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Abstract

We investigate the problem of reasoning about numerical
functions in the presence of incomplete information, sensing
actions, and conditional plans. An interval-based represen-
tation is introduced into the PKS (Planning with Knowledge
and Sensing) planner, as a means of compactly representing
sets of possible values for numerical functions. We describe
the enhancements we make to PKS, and demonstrate how
such information can be used for modelling uncertain sensors
and effectors. We also show how interval-valued functions
can be used as a form of noisy run-time variable in plans.
This paper presents a snapshot of work currently in progress.

Introduction and Motivation
An agent operating in a real-world domain often needs to do
so with incomplete information about the state of the world.
An agent with the ability to sense the world can also gather
additional information to generate plans with contingencies,
allowing the agent to reason about the possible outcomes of
sensed information at plan time, thereby extending its ability
to successfully construct plans in uncertain domains.

One particularly useful type of sensed information is nu-
merical information. The ability to reason about numbers
is often required in many real-world planning contexts, in
order to construct plans that work with numeric state prop-
erties (e.g., the robot is 10 metres from the wall), manage
limited resources (e.g., ensure the robot has enough fuel to
complete the task), satisfy numeric constraints (e.g., only
grasp an object if its radius is less than 10 cm), or apply
arithmetic operations (e.g., advancing the robot forward one
step reduces its distance from the wall by 1 metre). The im-
portance of numerical reasoning in planning has previously
been recognized with the inclusion of numeric state vari-
ables in PDDL (Fox and Long 2003), and the construction
of planning systems like MetricFF (Hoffmann 2003) that are
able to work with (limited forms of) numeric information.

Reasoning about numerical information under conditions
of incomplete information is potentially problematic, how-
ever, especially for planners that are built on possible-world
representations or sets of belief states. In such representa-
tions, the complete set of possible values for an unknown
(or incompletely known) state property is often explicitly
represented, e.g., by a set of states, each of which denotes a
possible configuration of the actual world state. If the value

of a numeric function is unknown, then the belief state must
contain a state representing every possible mapping of the
function, which could be a potentially large (or even infi-
nite) set. Even when the range of possible values is rela-
tively small, the number of required states can quickly grow.
E.g., if a numeric function f could potentially map to any
natural number between 1 and 100, then we require 100
states to capture the set of possible mappings using a pos-
sible world/belief state approach. The state explosion re-
sulting from large sets of mappings can be computationally
difficult for planners that must reason with individual states
and progress (or regress) those states to construct plans.

The general problem of reasoning about knowledge and
action, while avoiding the drawbacks of possible worlds, has
previously been studied in formal representation languages
like the situation calculus (see, e.g., (Demolombe and Po-
zos Parra 2000; Soutchanski 2001; Liu and Levesque 2005;
Petrick 2006; Vassos and Levesque 2007)). Many of these
accounts model certain (restricted) types of knowledge di-
rectly, rather than indirectly inferring such information from
sets of worlds, thereby trading representational expressive-
ness for more tractable reasoning. (For instance, simple re-
lational facts can be explicitly modelled by sets of predi-
cates known to be true and sets of predicates known to be
false.) One representation for modelling uncertain numeri-
cal information without possible worlds uses the notion of
an interval-valued function as a means of capturing a set of
disjunctive alternatives (Funge 1998). The idea is simple:
rather than representing each possible function mapping in-
dividually across a set of worlds, a single function mapping
is used and only the endpoints of the range of possible values
are represented. Thus, a function f that maps from 1 to 100
can be denoted in an interval-valued form, f = 〈1, 100〉.

Interval-valued models of numeric information have been
investigated in the planning community, especially when
time is represented as a resource (see, e.g., (Edelkamp 2002;
Frank and Jónsson 2003; Laborie 2003)). The idea of
bounding uncertain numeric properties by intervals has also
been studied in a planning context (Poggioni, Milani, and
Baioletti 2003), however, to the best of our knowledge the
combination of numerical reasoning with incomplete infor-
mation, sensing, and contingent planning has not been fully
explored. We focus on this problem in the present paper,
which describes work currently in progress to extend the



PKS (Planning with Knowledge and Sensing) planner (Pet-
rick and Bacchus 2002; 2004), by incorporating the ability
to use interval-valued functions.

Our interest in adding interval-valued representations to
PKS is twofold. First, PKS has always had the ability
to work with simple numerical information (e.g., function
(in)equalities and arithmetic operations), however, unlike
other types of knowledge in PKS, its ability to reason about
uncertain numerical values is limited. We believe interval-
valued functions provide a compact representation that can
be used to model the effects of noisy actions and knowledge,
and augment PKS’s existing ability to work with incomplete
knowledge without using possible worlds or belief states.
Second, we are also interested in tracking the results of cer-
tain types of sensed information through subsequent physi-
cal actions. For instance, if the location of a robot is sensed
and the robot then moves 2 steps forward, we should be able
to use such information in a planning context, even if the
actual value of the robot position isn’t explicitly known. We
believe an interval-based representation will also be useful
in modelling such situations. We explore both of these ideas
in this paper.

The rest of the paper is organized as follows. In the next
section we briefly review the PKS planner. We then de-
scribe a simple model of interval-valued functions. Using
this model we characterize the changes we have currently
implemented in PKS. We then demonstrate the extended ver-
sion of PKS with a series of detailed examples. Finally, we
discuss some open problems and future work, and conclude.

Planning with Knowledge and Sensing (PKS)
In this work, we aim to extend PKS (Planning with Knowl-
edge and Sensing), a contingent planner that constructs
plans in the presence of incomplete information and sens-
ing actions (Petrick and Bacchus 2002; 2004). PKS works
at the “knowledge-level” by reasoning about how the plan-
ner’s knowledge state, rather than the world state, changes
due to action. PKS works with a restricted subset of a first-
order language, and a limited amount of inference in that
subset, allowing it to support a rich representation with non-
propositional features such as functions and variables. This
approach differs from planners that work with propositional
representations over which complete reasoning is feasible,
or approaches that model incomplete knowledge based on
sets of possible worlds. By working at the knowledge level,
PKS can often abstract its reasoning from irrelevant distinc-
tions that occur at the world level.

PKS is based on a generalization of STRIPS (Fikes and
Nilsson 1971). In STRIPS, the state of the world is mod-
elled by a single database. Actions update this database and,
by doing so, update the planner’s world model. In PKS,
the planner’s knowledge state, rather than the world state, is
represented by a set of five databases, each of which mod-
els a particular type of knowledge. The contents of these
databases have a fixed, formal interpretation in a modal logic
of knowledge. Actions can modify any of the databases,
which has the effect of updating the planner’s knowledge
state. To ensure efficient inference, PKS restricts the type of

knowledge (especially disjunctions) that it can represent in
each database. We briefly discuss each database below.
Kf : This database is similar to a standard STRIPS database
except that both positive and negative facts are permitted and
the closed world assumption is not applied. Kf is used for
modelling the effects of actions that change the world. Kf

can include any ground literal `, where ` ∈ Kf means “the
planner knows `.” Kf can also contain information about
known function (in)equality mappings.
Kw: This database models the plan-time effects of “binary”
sensing actions. φ ∈ Kw means that at plan time the plan-
ner either “knows φ or knows ¬φ,” and that at execution
time this disjunction will be resolved. In such cases we will
also say that the planner “knows whether φ.” Know-whether
knowledge is important since PKS can use such information
to construct conditional plans with branches (see below).
Kv: This database stores information about function values
that will become known at execution time. In particular, Kv

can model the plan-time effects of sensing actions that re-
turn constants, such as numeric values. Kv can contain any
unnested function term f , where f ∈ Kv means that at plan
time the planner “knows the value of f .” At execution time
the planner will have definite information about f ’s value.
As a result, PKS is able to use Kv terms as “run-time vari-
ables” (Etzioni et al. 1992) or placeholders in its plans.
Kx: This database models the planner’s “exclusive-or”
knowledge of literals, namely that the planner knows “ex-
actly one of a set of literals is true.” Entries in Kx have the
form (`1|`2| . . . |`n), where each `i is a ground literal. Such
formulae represent a particular type of disjunctive knowl-
edge that is common in many planning scenarios, namely
that “exactly one of the `i is true.”
LCW: This database stores the planner’s “local closed
world” information (Etzioni, Golden, and Weld 1994), i.e.,
instances where the planner has complete information about
the state of the world. We mention LCW here for complete-
ness but will not focus on it in this paper.

PKS’s databases can be inspected through a set of prim-
itive queries that ask simple questions about the planner’s
knowledge state. Primitive queries have the following form:
(i) Kp, is p known to be true?, (ii) Kvt, is the value of
t known?, (iii) Kwp, is p known to be true or known to
be false? (i.e., does the planner know-whether p?), or (iv)
the negation of queries (i)–(iii). An inference algorithm
evaluates primitive queries by checking the contents of the
databases, taking into consideration the interaction between
different types of knowledge.

An action in PKS is modelled by a set of preconditions
that query the agent’s knowledge state, and a set of effects
that update the state. Action preconditions are simply a
list of primitive queries. Action effects are described by a
collection of STRIPS-style “add” and “delete” operations
that modify the contents of individual databases. For exam-
ple, add(Kf , φ) adds φ to Kf , and del(Kw, φ) removes φ
from Kw. Actions are permitted to have ADL-style context-
dependent effects (Pednault 1989), where the secondary pre-
conditions of an effect are described by lists of primitive



queries, and can employ a limited form of quantification
(∀Kx and ∃Kx) that ranges over known instantiations of x.

PKS constructs plans by reasoning about actions in a sim-
ple forward-chaining manner: if the preconditions of an ac-
tion are satisfied by the planner’s knowledge state, then the
action’s effects are applied to the state to produce a new
knowledge state. For actions with context-dependent effects,
secondary preconditions are similarly evaluated against the
knowledge state to determine if their effects should be ap-
plied. Planning then continues from the resulting state.

PKS can also add conditional branches to a plan, provided
it has Kw knowledge. For instance, if φ ∈ Kw then PKS
can construct two conditional branches in a plan: along one
branch (the K+ branch) φ is assumed to be known (i.e., φ is
added to Kf ), while along the other branch (the K− branch)
¬φ is assumed to be known (i.e., ¬φ is added to Kf ). Plan-
ning continues along each branch from the new knowledge
states, until each branch satisfies the goal, also specified as
a list of primitive queries.

Interval-Valued Functions and Knowledge
In this paper we will only focus on functions that map to nu-
merical values (rather than general constants or terms). For
instance, robotLoc = 10 might denote a function indicating
that a robot is known to be 10 metres from a wall.

An interval-valued function is a function whose denota-
tion is an interval of the form 〈u, v〉. The values u and v are
called the endpoints of the interval, and indicate the bounds
on a range of possible mappings for the function. Since
we are primarily interested in reasoning about an agent’s
(incomplete) knowledge during planning, a mapping of the
form f = 〈u, v〉 will mean that the value of f is known to
be in the interval 〈u, v〉.1 For instance, robotLoc = 〈5, 10〉
might indicate that the distance to a wall is known to be be-
tween 5 and 10 metres. If a function maps to a point interval
of the form 〈u, u〉, for some u, then the mapping is certain
and known to be equal to u.

Each interval-valued function will be associated with a
particular number system X that restricts the range of per-
missible intervals for a function. Typically, the number sys-
tem will be one of the standard mathematical number sys-
tems (e.g., the reals R, the natural numbers N, the integers
Z, etc.), extended to include the points at infinity, ∞ and
−∞. Given a number system X, a mapping f = 〈u, v〉
is permitted, provided u, v ∈ X and u ≤ v. For ev-
ery number system X, the special interval 〈⊥,>〉 repre-
sents the maximal interval for that number system. For in-
stance, 〈⊥,>〉 def

= 〈−∞,∞〉 in R, however in B, the bi-
nary number system consisting of the two elements 0 and 1,
〈⊥,>〉 def

= 〈0, 1〉. In terms of knowledge, a mapping of
the form f = 〈⊥,>〉 means that the agent considers every
element of X as a possible mapping for f . In other words,
the value of f is completely unknown to the agent.

1We will only focus on closed intervals whose endpoints are
included as possible mappings (i.e., intervals of the form [u, v]
in standard mathematical notation). Open intervals (u, v), or
partially-open intervals (u, v] and [u, v), are treated in a similar
manner except for minor differences in the boundary cases.

For simplicity, we will assume that all interval-valued
functions in this paper range over N unless otherwise indi-
cated. Also, as an alternative to using the maximal interval
〈⊥,>〉 to represent functional uncertainty, we will some-
times use PKS’s ability to reason about incomplete informa-
tion when a function is not listed in its knowledge bases.

Representing and Reasoning about
Interval-Valued Knowledge in PKS

In this section we describe some of the changes we have
made to PKS to support interval-valued functions. Since this
paper presents a snapshot of work currently in progress, we
will discuss many of these changes at a high level and leave
many of the technical details for a future paper. In particular,
we will focus on the representation of interval knowledge by
considering changes to the Kf , Kv , Kw, and Kx databases.
We will also briefly mention extensions to PKS’s primitive
query language and action representation.
Kf and knowledge of intervals Recall that theKf database
stores the planner’s knowledge of facts, including functional
equalities (e.g., f = 10) and inequalities (e.g., g 6= 12). In
our extended representation we allow functions to map to
interval values, provided the intervals only contain numeric
constants. That is, a function like f = 〈5, 10〉 is permitted,
however, g = 〈5, x〉 is not if x is a variable. Intuitively, a
function of the form f = 〈u, v〉 ∈ Kf means that f is known
to map to a value between u and v.
Kv and sensed intervals TheKv database is primarily used
to represent the results of sensing actions that return func-
tions. In particular, this database does not constrain the type
of underlying function it can represent, i.e., whether it is
an ordinary function mapping or an interval-valued map-
ping. Thus, Kv can immediately be used with interval-
valued functions which are treated in the same way as or-
dinary functions. I.e., if f ∈ Kv , where f is interval valued,
then the (interval) value of f is known at plan time.

However, we also extend our notion of Kv knowledge to
allow noisy sensed information to be modelled. To do so, we
specify an interval schema for the associated function, using
a variable (x in our examples) to denote the actual value of
the function. For instance, a function of the form:

f : 〈x− 1, x+ 1〉 ∈ Kv

means that the value of the function f is known, and f is in
the range x±1, for some x. In this case, we treat x as a spe-
cial type of “run-time variable” (Etzioni et al. 1992) that acts
as a placeholder to the actual value of the sensed function.
The value of f in this case is “noisy” as it admits a range of
possible values. In practice, we allow formulae of the form
f : 〈x− u, x+ v〉 in Kv , where u and v are numeric con-
stants. This type of information will be particularly useful
for tracking changes to numeric sensed values through the
effects of certain physical actions.
Kw and numeric comparisons The Kw database is typi-
cally used to model sensing actions with binary outcomes,
i.e., those that return one of two possible values. Kw is also
important since information in this database can be used to



build conditional branches into a plan: when a conditional
branch is inserted, one branch is added for each possible out-
come of the sensed information.

With numeric functions (interval-based or not), certain
types of numeric relations become useful in a planning con-
text. In particular, the relational operators =, 6=, >, <,
≥, and ≤ often arise in many planning scenarios. In our
extended version of PKS, we allow simple formulae us-
ing such operators to be explicitly represented in Kw, pro-
vided such formulae have the form f op c, where op ∈
{=, 6=, >,<,≥,≤} and c is a numeric constant. Thus,
f > 5 ∈ Kw can be used to model a sensing action that
determines whether f is greater than 5 or not.

Such extended Kw information can also be used to form
conditional plans as usual in PKS. For a given Kw formula,
two branches are added to a plan: along one branch the Kw

formula is assumed to be true while along the other branch
the formula is assumed to be false. Thus, if the formula
f > 5 ∈ Kw is used as the basis for a new branch point in
a plan then f > 5 is assumed to be true in the K+ branch,
and f ≤ 5 is assumed to be true in the K− branch.
Kw branching is particularly important when combined

with interval-based knowledge in Kf : any assumptions re-
sulting from the addition of a branch must be combined with
existing knowledge in the other databases, possibly refining
or resolving that knowledge as necessary. Thus, if f > 5
is assumed to be true and f = 〈3, 10〉 ∈ Kf , then the
Kf knowledge is updated and the interval is refined so that
f = 〈6, 10〉. Similarly, if f ≤ 5 is assumed to be true then
the Kf knowledge is updated so that f = 〈3, 5〉. When used
with interval-based knowledge that has a wide range of pos-
sible values, this process gives rise to a powerful technique
that allows the planner to split intervals into smaller compo-
nents and reason about individual subcases.
Kx versus interval-valued functions The notion of an
interval-valued function has a close connection to the
exclusive-or knowledge that can be represented in Kx: both
types of representation can be used to model disjunctions of
possible values where one, and only one, of the disjunctions
can be true. For instance, in this view a formula of the form
(f = 3 | f = 4 | f = 5) ∈ Kx is similar to an interval-
valued function of the form f = 〈3, 5〉.

There are notable differences, however. In particular,
Kx takes a very conservative view of physical actions that
change the values of literals mentioned in Kx formula. In
such cases, any formula containing a property changed by an
action is completely removed from Kx since it’s “exclusive-
or” property may no longer hold. This is not the case for
interval-valued functions. Instead, we would like to track
the set of possible values for such functions through ac-
tion. Each Kx formula is also restricted to a set of literals
that must be explicitly enumerated as a finite disjunction.
Interval-valued functions provide a more compact represen-
tation that permits continuous intervals over number systems
such as the reals (R), which cannot be modelled in Kx.

Interval-valued functions can also be included in Kx,
however, and are treated in the same way as any other piece
of Kx information. In particular, this means they are subject
to the conservative update rules inherent in that database.

We refer the reader to (Petrick and Bacchus 2004) for more
information about Kx and its update rules.2

Primitive queries and intervals The underlying primitive
query language used by PKS is unchanged with the addi-
tion of interval-valued functions. In particular, the exist-
ing query language already permits primitive queries that
include numeric relational operators such as those we per-
mit in the extended Kw database (e.g., >). However, we
have also extended the inference procedure that evaluates
primitive queries to reason with interval-based information.
For instance, a query of the form K(f > 3) only evaluates
as true given an interval f = 〈u, v〉 ∈ Kf provided u > 3.
Similarly, a queryK(g 6= 5) is true if both 5 < u and 5 > v.
Actions and intervals Actions in our extended version of
PKS are defined in a similar way to ordinary PKS actions,
with preconditions and effects. Preconditions are still simply
sets of primitive queries, as defined above. Effects permit
updates to be made to interval-valued information through a
set of simple arithmetic operations. (In this paper we only
consider the arithmetic addition and subtraction operators.)
In particular, we allow updates to have the form

add(Kf , f := f ± d),

where f is an interval-based function and d is either a nu-
meric constant or constant interval (i.e., no variables). In the
case of a constant d, an existing interval 〈u, v〉 is updated to
the resulting interval 〈u± d, v ± d〉. If d itself is an inter-
val, the process is somewhat more complicated and a new
range must be calculated for the resulting interval. For in-
stance, adding the interval 〈3, 5〉 to 〈1, 2〉 results in an inter-
val 〈4, 7〉. We currently focus on arithmetic operations that
can be calculated in a straightforward manner and result in
well-formed intervals.

One additional update is performed when interval-valued
updates occur: Kv formulae that are specified using inter-
val schema are also updated appropriately. That is, the in-
terval corresponding to a Kv formula is updated in a simi-
lar manner to an ordinary interval-based function. For in-
stance, if f : 〈x− c, x+ c〉 ∈ Kv , and an effect of the form
add(Kf , f := f + d) updates f , where d is a constant, then
Kv is updated so that f : 〈x− c+ d, x+ c+ d〉 ∈ Kv .

Finally, we also allow actions to include ordinary database
assertions, following the standard PKS rules for add and del .
Thus, we can specify “noisy” knowledge through an update
such as add(Kf , f = 〈3, 5〉) that adds f = 〈3, 5〉 to Kf .
PKS planning with intervals Given the above changes
to the PKS database representation, primitive query mecha-
nism, and database update procedure, the underlying plan-
ning algorithm operates as in the unextended version of
PKS. In particular, the plan generation process is treated as
a search through the set of database states, starting from an
initial state denoted by the initial set of databases. Plans are
built in a forward-chaining manner by choosing an action to

2One of the open technical questions in this work is whether
or not intervals of the form f = 〈3, 5〉 actually belong in Kf , or
whether a better intuitive definition would place such knowledge in
an extended Kx database. We leave open the possibility of chang-
ing our current representation in the future.



Action Effects
moveForward add(Kf , robotLoc := robotLoc− 1)
moveBackward add(Kf , robotLoc := robotLoc + 1)
atTarget add(Kw, robotLoc = targetLoc)

Table 1: Action specifications for Example 1.

add to a plan, or by introducing conditional plan branches.
Planning continues until the goal conditions are achieved
along every branch of a plan, or no plan can be found. We
refer the reader to (Petrick and Bacchus 2002) for more de-
tails on the actual plan generation process used by PKS.

Examples
To illustrate the above extensions, we present three simple
examples of interval-based reasoning in PKS.
Example 1 Consider a robot whose location, robotLoc, is
measured by its distance to a wall. The robot has two phys-
ical actions available to it: moveForward moves the robot
one unit towards the wall, and moveBackward moves the
robot one unit away from the wall. The robot also has a sens-
ing action, atTarget, which senses whether the robot is at a
target location specified by the function targetLoc. The defi-
nition of these actions is shown in Table 1. The robot’s initial
location is specified by the interval-valued function mapping
robotLoc = 〈3, 5〉 ∈ Kf . The goal is to move the robot
to the target location, denoted by the query K(robotLoc =
targetLoc). In this example, targetLoc = 2 ∈ Kf .

One solution generated by PKS is the conditional plan:
1 | moveForward ;
2 | atTarget ;
3 | branch(robotLoc = targetLoc)
4 | K+ : nop.
5 | K− : moveForward ;
6 | atTarget ;
7 | branch(robotLoc = targetLoc)
8 | K+ : nop.
9 | K− : moveForward.

In step 1, the moveForward action uniformly decreases the
value of robotLoc in Kf by one unit so that robotLoc =
〈2, 4〉. In step 2, atTarget senses whether robotLoc =
targetLoc, which has the effect of adding robotLoc = 2 to
Kw (i.e., the planner knows whether robotLoc is 2 or not).
In step 3, a branch point is added to the plan based on this
Kw formula, allowing the plan to consider the two possible
outcomes of the Kw formula (which also has the effect of
removing the formula from Kw). Along one branch (step 4),
robotLoc = 2 is assumed to be true (i.e., robotLoc = 2
is added to Kf ) and the goal is achieved. Along the other
branch (step 5), robotLoc 6= 2 is assumed to be true (i.e.,
robotLoc 6= 2 is added to Kf ). As a result, the inter-
val mapping for robotLoc in Kf can be refined to remove
2 as a possible mapping, so that robotLoc = 〈3, 4〉. The
moveForward action then updates robotLoc further so that
robotLoc = 〈2, 3〉. The sensing action in step 6 again adds
robotLoc = 2 to Kw. In step 7, another branch point is
added to the plan. Along one branch (step 8), robotLoc = 2
is assumed to true, satisfying the goal. Along the other

Action Effects
noisyForward add(Kf , robotLoc := robotLoc− 〈1, 2〉)
withinTarget add(Kw, robotLoc ≤ targetLoc)

Table 2: Additional actions for Example 2.

branch (step 9), robotLoc 6= 2 is assumed to be true. In this
case, refining robotLoc results in the (definite) knowledge
that robotLoc = 〈3, 3〉 = 3. A final moveForward action
results in robotLoc = 2, satisfying the goal.

Example 2 We next consider a robot with the moveBack-
ward and atTarget actions from Example 1, but with move-
Forward replaced by a “noisy” movement action, noisyFor-
ward, which moves the robot forward either 1 or 2 units. Ad-
ditionally, the robot also has a second sensing action, within-
Target, that determines whether or not the robot is within the
target distance (where targetLoc = 2 ∈ Kf ). The specifica-
tion of these new actions is given in Table 2. In this example,
the robot’s initial location is specified by the interval-valued
mapping robotLoc = 〈3, 4〉 ∈ Kf . The goal is to move the
robot to the target location, i.e., K(robotLoc = targetLoc).

One solution generated by PKS is the conditional plan:
1 | noisyForward ;
2 | withinTarget ;
3 | branch(robotLoc ≤ targetLoc)
4 | K+ : atTarget ;
5 | branch(robotLoc = targetLoc)
6 | K+ : nop.
7 | K− : moveBackward.
8 | K− : noisyForward ;
9 | atTarget ;

10 | branch(robotLoc = targetLoc)
11 | K+ : nop.
12 | K− : moveBackward.

Since forward movements may change the robot’s position
by either 1 unit or 2 units, the noisyForward action in step 1
results in an even less certain position for the robot, namely
that robotLoc = 〈1, 3〉 ∈ Kf . However, the sensing ac-
tion in step 2, together with the branch point in step 3,
lets us split this interval into two sub-intervals. In step 4,
we assume that robotLoc ≤ 2 and consider the case that
robotLoc = 〈1, 2〉. The atTarget action, together with the
branch in step 5, lets us divide this interval even further: in
step 6, robotLoc = 2 and the goal is satisfied, while in step 7,
robotLoc = 1 and a moveBackward action achieves the
goal. In step 8 we consider the other sub-interval of the first
branch, namely the interval resulting from robotLoc > 2,
i.e., robotLoc = 3 ∈ Kf . In this case we have defi-
nite knowledge of the robot’s location, however, the sub-
sequent noisyForward action results in robotLoc = 〈1, 2〉.
The remainder of the plan in steps 9–12 is the same as in
steps 4–7: the robot conditionally moves backwards in the
case that robotLoc is determined to be 1, while the plan triv-
ially achieves the goal if robotLoc = 2.

Example 3 In the final example, we consider a robot with
the moveBackward action from Table 1, and the noisyLo-
cation action from Table 3. In this case, noisyLocation is a
noisy sensing action that either senses the actual value of the



Action Effects
noisyLocation add(Kv, robotLoc : 〈x, x+ 1〉)

Table 3: Additional action for Example 3.

robot’s location, or 1 unit more than the actual location. This
is denoted by the notation 〈x, x+ 1〉 in the action descrip-
tion, where x acts as a placeholder for the actual location,
and the interval specifies the range of possible values. Ini-
tially, the location of the robot is unknown, i.e., robotLoc
is not listed in the planner’s databases. The goal is to en-
sure the robot has moved to or past the target location, i.e.,
K(robotLoc ≥ targetLoc), where targetLoc = 2 ∈ Kf .

Here, PKS can generate the simple 3-step plan:
1 | noisyLocation ;
2 | moveBackward ;
3 | moveBackward.

Step 1 of the plan adds the formula robotLoc = 〈x, x+ 1〉
to Kv , indicating that the planner has (noisy) knowledge
of the robot’s location. In step 2, the result of moveBack-
ward updates the planner’s parametrized Kv knowledge.
In particular, robotLoc = 〈x+ 1, x+ 2〉, which has the
effect of tracking the movement action in relation to the
planner’s (ungrounded) location information. In step 3,
the second moveBackward action results in robotLoc =
〈x+ 2, x+ 3〉. In this case, the planner can reason that
robotLoc ≥ 2 holds since robotLoc is a function over N:
since x ≥ 0, it must be the case that x+ 2 ≥ 2.

Although the above examples are admittedly simple, they
nevertheless demonstrate some interesting plan-time reason-
ing. In Example 1, we illustrate a case where the plan-
ner has uncertain knowledge about the location of a robot.
Using interval-valued functions, we track the robot’s loca-
tion as physical actions change this information and sens-
ing actions, together with conditional plan branches, pro-
duce more certain knowledge. We note that in the original
version of PKS, we could represent the disjunctive nature
of robotLoc (for N at least) using the Kx database, e.g.,
(robotLoc = 3 | robotLoc = 4 | robotLoc = 5) ∈ Kx.
However, an action like moveForward would immediately
invalidate this information, causing it to be removed, since
it changes a function mentioned in the Kx formula.

In Example 2, we consider a simple case of an action with
a noisy physical effect, represented by the action noisyFor-
ward, that changes robotLoc with an interval-based effect.
Again, we demonstrate how the use of sensing actions to-
gether with conditional branching allows us to divide inter-
vals into more manageable components and reason about
individual subcases. Of course, this example also demon-
strates that if we do not have the right sensing actions (e.g.,
withinTarget), then the ability to track certain intervals alone
may not always be sufficient for useful reasoning.

Finally, in Example 3 we illustrate an interesting type of
reasoning we are currently experimenting with: the ability
to track sensed information through physical actions using
a type of placeholder variable. In particular, noisyLocation
is a noisy sensing action whose resulting (indefinite) knowl-
edge is tracked through moveBackward actions. We note

that in this example the Kv interval is not strictly necessary
for finding a plan since only the left endpoint of the inter-
val is used. (I.e., an action that adds robotLoc : 〈x, x〉 to
Kv using a point interval would be sufficient.) However, the
interval-based sensing action demonstrates one of the new
features of our extended PKS representation.

Example 3 also demonstrates one of the drawbacks inher-
ent in plan-time sensing with unknown quantities: for such
values to be useful in a plan we often need to “ground” them
in some way. In this case, we use knowledge of the un-
derlying number system and the interval offset to make an
assertion about a lower bound. However, PKS also has the
ability to work with functions in an “unground” form, allow-
ing them to be composed with other functions, or using them
to produce a form of parametrized plan. One of the goals
of this work is to extend PKS’s representation of interval-
valued functions so they can also be used in this way. One
particular application where we believe this will be useful is
in the automatic generation of plans with loops (Levesque
2005). (For instance, in the case of Example 3 we could
imagine generating a parametrized plan that loops until a
certain exit condition is achieved.) However, this extension
is part of ongoing work.

Discussion and Future Work
Interval-valued functions provide an interesting middle
ground between those representations that do not represent
uncertainty about numerical values and those that reason
with full possible-world models, or models based on prob-
abilistic distributions. For a planner like PKS that works
with a restricted representation to model particular types of
knowledge, an interval-valued representation makes a good
fit and offers another useful tool for knowledge-level plan-
ning. Moreover, such extensions have not been fully ex-
plored in the context of planning with incomplete informa-
tion, sensing actions, and contingent plans, and this work of-
fers the prospect of results that can be applied beyond PKS.

There are still some non-trivial technical problems to
overcome. First, we are considering interval-based opera-
tions other than addition and subtraction. While we do not
want to integrate a complete equation solver with our plan-
ner, we are focusing on those operations that are useful for
planning and that can easily be “tracked” in simple, pre-
dictable ways. To help guide our work, we are investigat-
ing planning problems based on real-world robot domains
requiring numeric reasoning. We are also exploring how ex-
isting approaches in the literature use intervals in other con-
texts (e.g., temporal reasoning).

Second, although intervals provide a compact means of
representing a range of possible values, there are problems
when those values are sparsely distributed. For instance,
if f can map to the values 5, 7, and 10, then the interval
f = 〈5, 10〉 suffices for representing the set of possible
mappings, but also admits 6, 8, and 9 as possible values.
While such intervals may not be problematic, depending on
the task, they are potentially less accurate and may incur
more reasoning than needed. To overcome these potential
drawbacks, we are also investigating functions that map to
interval sets consisting of a finite number of intervals. In



such cases, a function f could map to an interval set of the
form f = {I1, I2, . . . , In}, where each Ii is an interval.
In PKS, this would combine the interval-based representa-
tion described here in a form of “extended-Kx” knowledge.
To avoid situations of excessive fragmentation, with large
numbers of intervals, we will initially bound the number of
intervals allowed in a set, and in some cases use a single
wide interval in the place of multiple intervals, if necessary.

Finally, we have not focused on the efficiency of PKS’s
plan generation process in this paper but have instead con-
sidered particular representation and reasoning problems.
(We note that all the examples presented in this paper can be
generated in less than a second using PKS on a single CPU
running at 1.86 GHz with 2Gb of RAM.) In other work, we
are also addressing the problem of scaling up PKS’s perfor-
mance by adapting heuristic search techniques to the state
spaces produced by PKS. While interval-based representa-
tions may complicate this process somewhat, we believe
that the compilation techniques of (Petrick 2006) could be
adapted to this problem, allowing interval-based functions
to be treated in a similar fashion to ordinary functions.

This paper presents a snapshot of work in progress. It
also forms part of a larger research agenda aimed at trans-
forming standard contingent planning domains (e.g., do-
mains that can be represented in planners like Contingent-
FF (Hoffmann and Brafman 2005)) into knowledge-level
forms. It also builds on theoretical work in the situation
calculus (Funge 1998; Demolombe and Pozos Parra 2000;
Petrick 2006) that we are currently extending, with a focus
on the construction of practical planning systems.
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