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Abstract

We discuss preliminary work focusing on the problem
of combining social interaction with task-based action
in a dynamic, multiagent bartending domain, using an
embodied robot. We show how the users’ spoken in-
put is interpreted, discuss how social states are inferred
from the parsed speech together with low-level infor-
mation from the vision system, and present a planning
approach that models task, dialogue, and social actions
in a simple bartending scenario. This approach allows
us to build interesting plans, which have been evalu-
ated in a real-world study, using a general purpose, off-
the-shelf planner, as an alternative to more mainstream
methods of interaction management.

Introduction
As robots become integrated into daily life, they must in-
creasingly deal with situations in which socially appropri-
ate interaction is vital. In such settings, it is not enough for
a robot simply to achieve task-based goals; instead, it must
also be able to satisfy the social goals and obligations that
arise through interactions with people in real-world settings.

Building a robot to meet the goals of social interaction
presents several challenges, especially for the reasoning, de-
cision making, and action selection components of such a
system. Not only does the robot require the ability to recog-
nise and understand appropriate multimodal social signals—
gaze, facial expression, and especially language, the pre-
dominant modality for human social interaction—but it must
also generate realistic responses using similar modalities.

To address this challenge, we are developing a robot bar-
tender (Figure 1) that is capable of managing interactions
with multiple customers in a dynamic setting. For this paper,
we focus on a simple drink-ordering scenario, where inter-
actions incorporate a mixture of task-based aspects (e.g., or-
dering and paying for drinks) and social aspects (e.g., man-
aging multiple simultaneous interactions). Moreover, since
the primary interaction modality in this domain is language,
users will communicate with the robot bartender via speech
and the robot must respond in a similar manner.

One approach to high-level reasoning and action selection
is to use general purpose automated planning techniques.
The ability to reason and plan is essential for an intelli-
gent agent acting in a dynamic and incompletely known

Figure 1: The robot bartender

world such as the bartending scenario. Automated planning
techniques are good at building goal-directed plans of ac-
tion under many challenging conditions, especially in task-
based contexts. Recent work (Steedman and Petrick 2007;
Brenner and Kruijff-Korbayová 2008; Benotti 2008; Koller
and Petrick 2011) has also investigated the use of automated
planning for natural language generation and dialogue—an
approach with a long tradition in natural language process-
ing but one that is not the focus of recent, mainstream study.

We focus on four main areas in this paper.
• First, we describe how users’ spoken inputs are recog-

nised and interpreted.
• Then, we show how states with task, dialogue, and social

features are derived from low-level sensor observations.
• Using these states, we show how plans are generated by

modelling the problem as an instance of planning with
incomplete information and sensing using a planner called
PKS (Petrick and Bacchus 2002; 2004), as an alternative
to more mainstream methods of interaction management.
• Finally, we present an embarrassingly simple planning

domain that models an initial bartending scenario. This
domain has been evaluated in a real-world study, and pro-
vides the basis for future work currently underway.

This work forms part of a larger project called JAMES, Joint
Action for Multimodal Embodied Social Systems, exploring
social interaction with embodied robot systems.1

1See http://james-project.eu/ for more information.



A customer approaches the bar and looks at the bartender
ROBOT: [Looks at Customer 1] How can I help you?
CUSTOMER 1: A pint of cider, please.
Another customer approaches the bar and looks at the bartender
ROBOT: [Looks at Customer 2] One moment, please.
ROBOT: [Serves Customer 1]
ROBOT: [Looks at Customer 2]

Thanks for waiting. How can I help you?
CUSTOMER 2: I’d like a pint of beer.
ROBOT: [Serves Customer 2]

Figure 2: The scenario: “Two people walk into a bar”.

Overview of the Scenario and Robot System
In the bartending scenario we discuss in this paper, we sup-
port interactions like the one shown in Figure 2: two cus-
tomers enter the bar area, attract the robot’s attention, and or-
der a drink. Even this simple interaction presents challenges:
the vision system must accurately track the locations and
body postures of the agents; the speech-recognition system
must detect and deal with speech in an open setting; the rea-
soning components must determine that the both customers
require attention and should ensure that they are served in
the order that they arrived; while the output components
must select and execute concrete actions for each output
channel that correctly realises high-level plans.

The robot hardware consists of a pair of manipulator arms
with grippers, mounted to resemble human arms, along with
an animatronic talking head capable of producing facial ex-
pressions, rigid head motion, and lip-synchronised synthe-
sised speech. The software architecture (Figure 3) is based
on a standard three-layer structure: the low-level compo-
nents deal with modality-specific, detailed information such
as spatial coordinates, speech-recognition hypotheses, and
robot arm trajectories; the mid-level components deal with
more abstract, cross-modality representations of states and
events; while the high level reasons about abstract structures,
such as knowledge and action in a logical form.

The low-level input components include a vision sys-
tem and a linguistic processing system. The vision system
tracks the location, facial expressions, gaze behaviour, and
body language of all people in the scene in real time (Pa-
teraki, Baltzakis, and Trahanias 2011), while the linguis-
tic processing system combines a speech recogniser with a
natural-language parser to create symbolic representations
of the speech produced by all users. Low level output com-
ponents control the animatronic head (which produces lip-
synchronised synthesised speech, facial expressions, and
gaze behaviour) and the robot manipulator arms (which can
point at, pick up, and manipulate objects in the scene).

The primary mid-level input component is the social state
manager, which combines information from various low-
level input components to estimate the real-time social and
communicative state of all users in the scene. On the output
side, the main mid-level component is the output planner,
which both translates the fleshed-out communicative acts
into specific action sequences for the low-level components
and coordinates the execution of those sequences.

Finally, the high level includes a knowledge-level plan-
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Figure 3: System architecture

ner that generates plans for the robot to achieve its goals,
where the plans include a mixture of task actions (e.g., ma-
nipulating objects in the world), sensing actions (e.g., using
the robot arms to test object properties), and communicative
actions (e.g., attracting a user’s attention, asking for a drink
order). The high-level system also includes a monitor which
tracks the execution of the plan steps, detects plan failures,
and controls replanning as necessary.

Natural Language Understanding
Natural language plays an important role in input process-
ing, since linguistic interaction is central to social communi-
cation. For speech recognition, we use the Microsoft Kinect
hardware (Microsoft Corporation 2012) and the associated
Microsoft Speech API. This provides a list of intermediate
hypotheses for each user utterance and a final best hypoth-
esis, along with a confidence score and an estimate of the
source angle. We have created a speech recognition grammar
in the SRGS format (Hunt and McGlashan 2004) that covers
all expected user utterances in the initial scenario: this con-
strains the recognition task and allows us to achieve more
reliable results. In the current system, we wait until recog-
nition is completed and then pass the top hypothesis to the
interpretation system with its confidence score and angle; in
the future we also plan to use intermediate hypotheses.

Once the user speech has been recognised, it must be fur-
ther processed to extract the underlying meaning. To do this,
we parse the recognised speech hypothesis using a grammar
defined in OpenCCG (White 2006). OpenCCG is an open-
source implementation of Combinatory Categorial Grammar
(Steedman 2000), a unification-based categorial framework
which is both linguistically and computationally attractive.
The grammar contains both syntactic and semantic informa-
tion, and is used both for parsing the linguistic input and
for surface realisation of the selected output as described
later. As a concrete example, the XML representation of the
OpenCCG logical form for the sentence Please give me a
beer is shown in Figure 4. Once the top speech hypothe-
sis has been parsed, the logical form is then passed on—
together with the confidence and angle information—to the
state manager for further processing.

State Management
The primary role of the state manager is to turn the contin-
uous stream of messages produced by all of the low-level



<lf>
<node id="w1:situation" pred="give-verb" mood="imp">
<rel name="ArgOne">
<node id="w2:animate-being" pred="pron"
num="sg" pers="1st"/>

</rel>
<rel name="ArgTwo">
<node id="w4:drink" pred="beer"
det="indef" num="sg"/>

</rel>
<rel name="HasProp">
<node id="w0:politeness" pred="please"/>

</rel>
</node>

</lf>

Figure 4: OpenCCG logical form for Please give me a beer

input and output components into a discrete representation
of the world, the robot, and all entities in the scene, com-
bining social, dialogue, and task-based properties. This state
is used in two distinct ways in the system processing. On
the one hand, this module provides a persistent, queryable
interface to the state; on the other hand, it also informs the
high-level planner when there are relevant state changes.

The state is made up of a set of fluents: first-order pred-
icates and functions that denote particular qualities of the
world, robot, and entities. Fluents are defined by the require-
ments of the scenario (Figure 2): we represent all agents in
the scene, their location, torso orientation, and attentional
state, along with their drink request if they have made one.
In addition, we also store the coordinates of all sensed enti-
ties and other properties from the vision system to enable the
low-level output components to access them as necessary.

In the current system, the state manager is rule-based. One
set of rules infers user social states (e.g., seeking attention)
based on the low-level sensor data, using guidelines derived
from the study of human-human interactions in the bartender
domain (Huth 2011). The state manager also incorporates
rules that map from the logical forms produced by the parser
into communicative acts (e.g., drink orders), and that use the
source localisation from the speech recogniser together with
the vision properties to determine which customer is likely
to be speaking. A final set of rules determine when new state
reports are published, which helps control turn-taking. For
example, when the state manager receives a message from
the language interpreter including the logical form shown in
Figure 4, it first determines which of the agents in the scene
is likely to be speaking (based on the interaction history,
the source angle, and the vision data), updates that agent’s
ordered and request fluents, and then sends the updated
state to the high-level reasoning system.

In subsequent versions of the system, the state manager
will be enhanced to process more complex messages from
the updated input and output components, taking into ac-
count the associated confidence scores, and also to deal with
the more complex state representations that will be required
by the updated high-level reasoning system. To address this,
we will draw on recent work in social signal processing
(Vinciarelli, Pantic, and Bourlard 2009): we will train super-
vised learning classifiers on data gathered from humans in-
teracting with both real and artificial bartenders, using meth-

ods similar to those employed, for example, by (Kapoor,
Burleson, and Picard 2007) and (Bohus and Horvitz 2009).

High-level Planning and Execution Monitoring
The high-level planner is responsible for taking reports from
the state manager and producing actions that are sent to the
output planner for execution on the robot as speech, head
motions, and effector manipulations. All actions in the bar-
tending domain (i.e., task, dialogue, and social) are modelled
as part of the same underlying planning domain, using a gen-
eral purpose planning system, rather than separating task and
dialogue acts as is common in many dialogue systems.

We use the PKS planner (Petrick and Bacchus 2002;
2004) for action selection in this work. PKS (Planning with
Knowledge and Sensing) is a conditional planner that builds
plans in the presence of incomplete information and sens-
ing actions. PKS works at the knowledge level by reason-
ing about how the planner’s knowledge changes due to ac-
tion. PKS is based on a generalisation of STRIPS (Fikes and
Nilsson 1971). In STRIPS, the world state is modelled by
a single database that is updated due to action. In PKS, the
planner’s knowledge state, rather than the world state, is rep-
resented by five databases, each of which models a particu-
lar type of knowledge: Kf stores facts about the world, Kw
and Kv store the results of sensing actions that return binary
information or general terms, Kx stores limited disjunctive
information, and LCW stores a type of “local closed world”
information (Etzioni, Golden, and Weld 1994). The contents
of the databases have a formal interpretation in a modal logic
of knowledge, which is restricted to help ensure efficient
reasoning. The databases can be inspected using primitive
queries that ask simple questions about the knowledge state,
e.g., whether facts are known (K(φ)) or not known (−K(φ)),
whether function values are known (Kv(t)), or if the planner
“knows whether” certain properties are true or not (Kw(φ)).

Actions in PKS are modelled by sets of preconditions that
query the agent’s knowledge state, and effects that update
the state. Action preconditions are simply a list of primitive
queries. Action effects are described by STRIPS-style “add”
and “delete” operations that modify the contents of individ-
ual databases, updating the planner’s knowledge state. E.g.,
add(Kf , φ) adds φ to Kf , and del(Kw, φ) removes φ from Kw.
Actions are often parameterised; e.g., serve(?a,?d)might
indicate an action to serve a drink ?d to an agent ?a.

PKS constructs plans by reasoning about actions in a
forward-chaining manner: if the preconditions of an action
are satisfied in the planner’s knowledge state, then the ac-
tion’s effects are applied to produce a new knowledge state.
PKS can also build plans with branches, by considering the
possible outcomes of its Kw and Kv knowledge. Planning
continues along each branch until it satisfies the goal con-
ditions, also specified as a list of primitive queries.

An associated execution monitor controls replanning in
PKS. The monitor takes as input a plan and a description of
the sensed state provided by the state manager. The monitor
assesses how close an expected, planned state is to a sensed
state in order to determine whether a plan should continue
to be executed. In the case of a mismatch, the planner is
directed to build a new plan, starting from the sensed state.



<output>
<gesture-list>
<gesture type="Smile"/>

</gesture-list>
<action-list>
<action type="give">
<object id="obj2" name="juice" type="drink"/>
<person id="a1"/>

</action>
</action-list>
<speech-list>
<speech type="inform" politeness="4">
<person id="a1"/>
<pred type="hand-over">
<object type="drink" name="juice" id="obj2"/>

</pred>
</speech>

</speech-list>
</output>

Figure 5: XML for the serve(a1,juice) action

Output Planning and Language Generation
Output in the robot system is based on processing high-
level actions selected by the planner and dividing them into
speech, head motion, and arm manipulation behaviours that
can be executed in the real world. To do so, we use an XML
format which contains specifications for all of the output
modalities, which is generated using a rule-based approach,
and then passed on to particular output modules.

On the linguistic side, we use OpenCCG to generate the
robot language output, with the same OpenCCG grammar
used for input, since it also contains the language neces-
sary for speech output. The language output in the XML de-
scription is specified in terms of communicative acts based
on Rhetorical Structure Theory (RST) (Mann and Thomp-
son 1988). A generation module then translates the RST
structure into OpenCCG logical forms, which are sent to
the OpenCCG realiser which outputs text strings that can
be turned into speech by the robot’s animatronic head.

In addition to speech, the robot system also expresses it-
self through facial expressions, gaze behaviour, and robot
manipulation actions. The presentation planner coordinates
the output across the various multimodal channels to en-
sure that it is coordinated both temporally and spatially. The
animatronic head can currently express a number of pre-
assigned expressions, and the robot arm can perform tasks
like grasping objects to hand over a drink to a customer.

For instance, Figure 5 shows an XML specification for
a high-level action serve(a1,juice) (i.e., “serve juice to
agent a1”). In this case, the specification results in the robot
smiling (an animatronic head facial expression) while hand-
ing over a juice (a robot arm manipulation action) and saying
to the customer “here is your drink” (speech output).

Planning Interactions for the Robot Bartender
We now consider some example plans we can generate
for controlling the robot bartender, using a planning do-
main which describes the properties and actions in the bar-
tending scenario. Domain properties are divided into two
types, predicates and functions, which correspond to flu-
ents from the state manager. For instance, predicates in the

action greet(?a : agent)
preconds: K(inTrans = nil) & -K(greeted(?a)) &

K(seeksAttention(?a)) & -K(ordered(?a)) &
-K(otherAttentionReq) & -K(badASR(?a))

effects: add(Kf,greeted(?a)),
add(Kf,inTrans = ?a)

action ask-drink(?a : agent)
preconds: K(inTrans = ?a) & -K(ordered(?a))

-K(otherAttentionReq) & -K(badASR(?a)) &
effects: add(Kf,ordered(?a)),

add(Kv,request(?a))

action serve(?a : agent, ?d : drink)
preconds: K(inTrans = ?a) & K(ordered(?a)) &

Kv(request(?a)) & K(request(?a) = ?d)
-K(otherAttentionReq) & -K(badASR(?a)) &

effects: add(Kf,served(?a))

action bye(?a : agent)
preconds: K(inTrans = ?a) & K(served(?a)) &

-K(otherAttentionReq) & -K(badASR(?a))
effects: add(Kf,transEnd(?a)),

add(Kf,inTrans = nil)

action not-understand(?a : agent)
preconds: K(inTrans = ?a) & K(badASR(?a))
effects: del(Kf,badASR(?a))

Figure 6: PKS actions in a single agent interaction

planning domain include: seeksAttention(?a) (agent ?a
seeks attention), greeted(?a) (agent ?a has been greeted),
ordered(?a) (agent ?a has ordered), served(?a) (agent
?a has been served), otherAttentionReq (other agents
are seeking attention), badASR(?a) (agent ?a was not un-
derstood), and transEnd(?a) (the transaction with ?a has
ended). Functions include inTrans = ?a (the robot is in-
teracting with agent ?a), and request(?a) = ?d (agent
?a has requested drink ?d). Predicate arguments are typed
so that ?a accepts a binding of type agent, and ?d accepts
a binding of type drink. The function inTrans maps to
type agent and requestmaps to type drink. As we’ll see,
many of these properties act as state markers, to help guide
plan generation in building realistic interactions.

Actions use domain properties to describe their precon-
ditions and effects. Our domain has seven high-level ac-
tions: greet(?a) (greet an agent ?a), ask-drink(?a) (ask
agent ?a for a drink order), serve(?a,?d) (serve drink
?d to agent ?a), bye(?a) (end an interaction with agent
?a), not-understand(?a) (alert agent ?a that its utterance
was not understood), wait(?a) (tell agent ?a to wait), and
ack-wait(?a) (thank agent ?a for waiting). Definitions for
the first five actions (the actions required for single agent in-
teractions) are given in Figure 6.

Actions are described at an abstract level and include a
mix of task, sensory, and speech acts. For instance, serve is
an ordinary planning action with a deterministic effect (i.e.,
it adds definite knowledge to the planner’s Kf database);
however, when executed it causes the robot to hand over
a drink to an agent and confirm the drink order through
speech. Actions like greet and bye are modelled in a simi-
lar way but only map to speech output at the robot level (i.e.,
“hello” and “good-bye”). The ask-drink action is mod-
elled as a sensing action in PKS: request is added to the



planner’s Kv database as an effect, indicating that request’s
mapping (i.e., an agent’s drink order) will become known
at execution time. The not-understand action is used to
inform an agent that it was not understood. The wait and
ack-wait actions are used to control interactions when mul-
tiple agents are seeking the attention of the bartender.

The initial state, which includes a list of the drinks
and agents in the bar, is not hard-coded. Instead, this in-
formation is supplied to the planner by the state man-
ager. The inTrans function is also initially set to nil to
indicate that the robot isn’t interacting with any agents.
The goal is simply to serve each agent seeking attention:
forallK(?a : agent) K(seeksAttention(?a)) =>
K(transEnd(?a)). This goal is viewed as a rolling target
and reassessed each time PKS receives a state report.

Ordering a drink: First, we consider the case where a
single agent a1 is seeking attention (denoted by storing
seeksAttention(a1) in PKS’s Kf database), and no drink
restrictions are specified. PKS builds the following plan to
achieve the goal:
greet(a1), [Greet agent a1]
ask-drink(a1), [Ask a1 for drink order]
serve(a1,request(a1)), [Give the drink to a1]
bye(a1). [End the transaction]

In this case, a simple linear plan is built by reasoning
about the planner’s knowledge state. The greet(a1)
action is chosen first since inTrans = nil and
seeksAttention(a1) are known, but greeted(a1),
badASR(a1), and otherAttentionReq are not known.
After greet(a1), the planner is in a state where inTrans
= a1 and greeted(a1) are known, so the ask-drink(a1)
action is chosen. As an effect of this action, the planner
comes to know the value of request(a1) which acts as a
placeholder whose value (i.e., a1’s drink order) will only be
known after execution. Finally, adding bye(a1) to the plan
causes transEnd(a1) to become true, satisfying the goal.

Ordering a drink with restricted choice: The previous
plan relies on placeholder terms in parameterised plans,
which require additional reasoning to build, potentially
slowing down plan generation. Consider a second exam-
ple with a single agent a1, where the planner is also told
there are three possible drinks that can be ordered: juice,
water, and beer. The drinks are added to the domain de-
scription as new constants of type drink: juice, water,
and beer. This information is also recorded in the planner’s
databases as a restriction on the set of possible mappings for
request(a1). PKS can now build a plan of the form:
greet(a1), [Greet agent a1]
ask-drink(a1), [Ask a1 for drink order]
branch(request(a1)) [Form branching plan]
K(request(a1)=juice): [If order is juice]
serve(a1,juice) [Serve juice to a1]

K(request(a1)=water): [If order is water]
serve(a1,water) [Serve water to a1]

K(request(a1)=beer): [If order is beer]
serve(a1,beer) [Serve beer to a1]

bye(a1). [End the transaction]

In this case, a conditional plan is built. After a drink is or-
dered, the possible values for request(a1) are tested by
creating a plan branch for each possible mapping: in the
first branch request(a1)=juice is assumed to be true;
in the second branch request(a1)=water is true; and so
on. Planning continues in each branch, and an appropriate
serve action is added to deliver the corresponding drink. In
more complex domains (currently under development), each
branch may require different actions to serve a drink, such as
putting the drink in a special glass or interacting further with
the agent (i.e., “would you like ice in your water?”).

When things go wrong: Once a plan is built, it is sent to
the output planner, one action at a time, for execution on the
robot. During execution, PKS’s execution monitor assesses
plan correctness by comparing sensed state reports from the
state manager against states predicted by the planner. In the
case of disagreement, for instance due to action failure, the
planner is invoked to construct a new plan from the sensed
state. This method is particularly useful for handling unex-
pected responses by agents interacting with the robot.

For example, if agent a1’s response to ask-drink(a1)
was not understood due to low-confidence speech recog-
nition, the state report sent to PKS will have no value for
request(a1), and badASR(a1) will also appear. The mon-
itor will detect this and direct PKS to build a new plan.
One result is a modified version of the old plan that first
informs the agent they were not understood before repeating
the ask-drink action and continuing the old plan:
not-understand(a1), [Alert a1 it was not understood]
ask-drink(a1), [Ask a1 again for drink order]
...continue with remainder of old plan...
Another useful consequence of this approach is that cer-

tain types of over-answering can be handled by the moni-
tor through replanning. For instance, a greet(a1) action
by the bartender might cause a1 to respond with an utter-
ance that includes a drink order. In this case, the state man-
ager would include an appropriate request(a1) mapping
in the state description, along with ordered(a1). The mon-
itor can detect that the preconditions for ask-drink(a1)
aren’t met and direct PKS to replan. A new plan would then
omit ask-drink and instead serve the requested drink.

Ordering drinks with multiple agents: Our simple plan-
ning domain also enables more than one agent to be served
if the state manager reports multiple customers are seeking
attention. For instance, say that there are two agents, a1 and
a2 (as in Figure 2). One possible plan that might be built is:
wait(a2), [Tell agent a2 to wait]
greet(a1), [Greet agent a1]
ask-drink(a1), [Ask a1 for drink order]
serve(a1,request(a1)), [Give the drink to a1]
bye(a1), [End a1’s transaction]
ack-wait(a2), [Thank a2 for waiting]
ask-drink(a2), [Ask a2 for drink order]
serve(a2,request(a2)), [Give the drink to a2]
bye(a2). [End a2’s transaction]

In this plan, the first agent orders a drink and is served, fol-
lowed by the second agent. The wait and ack-wait actions



(which aren’t required in the single agent case) are used to
defer a transaction with agent a2 and resume it when the
transaction with a1 has finished. (The otherAttentionReq
state property, which is a derived property defined in terms
of seeksAttention, ensures that other agents seeking at-
tention are told to wait before an agent is served.)

One drawback with our current domain encoding is that
agents who have been asked to wait are not necessarily
served in the order they are deferred. While plans in this
domain might still achieve the goal of serving drinks to all
agents, from a social interaction point of view they poten-
tially fail to be appropriate (depending on local pub culture),
since some agents may be served before other agents that
have been waiting for longer periods of time. Since socially
appropriate interactions are central to the goals of this work,
we are addressing this issue by modifying our domain de-
scription to introduce an ordering on waiting agents.

Discussion and Related Work
We have carried out a user evaluation in which 31 partici-
pants interacted with the bartender in a range of social sit-
uations, resulting in a wide range of objective and subjec-
tive measures. Overall, most customers were successful in
obtaining a drink from the bartender in all scenarios, and
the robot dealt appropriately with multiple simultaneous
customers and with unexpected situations including over-
answering and input-processing failure. The factors that had
the greatest impact on subjective user satisfaction were task
success and dialogue efficiency. More details of the user
study are presented in (Foster et al. 2012).

The general focus of this work fits into the area of so-
cial robotics: “the study of robots that interact and commu-
nicate with themselves, with humans, and with their envi-
ronment, within the social and cultural structure attached to
their roles” (Ge and Matarić 2009). While we build on re-
cent work in this area, we address a style of interaction that
is distinct in two ways. First, many existing projects con-
sider social interaction as the primary goal (Breazeal 2005;
Dautenhahn 2007; Castellano et al. 2010), while the robot
bartender supports social communication in the context of a
cooperative, task-based interaction. Second, while most so-
cial robotics systems deal with one-on-one interactive situ-
ations, the robot bartender must deal with dynamic, multi-
party scenarios: people will be constantly entering and leav-
ing the scene, so the robot must constantly choose appropri-
ate social behaviour while interacting with a series of new
partners. In this way, the bartender is similar to the system
developed by Bohus and Horvitz, which also handles situ-
ated, open-world, multimodal dialogue in scenarios such as
a reception desk and a question-answering game.

The use of general purpose planning techniques is cen-
tral to our work, an idea that has a long tradition in nat-
ural language generation and dialogue research. Early ap-
proaches to generation as planning (Perrault and Allen 1980;
Appelt 1985; Young and Moore 1994) focused primarily on
high-level structures, such as speech acts and discourse re-
lations, but suffered due to the inefficiency of the planners
available at the time. As a result, recent mainstream research

has tended to segregate task planning from discourse and di-
alogue planning, capturing the latter with more specialised
approaches such as finite state machines, information state
approaches, speech-act theories, dialogue games, or theories
of textual coherence (Traum and Allen 1992; Green and Car-
berry 1994; Matheson, Poesio, and Traum 2000; Beun 2001;
Asher and Lascarides 2003; Maudet 2004).

However, there has been renewed interest recently in ap-
plying modern planning techniques to problems in gener-
ation, such as sentence planning (Koller and Stone 2007),
instruction giving (Koller and Petrick 2011), and accom-
modation (Benotti 2008). The idea of using planning for
interaction management has also being revisited, by view-
ing the problem as an instance of planning with incom-
plete information and sensing (Stone 2000). This view is
also implicit in early BDI-based approaches, e.g., (Lit-
man and Allen 1987; Bratman, Israel, and Pollack 1988;
Cohen and Levesque 1990; Grosz and Sidner 1990). Initial
work using PKS has explored this connection (Steedman and
Petrick 2007), but fell short of implementing a tool to lever-
age the relationship for efficient dialogue planning. A related
approach (Brenner and Kruijff-Korbayová 2008) manages
dialogues by interleaving planning and execution, but fails
to solve the consequent problem of deciding when best to
commit to plan execution versus plan construction. Thus,
while recent planning approaches are promising, many are
not yet fully mature, and fall outside the mainstream of cur-
rent natural language dialogue research.

Conclusions and Future Work
In this paper we have discussed initial work aimed at com-
bining social interaction with task-based action in a dy-
namic, multiagent bartending domain, using an embodied
robot. Action selection uses the general purpose, off-the-
shelf PKS planner, combined with a social state manager and
plan monitor, supported by a vision and linguistic process-
ing system. Although this work is preliminary, we have pro-
duced a system that has been evaluated with human users.
We are currently in the process of extending this work to
more complex scenarios in the bartending domain, includ-
ing agents that can ask questions about drinks, a bartender
that can query agents for more information, agents that can
order multiple drinks, and situations where an agent may ter-
minate an interaction early. We believe that general purpose
automated planners offer potential solutions to the problem
of action selection in task-based interactive systems, as an
alternative to more specialised methods, such as those used
in many mainstream natural language dialogue systems.
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