost your
efficiency. Linux Magazine 36:46–48.

