

Edinburgh Research Explorer

Knowledge-Level Planning for Task-Based Social Interaction

Citation for published version:
Petrick, RPA & Foster, ME 2012, Knowledge-Level Planning for Task-Based Social Interaction. in Workshop
of the UK Planning and Scheduling Special Interest Group (PlanSIG 2012).

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Workshop of the UK Planning and Scheduling Special Interest Group (PlanSIG 2012)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43715281?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/knowledgelevel-planning-for-taskbased-social-interaction(1451b7cc-4502-444a-91dc-4a65cc69bfb3).html

Knowledge-Level Planning for Task-Based Social Interaction

Ronald P. A. Petrick
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, Scotland, UK
rpetrick@inf.ed.ac.uk

Mary Ellen Foster
School of Mathematical and Computer Sciences

Heriot-Watt University
Edinburgh EH14 4AS, Scotland, UK

M.E.Foster@hw.ac.uk

Abstract

A robot coexisting with humans must not only be able to
perform physical tasks, but must also be able to interact
with humans in a socially appropriate manner. In many
social settings, this involves the use of social signals like
gaze, facial expression, and language. In this paper, we
discuss the problem of planning social and task-based
actions for a robot that must interact with multiple hu-
man agents in a dynamic domain. We show how social
states are inferred from low-level sensors, using vision
and speech as input modalities, and use a general pur-
pose knowledge-level planner to model task, dialogue,
and social actions, as an alternative to current main-
stream methods of interaction management. The result-
ing system has been evaluated in a real-world study with
human subjects, in a simple bartending scenario.

Introduction and Motivation
As robots become integrated into daily life, they must in-
creasingly deal with situations in which socially appropri-
ate interaction is vital. In such settings, it is not enough for
a robot simply to achieve task-based goals; instead, it must
also be able to satisfy the social goals and obligations that
arise through interactions with people in real-world settings.
However, the problem of building a robot to meet the goals
of social interaction presents several challenges, especially
for the reasoning and action selection components of such a
system. Not only does the robot require the ability to recog-
nise and understand appropriate multimodal social signals
(e.g., gaze, facial expression, and language), but it must also
generate realistic responses using similar modalities.

To address this challenge, and help focus our work, we
are investigating the sub-problem of task-based social in-
teraction using a bartending scenario as our target domain.
In particular, we are developing a robot bartender (Fig-
ure 1) that is capable of dealing with multiple customers in
a drink-ordering scenario. Interactions in this scenario in-
corporate both task-based aspects (e.g., ordering and paying
for drinks) and social aspects (e.g., managing multiple inter-
actions). Moreover, the primary interaction modality in this
setting is speech; humans communicate with the robot via
speech and the robot must respond in a similar manner.

Our approach to high-level reasoning and action selec-
tion uses AI planning, specifically, knowledge-level plan-

Figure 1: The robot bartender

ning (Petrick and Bacchus 2002; 2004) techniques. The abil-
ity to reason and plan is essential for a cognitive agent act-
ing in a dynamic and incompletely known world such as
the bartending scenario. General-purpose automated plan-
ners are good at building goal-directed plans of action under
many challenging conditions, especially in task-based con-
texts. Moreover, recent work (Steedman and Petrick 2007;
Brenner and Kruijff-Korbayová 2008; Benotti 2008; Koller
and Petrick 2011) has investigated the use of automated
planning for natural language generation and dialogue—
research fields that have a long tradition of using plan-
ning, but where such techniques are no longer the focus of
mainstream study. The use of planning for natural language
processing is particularly important since plan generation
in the bartending domain will require a mix of traditional
task-based actions (e.g., handing the customer a drink) and
speech acts (e.g., asking a customer for a drink order).

While planning offers a tool for reasoning and action se-
lection, it is only one component in a larger robot system that
must operate in a real-world environment. This introduces
some difficulties that must be overcome when the planner
interacts with other parts of the system. For instance, the
problem of integrating low-level sensor data with symbolic
planners introduces representational difficulties that must
be addressed: high-level planners typically use representa-
tions based on discrete models of objects, properties, and
actions, described in logical languages, while many low-
level sensors tend to generate continuous streams of low-
level, noisy data. Moreover, some aspects of the traditional
planning problem, like the initial state, cannot be defined

A customer approaches the bar and looks at the bartender
ROBOT: [Looks at Customer 1] How can I help you?
CUSTOMER 1: A pint of cider, please.
Another customer approaches the bar and looks at the bartender
ROBOT: [Looks at Customer 2] One moment, please.
ROBOT: [Serves Customer 1]
ROBOT: [Looks at Customer 2]

Thanks for waiting. How can I help you?
CUSTOMER 2: I’d like a pint of beer.
ROBOT: [Serves Customer 2]

Figure 2: An example interaction in the bartending scenario.

offline (e.g., the number of customers in the bar). Instead,
they must be provided to the planner based on observations
of the scene sensed by low-level input modalities such as vi-
sion and speech. Furthermore, in an inherently dynamic do-
main like a busy bar, these sensors may not be able to fully
observe the world, or may provide noisy information. Thus,
the planner cannot be viewed as simply a black box but must
be appropriately situated in the wider cognitive system.

We focus on three main areas of work in this paper:

• First, we describe the structure of the robot system and
highlight the role of the planner within the architecture. In
particular, we focus on how states are derived from sensor
observations and how generated plans are executed.

• Second, we show how plans are built by viewing task-
based social interaction as an instance of planning with
incomplete information and sensing, using the PKS plan-
ner (Petrick and Bacchus 2002; 2004) as an alternative to
more mainstream methods of interaction management.

• Finally, we present a planning domain for a simple bar-
tending scenario, and show how it generates interesting
interaction behaviours. This domain has been evaluated in
a real-world study, and provides the basis for future work.

This work forms part of a larger project called JAMES, Joint
Action for Multimodal Embodied Social Systems, exploring
social interaction with robot systems.1

Overview of the Scenario and System
The target application for this work is a bartending scenario
supporting interactions similar to the one in Figure 2. In this
scenario, two agents enter the bar area and attempt to attract
the robot’s attention to order a drink. Even this simple inter-
action presents certain challenges to the robot system tasked
with the role of bartender: the vision system must track
the locations and body postures of the agents; the speech-
recognition system must detect and deal with speech in an
open setting; the reasoning components must determine that
both customers require attention and should ensure that they
are served in the order that they arrived; while the output
components must select and execute concrete actions for
each output channel that correctly realises high-level plans.

To address these challenges, the system architecture
builds on a standard three-layer structure: the low level deals

1See http://james-project.eu/ for more information.

Real World

Visual
Processing

Speech
Recogniser

Parser

State
Manager

Planner /
Execution Monitor

Output
Generation

Talking-Head
Controller

Robot Motion
Planner

State
Model

Figure 3: System architecture

with modality-specific information which is often contin-
uous (e.g., spatial coordinates and speech-recognition hy-
potheses); the mid-level works with more general, cross-
modality representations of states and events (e.g., agent in-
tentions); while the high level reasons about abstract struc-
tures in a logical form (e.g., knowledge and action).

Robot hardware and vision system: The robot platform
provides the sensors and effectors that interact with the
real world. The robot hardware itself consists of two 6-
degrees-of-freedom industrial manipulator arms with grip-
pers, mounted to resemble human arms. Sitting on top of the
main robot torso is a Philips iCat animatronic talking head
capable of producing facial expressions, rigid head motion,
and lip-synchronised synthesised speech.

One of the primary input modalities used by the robot is
vision. The vision system tracks the location, facial expres-
sions, gaze behaviour, and body language of all people in the
scene in real time. This done by using input from visual sen-
sors to detect and track the faces and hands of agents in the
scene, and to extract their 3D position (Baltzakis, Pateraki,
and Trahanias 2012). Each agent’s focus of attention is also
derived using torso orientation. The partially abstracted in-
formation resulting from this process is then made available
to modules like the state manager for further processing.

Natural language understanding: A second important
input modality in the system is speech, since linguistic in-
teraction is central to social communication. In our case,
the linguistic processing system combines a speech recog-
niser with a natural-language parser to create symbolic rep-
resentations of the speech produced by all users. For speech
recognition, the Microsoft Kinect and the associated Mi-
crosoft Speech API is used. For a user’s utterance u, the sys-
tem provides a list of intermediate hypotheses and associ-
ated confidence scores Πu = {〈h1, c1〉, 〈h2, c2〉, . . . 〈hn, cn〉},
where

∑n
i=1 ci = 1, a final best hypothesis h∗u along with

a confidence score c∗u, and an estimate of the source an-
gle, θ∗u. We have also created a speech recognition gram-
mar that covers all expected user utterances in the bartending
scenario. The resulting grammar constrains the recognition
task, producing more reliable results. (Currently, only the
top hypothesis with its confidence score and angle is used.)

Once the user’s speech has been recognised, it must be
further processed to extract the underlying meaning. To do
this, we parse the recognised speech hypothesis using a
grammar defined in OpenCCG (White 2006). OpenCCG is
an open-source implementation of Combinatory Categorial
Grammar (Steedman 2000), a unification-based categorial

framework which is both linguistically and computationally
attractive. The grammar contains both syntactic and seman-
tic information, and is used both for parsing the linguistic
input, and for surface realisation of the selected output (see
below). Once the top speech hypothesis has been parsed, the
logical form, confidence measure, and angle information is
passed as an XML structure to the state manager.

State management: The primary role of the state man-
ager is to turn the continuous stream of messages produced
by the low-level input components into a discrete represen-
tation that combines social and task-based properties. For-
mally, the low-level input components correspond to a set
Σ of sensors, Σ = {σ1, σ2, . . . , σn}, where each sensor σi
returns an observation obs(σi,t) about the world at a time
point t. We denote the set of all sensor readings at t by
Σt = {obs(σ1,t), obs(σ2,t), . . . , obs(σn,t)}. Some sensors (e.g.,
the speech recogniser) may also attach a confidence mea-
sure to an observation, indicating its estimated reliability,
and capturing the fact that real-world sensors are often noisy.

The state representation is based on a set Φ of fluents,
Φ = { f1, f2, . . . , fm}: first-order predicates and functions that
denote particular qualities of the world, the robot, and other
entities in the domain. We denote the value of a fluent fi
at a time point t by fi,t, and the set of all fluent values at t
by Φt. Fluents are updated in a Markovian fashion, where
the value of a fluent at time point t + 1 is a function of the
current observations and fluent values at time point t, i.e.,
fi,t+1 = Γi(Σt,Φt). Typically, the mapping between sensors
and fluents is not one-to-one: a sensor may map to zero, one,
or many fluents, as appropriate. A state S t is then a snapshot
of the values of all fluents at a time point t, i.e., S t = Φt.

Intuitively, states represent a point of intersection between
low-level sensor data and the high-level structures used by
components like the planner. Since states are induced from
the mapping of sensor observations to fluent values, the chal-
lenge of building an effective state manager rests on defin-
ing appropriate mapping functions Γi. In the context of so-
cial robotics, this is the problem of social signal processing
(Vinciarelli, Pantic, and Bourlard 2009), which has received
an increasing amount of attention in recent years. This pro-
cess is not always straightforward: often, it is not the sensor
data at a single time point that determines the value of a flu-
ent, but rather the patterns found in a sequence of signals.
Thus, the value of a fluent might combine information from
multiple signals and require temporal cross-modal fusion.

In the bartender robot system, we treat each low-level in-
put component as a set of sensors. The linguistic interpreter
corresponds to three sensors: two that observe the parsed
content of a user’s utterance u and its associated confidence
score (the pair 〈h∗u, c

∗
u〉), and another that returns the esti-

mated angle of the sound source (θ∗u). The vision system also
senses a large number of properties about the agents and ob-
jects in the world, including the location, face and torso ori-
entation, and body posture, each of which corresponds to a
set of individual sensors, again with confidence scores.

Certain low-level output components are also treated as
sensors. For example, the robot arms provide information
about the start and end of manipulation actions, together

with their success or failure, while the speech synthesiser
reports the start and end of all system utterances. Modelling
output components as sensors allows information from these
sources to be included in the derived state, ensuring the cur-
rent state of interaction is accurately reflected (e.g., the state
of turn taking or whether physical actions succeeded).

The actual fluents modelled in the state are defined by
the particular requirements of the scenario: we represent all
agents in the scene, their locations, torso orientations, atten-
tional states, and drink requests if they have made one. In
addition, we also store the coordinates of all sensed entities
and other properties from the vision system to enable the
low-level output components to access them as necessary.

In the current system, the state manager is rule-based. One
set of rules infers user social states (e.g., seeking attention)
based on the low-level sensor data, using guidelines derived
from a study of human-human interactions in the bartender
domain (Huth 2011). The state manager also incorporates
rules that map from the logical forms produced by the parser
into communicative acts (e.g., drink orders), and that use the
source localisation from the speech recogniser together with
the vision properties to determine which customer is likely
to be speaking. A final set of rules determines when new
state reports are published, which helps control turn-taking.

Planning and execution monitoring: The high-level
planner is responsible for taking state reports from the state
manager and selecting actions to be executed on the robot.
A related component, the execution monitor, tracks the exe-
cution of planned actions and, in the case of failures or plan
divergences, ensures alternative actions are replanned.

Plans are generated using PKS (Planning with Knowledge
and Sensing) (Petrick and Bacchus 2002; 2004), a condi-
tional planner that works with incomplete information and
sensing actions. PKS operates at the knowledge level and
reasons about how the planner’s knowledge state, rather than
the world state, changes due to action. To do this, PKS works
with a subset of a first-order logical language and limited
inference. While this representation supports features such
as functions and run-time variables, these restrictions also
mean that certain types of knowledge (e.g., general disjunc-
tive information) cannot be directly modelled in PKS.

PKS is based on a generalisation of STRIPS (Fikes and
Nilsson 1971). In STRIPS, the state of the world is mod-
elled by a single database. Actions update this database and,
by doing so, update the planner’s world model. In PKS, the
planner’s knowledge state, rather than the world state, is rep-
resented by a set of five databases, each of which models
a particular type of knowledge, and can be understood in
terms of a modal logic of knowledge. Actions can modify
any of the databases, which updates the planner’s knowledge
state. To ensure efficient inference, PKS restricts the type of
knowledge (especially disjunctions) it can represent:

Kf : This database is like a STRIPS database except that
both positive and negative facts are permitted and the
closed world assumption is not applied. Kf is used to
model action effects that change the world. Kf can in-
clude any ground literal or function (in)equality mapping
`, where ` ∈ Kf means “the planner knows `.”

Kw : This database models the plan-time effects of “binary”
sensing actions. φ ∈ Kw means that at plan time the plan-
ner either “knows φ or knows ¬φ,” and that at run time
this disjunction will be resolved. PKS uses such informa-
tion to include conditional branches in a plan, where each
branch assumes one of the possible outcomes is true.

Kv : This database stores information about function val-
ues that will become known at execution time. In particu-
lar, Kv can model the plan-time effects of sensing actions
that return constants. Kv can contain any unnested func-
tion term f , where f ∈ Kv means that at plan time the
planner “knows the value of f .” At execution time the
planner will have definite information about f ’s value. As
a result, PKS can use Kv terms as run-time variables in its
plans, and can build conditional plan branches when the
set of possible mappings for a function is restricted.

Kx : This database models the planner’s “exclusive-or”
knowledge. Entries in Kx have the form (`1|`2| . . . |`n),
where each `i is a ground literal.Such formulae represent a
common type of disjunctive knowledge common in plan-
ning domains, namely that “exactly one of the `i is true.”

(A fifth database called LCW is not used in this work.)
PKS’s databases can be inspected through a set of prim-

itive queries that ask simple questions about the plan-
ner’s knowledge state: whether facts are (not) known to
be true (a query of the form [¬]K(φ)), whether function
values are (not) known (a query [¬]Kv(t)), or if the plan-
ner “knows whether” certain properties are true or not (a
query [¬]Kw(φ)). An inference algorithm evaluates primitive
queries by checking the contents of the various databases.

An action in PKS is modelled by a set of preconditions
that query PKS’s knowledge state, and a set of effects that
update the state. Preconditions are simply a list of primitive
queries. Effects are described by a collection of STRIPS-
style “add” and “delete” operations that modify the contents
of individual databases. E.g., add(Kf , φ) adds φ to the Kf
database, while del(Kw, φ) removes φ from the Kw database.

PKS constructs plans by reasoning about actions in a sim-
ple forward-chaining manner: if the preconditions of an ac-
tion are satisfied by the planner’s knowledge state, then the
action’s effects are applied to the state to produce a new
knowledge state. Planning then continues from the result-
ing state. PKS can also build plans with branches, by con-
sidering the possible outcomes of its Kw and Kv knowledge.
Planning continues along each branch until it satisfies the
goal conditions, also specified as a list of primitive queries.

In addition to the main planner, PKS is aided by an ex-
ecution monitor which controls replanning. The monitor
takes as input a PKS plan, whose execution it tracks, and
a state provided by the state manager, denoting the sensed
state. The task of the monitor is to assess how close an ex-
pected, planned state is to a sensed state in order to deter-
mine whether a plan should continue to be executed. To do
this, it tries to ensure that a state still permits the next action
(or set of actions) in the plan to be executed, by testing an ac-
tion’s preconditions against the current set of (sensed) state
properties. In the case of a mismatch, the planner is directed
to build a new plan, using the sensed state as its initial state.

Output generation: Output in the system is based on di-
viding actions selected by the planner into speech, head mo-
tions, and arm manipulation behaviours that can be executed
by the robot. To do so, we use a structure containing speci-
fications for each of the output modalities (Isard and Math-
eson 2012). This structure is generated using a rule-based
approach, which splits the planned action into its compo-
nent subparts. The resulting structure is then passed to the
particular output module for execution.

On the linguistic side, we use OpenCCG to generate the
robot language output, with the same OpenCCG grammar
used for input, since it also contains the language neces-
sary for speech output. The language output description is
specified in terms of communicative acts based on Rhetor-
ical Structure Theory (RST) (Mann and Thompson 1988).
A generation module then translates the RST structure into
OpenCCG logical forms, which are sent to the OpenCCG
realiser which outputs text strings that can be turned into
speech by the robot’s animatronic head.

In addition to speech, the robot system also expresses it-
self through facial expressions, gaze, and arm manipulation
actions. These behaviours are coordinated across the various
multimodal output channels to ensure that they are synchro-
nised both temporally and spatially. The animatronic head
can currently express a number of pre-assigned expressions,
and the robot arm can perform tasks like grasping objects to
hand over a drink to a customer. For instance, the high-level
action serve(a1,beer) (i.e., “serve a beer to agent a1”)
is transformed into a specification that results in the robot
smiling (an animatronic head facial expression) while hand-
ing over a beer (a robot arm manipulation action) and saying
to the customer “here is your drink” (speech output).

Planning Interactions in a Bartending Domain
All actions in the bartending scenario (i.e., task and social)
are modelled as part of the same underlying planning do-
main, rather than using specialised tools as is common prac-
tice in modern interactive dialogue systems. As a result, our
planning domain must capture the necessary properties and
actions of the world, agents, and objects.

Domain properties are based on fluents defined in the state
manager. In particular, predicates in the domain include:
• seeksAttn(?a): agent ?a seeks attention,
• greeted(?a): agent ?a has been greeted,
• ordered(?a): agent ?a has ordered,
• ackOrder(?a): agent ?a’s order has been acknowledged,
• served(?a): agent ?a has been served,
• otherAttnReq: other agents are seeking attention,
• badASR(?a): agent ?a was not understood, and
• transEnd(?a): the transaction with ?a has ended.
Two functions are also defined:
• inTrans = ?a: the robot is interacting with ?a, and
• request(?a) = ?d: agent ?a has requested drink ?d.
We use a typed version of the domain with two types: agent
and drink. All predicate arguments accept constants of type
agent, while inTrans maps to type agent, and request
takes an argument of type agent and maps to type drink.

action greet(?a : agent)
preconds: K(inTrans = nil) & ¬K(greeted(?a)) &

K(seeksAttn(?a)) & ¬K(ordered(?a)) &
¬K(otherAttnReq) & ¬K(badASR(?a))

effects: add(Kf,greeted(?a)),
add(Kf,inTrans = ?a)

action ask-drink(?a : agent)
preconds: K(inTrans = ?a) & ¬K(ordered(?a))

¬K(otherAttnReq) & ¬K(badASR(?a)) &
effects: add(Kf,ordered(?a)),

add(Kv,request(?a))

action ack-order(?a : agent)
preconds: K(inTrans = ?a) & K(ordered(?a)) &

¬K(ackOrder(?a)) & ¬K(otherAttnReq) &
¬K(badASR(?a))

effects: add(Kf,ackOrder(?a))

action serve(?a : agent, ?d : drink)
preconds: K(inTrans = ?a) & K(ordered(?a)) &

Kv(request(?a)) & K(request(?a) = ?d) &
K(ackOrder(?a)) & ¬K(otherAttnReq) &
¬K(badASR(?a))

effects: add(Kf,served(?a))

action bye(?a : agent)
preconds: K(inTrans = ?a) & K(served(?a)) &

¬K(otherAttnReq) & ¬K(badASR(?a))
effects: add(Kf,transEnd(?a)),

add(Kf,inTrans = nil)

action not-understand(?a : agent)
preconds: K(inTrans = ?a) & K(badASR(?a))
effects: del(Kf,badASR(?a))

Figure 4: PKS actions in a single agent interaction

Actions in the domain are defined using the above fluents.
In particular, our domain includes eight high-level actions:
• greet(?a): greet an agent ?a,
• ask-drink(?a): ask agent ?a for a drink order,
• ack-order(?a): acknowledge agent ?a’s drink order,
• serve(?a,?d): serve drink ?d to agent ?a,
• bye(?a): end an interaction with agent ?a,
• not-understand(?a): alert agent ?a that its utterance

was not understood, and
• wait(?a): tell agent ?a to wait, and
• ack-wait(?a): thank agent ?a for waiting.
Definitions for the first six actions (required for single agent
interactions) are given in Figure 4. Actions are described
at an abstract level and include a mix of physical, sensory,
and speech acts. For instance, serve is a standard plan-
ning action with a deterministic effect (i.e., it adds definite
knowledge to PKS’s Kf database); however, when executed
it causes the robot to hand over a drink to an agent and con-
firm the drink order through speech. Actions like greet,
ack-order, and bye are modelled in a similar way, but
only map to speech output at run time (e.g., “hello”, “okay”,
and “good-bye”). The most interesting action is ask-drink
which is modelled as a sensing action: the function term
request is added to the planner’s Kv database as an effect,

indicating that this piece of information will become known
at execution time. The not-understand action is used as a
directive to the speech output system to produce an utterance
that (hopefully) causes the agent to repeat its last response.
The wait and ack-wait actions control interactions when
multiple agents are seeking the attention of the bartender.

Finally, we also require a description of the domain’s ini-
tial state and goal before we can build plans. The initial state,
which includes a list of the objects (drinks) and agents (cus-
tomers) in the bar, is not hard-coded in the domain descrip-
tion. Instead, this information is supplied to the planner by
the state manager. Changes in the object or agent list are also
sent to the planner, causing it to update its domain model.
The inTrans function is initially set to nil to indicate that
the robot isn’t interacting with any agent. The planner’s goal
is simply to serve each agent seeking attention, i.e.,

forallK(?a : agent)
K(seeksAttn(?a)) => K(transEnd(?a)).

This goal is viewed as a rolling target which is reassessed
each time a state report is received from the state manager.
We now consider some plans we can generate in this domain.

Ordering a drink: We first consider the case where there
is a single agent a1. No specific drinks are defined and no
other state information is supplied, except that the robot is
not interacting with any agent (i.e., inTrans = nil ∈ Kf).
The appearance of a1 seeking attention is reported to PKS in
an initial state report, which has the effect of adding a new
constant named a1 of type agent to the planner’s domain
description, and adding a new fact seeksAttn(a1) to the
initial Kf database. Using this initial state and the above ac-
tions, PKS can build the following plan to achieve the goal:

greet(a1), [Greet agent a1]
ask-drink(a1), [Ask a1 for drink order]
ack-order(a1), [Acknowledge a1’s drink order]
serve(a1,request(a1)), [Give the drink to a1]
bye(a1). [End the transaction]

Initially, the planner can choose greet(a1) since
inTrans = nil ∈ Kf and seeksAttn(a1) ∈ Kf ,
and the other preconditions are trivially satisfied (i.e.,
none of greeted(a1), ordered(a1), otherAttnReq, or
badASR(a1) are in Kf). After greet(a1), the planner is in
a state where inTrans = a1 ∈ Kf and greeted(a1) ∈ Kf .
The ask-drink(a1) action can now be chosen, updat-
ing PKS’s knowledge state so that ordered(a1) ∈ Kf
and request(a1) ∈ Kv. The next action considered
by the planner is ack-order(a1), in particular since
ackOrder(a1) < Kf . As a result ackOrder(a1) is added
to Kf . Consider the serve(a1,request(a1)) action.
Since inTrans = a1 remains in Kf , the first precondition
of the action is satisfied. Since ordered(a1) ∈ Kf ,
the second precondition, K(ordered(a1)), holds.
Also, since request(a1) ∈ Kv, the third precon-
dition Kv(request(a1)) holds (i.e., the value of
request(a1) is known). The fourth precondition,
K(request(a1)=request(a1)) is trivially satisfied since
both sides of the equality are syntactically equal; this also
has the effect of binding request(a1) to serve’s second

parameter. Thus, request(a1) acts as a run-time variable
whose definite value (i.e., a1’s drink order) will become
known at run time. The fifth precondition is satisfied by the
effects of ack-order(a1). The remaining two precondi-
tions are also trivially satisfied. The action updates Kf so that
served(a1) ∈ Kf , leaving Kv unchanged. Finally, bye(a1)
is added to the plan resulting in inTrans = nil ∈ Kf and
transEnd(a1) ∈ Kf , satisfying the goal.

Ordering a drink with restricted drink choices: The
above plan relies on PKS’s ability to use function terms as
run-time variables in parameterised plans. However, doing
so requires additional reasoning, potentially slowing down
plan generation in domains where many such properties
must be considered. Furthermore, it does not restrict the pos-
sible mappings for request, except that it must be a drink.

Consider a second example, again with a single agent a1
seeking attention, where PKS is also told there are three pos-
sible drinks that can be ordered: juice, water, and beer. In this
case, the drinks are represented as constants of type drink,
i.e., juice, water, and beer. Information about the drink
options is also put into PKS’s Kx database as the formula:

(request(a1) = juice | request(a1) = water |
request(a1) = beer),

which restricts the possible mappings for request(a1).
PKS can now build a plan of the form:

greet(a1), [Greet agent a1]
ask-drink(a1), [Ask a1 for drink order]
ack-order(a1), [Acknowledge a1’s order]
branch(request(a1)) [Form branching plan]
K(request(a1) = juice): [If order is juice]
serve(a1,juice) [Serve juice to a1]

K(request(a1) = water): [If order is water]
serve(a1,water) [Serve water to a1]

K(request(a1) = beer): [If order is beer]
serve(a1,beer) [Serve beer to a1]

bye(a1). [End the transaction]

In this case, a conditional plan is built with branches for
each possible mapping of request(a1). E.g., in the first
branch request(a1) = juice is assumed to be in the Kf
database; in the second branch request(a1) = water is
in Kf ; and so on. Planning continues in each branch under
each assumption. (We note that this type of branching was
only possible because the planner had initial Kx knowledge
that restricted request(a1), combined with Kv knowledge
provided by the ask-drink action.) Along each branch, an
appropriate serve action is added to deliver the appropriate
drink. In more complex domains (currently under develop-
ment), each branch may require different actions to serve a
drink, such as putting the drink in a special glass or inter-
acting further with the agent using additional information
gathering actions (i.e., “would you like ice in your water?”).

Ordering drinks with multiple agents: Our simple plan-
ning domain also enables more than one agent to be served
if the state manager reports multiple customers are seeking
attention. For instance, say that there are two agents, a1 and
a2 (as in Figure 2). One possible plan that might be built is:

wait(a2), [Tell agent a2 to wait]
greet(a1), [Greet agent a1]
ask-drink(a1), [Ask a1 for drink order]
ack-order(a1), [Acknowledge a1’s drink order]
serve(a1,request(a1)), [Give the drink to a1]
bye(a1), [End a1’s transaction]
ack-wait(a2), [Thank a2 for waiting]
ask-drink(a2), [Ask a2 for drink order]
ack-order(a1), [Acknowledge a2’s drink order]
serve(a2,request(a2)), [Give the drink to a2]
bye(a2). [End a2’s transaction]

Thus, a1’s drink order is taken and processed, followed by
a2’s order. The wait and ack-wait actions (which aren’t
needed in the single agent plan) are used to defer a trans-
action with a2 until a1’s transaction has finished. (The
otherAttnReq property, which is a derived property de-
fined in terms of seeksAttn, ensures that other agents seek-
ing attention are told to wait before an agent is served.)

One drawback of our domain encoding is that agents who
are asked to wait are not necessarily served in the order
they are deferred. From a task achievement point of view,
such plans still succeed in their goal of serving drinks to all
agents. However, from a social interaction point of view they
potentially fail to be appropriate (depending on local pub
culture), since some agents may be served before others that
have been waiting for longer periods of time. This situation
can arise in our domain since the appearance of a new agent
is dynamically reported to the planner, possibly triggering a
replanning operation: the newly built plan might preempt a
waiting agent for a newly-arrived agent as the next customer
for the bartender to serve. Since socially appropriate inter-
action is central to this work, we are modifying our domain
to include ordering constraints on waiting agents.

Low-confidence utterances and overanswering: Once a
plan is built, it is executed by the robot, one action at a time.
Each action is divided into head, speech, and arm behaviours
based on a simple set of rules, before it is executed in the real
world. At run time, PKS’s execution monitor assesses plan
correctness by comparing subsequent state reports from the
state manager against states predicted by the planner. In the
case of disagreement, for instance due to unexpected out-
comes like action failure, the planner is invoked to construct
a new plan using the sensed state as its new initial state. This
method is particularly useful for responding to unexpected
responses by agents interacting with the bartender.

For example, if the planner receives a report that a1’s
response to ask-drink(a1) was not understood, for in-
stance due to low-confidence automatic speech recogni-
tion, the state report sent to PKS will have no value for
request(a1), and badASR(a1) will also appear. This will
be detected by the monitor and PKS will be directed to build
a new plan. One result is a modified version of the original
plan that first informs a1 they were not understood before re-
peating the ask-drink action and continuing the old plan:

not-understand(a1), [Alert a1 it was not understood]
ask-drink(a1), [Ask a1 again for drink order]
...continue with remainder of old plan...

Thus, replanning produces a loop that repeats an action in

an attempt to obtain the information the planner requires in
order to continue executing the previous plan.

Another useful consequence of this approach is that cer-
tain types of over-answering by the interacting agent can be
handled by the execution monitor through replanning. For
instance, a greet(a1) action by the bartender might cause
the customer to respond with an utterance that includes a
drink order. In this case, the state manager would include an
appropriate request(a1) mapping in the state description,
along with ordered(a1). The monitor would detect that
the preconditions for ask-drink(a1) aren’t met and direct
PKS to replan. A new plan could then omit ask-drink and
proceed to acknowledge and serve the requested drink.

Extended Reasoning for Dialogue Planning
Although our simple bartending domain handles a number
of realistic interactions, we are also extending it and the un-
derlying planner to model more complex scenarios which
arise in dialogue-based interactions with human agents.

First, we are exploring the idea of passing an n-best list
of processed automatic speech recognition (ASR) hypothe-
ses to the state manager for inclusion in the state represen-
tation, as a set of alternative interpretations for an agent’s
utterance. In practical terms, the n-best can be determined
by the list of top entries that account for a significant prob-
ability mass in terms of the hypotheses’ associated confi-
dence measures, i.e., {〈h1, c1〉, 〈h2, c2〉, . . . 〈hn, cn〉}, such that∑n

i=1 ci > θ, where θ is some threshold. Using this list,
the state manager can then derive a set of interpretations,
{φ1, φ2, . . . , φn}, where each φi is a conjunction of state flu-
ents. (In our domain, each φi is usually a single fluent.)

At the planning level, such disjunctive state information
can be represented in PKS’s Kx database as an “exclusive
or” formula of the form (φ1|φ2| . . . |φn). Once such informa-
tion is available in the planner’s knowledge state, it can be
used during plan construction. In practice, such knowledge
often has the effect of requiring extra actions in a plan, to dis-
ambiguate between Kx alternatives. To aid in this process, we
are adding new sensing actions (corresponding to questions
the robot can ask), to help clarify uncertain beliefs.

Second, we are also extending PKS’s ability to work with
certain types of multiagent knowledge that arise in dialogue
scenarios (Steedman and Petrick 2007). For instance, com-
mon ground information (i.e., the beliefs about the conver-
sational state that arise during an interaction) is often used
by mainstream dialogue systems but is not present in our
domain. Currently, PKS cannot easily model other agents’
beliefs; rather, such information must be encoded using
the standard (single agent) tools available in PKS. We are
adding new operators to PKS that enable it to directly repre-
sent and reason with such knowledge during planning. This
is particularly important in dialogue contexts, since more ef-
fective dialogue moves can often be made by taking into
consideration what other agents believe about an interaction.

Currently, in the ideal case, our simple planning domain
guides the robot’s interaction through a relatively fixed se-
quence of actions derived from studies of human-human in-
teraction in real bars (Huth 2011). The next version of the
system will extend this necessary baseline by adding more

flexibility to the drink ordering process (see below), giving
the planner and execution monitor greater scope. The addi-
tion of multiagent knowledge in PKS will also enable the
planner to reason about agent intentions and beliefs in a less
rigid way, letting us plan with more domain-independent
speech acts. However, even the present, simple scenario has
proven useful for testing off-the-shelf planning tools in place
of more specialised approaches to interaction management.

Discussion and Related Work
We have tested our basic bartending domain with human
users in a drink ordering scenario. In particular, we carried
out a user evaluation in which 31 participants interacted with
the robot bartender in three separate social interactions in-
volving multiple agents. Overall, most customers (95%) suc-
cessfully ordered a drink from the bartender, and the robot
dealt appropriately with multiple simultaneous customers
and with unexpected situations of the form described above
(i.e., over-answering and input-processing failure). More de-
tails of this evaluation are available in (Foster et al. 2012).

The general focus of this work is social robotics, which
extends traditional robotics by situating robots in social and
cultural contexts. In contrast to recent work in this field, we
address a different style of interaction which is distinctive in
two ways. First, existing projects generally consider social
interaction as the primary goal, while our robot supports so-
cial communication in the context of cooperative, task-based
interaction. Second, while most social robotics systems deal
primarily with one-on-one interactive situations, such as
building long-term companion relationships (Breazeal 2005;
Dautenhahn 2007), our bartender must deal with dynamic,
multiagent scenarios: people will constantly enter and leave
the scene, so the robot must continually choose appropriate
social behaviour while interacting with new partners.

The use of planning is central to this work, an idea with
a long tradition in natural language generation and dia-
logue. Early approaches to generation as planning (Perrault
and Allen 1980; Appelt 1985; Young and Moore 1994) fo-
cused primarily on high-level structures, such as speech acts
and discourse relations, but suffered due to the inefficiency
of the planners available at the time. As a result, recent
mainstream research has tended to segregate task planning
from discourse and dialogue planning, capturing the latter
with specialised approaches such as finite state machines,
information states, speech-act theories, or dialogue games
(Traum and Allen 1992; Matheson, Poesio, and Traum 2000;
Asher and Lascarides 2003; Maudet 2004).

Recently, there has been renewed interest in applying
planning methods to natural language problems such as sen-
tence planning (Koller and Stone 2007), instruction giv-
ing (Koller and Petrick 2011), and accommodation (Benotti
2008). The idea of treating interaction management as plan-
ning with incomplete information and sensing has also been
revisited (Stone 2000), a view that is implicit in early BDI-
based approaches, e.g., (Litman and Allen 1987; Cohen and
Levesque 1990; Grosz and Sidner 1990). Initial work using
PKS also explored this connection (Steedman and Petrick
2007), but fell short of implementing an efficient tool. A re-
lated approach (Brenner and Kruijff-Korbayová 2008) man-

ages dialogues by interleaving planning and execution, but
fails to solve the problem of deciding when best to commit to
plan execution versus plan construction. Thus, many recent
planning approaches are promising, but not yet fully mature,
and fall outside of mainstream interactive systems research.

Conclusions and Future Work
We presented an approach to task-based social interaction in
a robot bartender domain, using knowledge-level planning
techniques. Actions are selected by the PKS planner, using
states derived from low-level visual and speech inputs. Plans
are executed on a robot platform to control an animatronic
head, speech synthesiser, and a pair of manipulator arms.

We are currently extending the bartending domain to sup-
port more complex interactions, including agents that can
ask questions about drinks, a bartender that can query agents
for more information, and groups of agents that can order
multiple drinks. Managing such scenarios will require addi-
tional support from the state manager. To address this, we
will make use of supervised learning techniques trained on
data gathered from humans interacting with both real and
artificial bartenders, e.g., using methods similar to those of
(Bohus and Horvitz 2009). Based on the results of our initial
evaluation, we believe that general-purpose planning contin-
ues to be a promising tool for developing task-based inter-
active systems, as an alternative to specialised approaches,
such as those used in many dialogue systems.

Acknowledgements
The authors thank their colleagues from the JAMES
Project who helped implement the bartender system: Andre
Gaschler and Manuel Giuliani from fortiss Gmbh, Maria Pa-
teraki from FORTH-Hellas, and Amy Isard and Richard To-
bin from the University of Edinburgh. This research has re-
ceived funding from the European Union’s 7th Framework
Programme (FP7/2007–2013) under grant No. 270435.

References
Appelt, D. 1985. Planning English Sentences. Cambridge Univer-
sity Press.
Asher, N., and Lascarides, A. 2003. Logics of Conversation. Cam-
bridge University Press.
Baltzakis, H.; Pateraki, M.; and Trahanias, P. 2012. Visual tracking
of hands, faces and facial features of multiple persons. Machine
Vision and Applications 1–17.
Benotti, L. 2008. Accommodation through tacit sensing. In Pro-
ceedings of SemDial-2008 (LONDIAL), 75–82.
Bohus, D., and Horvitz, E. 2009. Dialog in the open world: plat-
form and applications. In Proceedings of ICMI-2009, 31–38.
Breazeal, C. 2005. Socially intelligent robots. interactions
12(2):19–22.
Brenner, M., and Kruijff-Korbayová, I. 2008. A continual multi-
agent planning approach to situated dialogue. In Proceedings of
SemDial-2008 (LONDIAL), 67–74.
Cohen, P., and Levesque, H. 1990. Rational interaction as the basis
for communication. In Intentions in Communication. MIT Press.
221–255.

Dautenhahn, K. 2007. Socially intelligent robots: dimensions of
human-robot interaction. Philosophical Transactions of the Royal
Society B: Biological Sciences 362(1480):679–704.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new approach to
the application of theorem proving to problem solving. Artificial
Intelligence 2:189–208.
Foster, M. E.; Gaschler, A.; Giuliani, M.; Isard, A.; Pateraki, M.;
and Petrick, R. P. A. 2012. Two people walk into a bar: Dynamic
multi-party social interaction with a robot agent. In Proceedings of
ICMI-2012.
Grosz, B., and Sidner, C. 1990. Plans for discourse. In Intentions
in Communication. MIT Press. 417–444.
Huth, K. 2011. Wie man ein Bier bestellt. MA thesis, Fakultät für
Linguistik und Literaturwissenschaft, Universität Bielefeld.
Isard, A., and Matheson, C. 2012. Rhetorical structure for natural
language generation in dialogue. In Proceedings of SemDial-2012
(SeineDial), 161–162.
Koller, A., and Petrick, R. P. A. 2011. Experiences with plan-
ning for natural language generation. Computational Intelligence
27(1):23–40.
Koller, A., and Stone, M. 2007. Sentence generation as planning.
In Proceedings of ACL-2007, 336–343.
Litman, D., and Allen, J. 1987. A plan recognition model for
subdialogues in conversation. Cognitive Science 11:163–200.
Mann, W. C., and Thompson, S. A. 1988. Rhetorical structure the-
ory: Toward a functional theory of text organization. Text 8(3):243–
281.
Matheson, C.; Poesio, M.; and Traum, D. 2000. Modeling ground-
ing and discourse obligations using update rules. In Proceedings of
NAACL-2000.
Maudet, N. 2004. Negotiating language games. Autonomous
Agents and Multi-Agent Systems 7:229–233.
Perrault, C. R., and Allen, J. F. 1980. A plan-based analysis of in-
direct speech acts. American Journal of Computational Linguistics
6(3–4):167–182.
Petrick, R. P. A., and Bacchus, F. 2002. A knowledge-based ap-
proach to planning with incomplete information and sensing. In
Proceedings of AIPS-2002, 212–221.
Petrick, R. P. A., and Bacchus, F. 2004. Extending the knowledge-
based approach to planning with incomplete information and sens-
ing. In Proceedings of ICAPS-2004, 2–11.
Steedman, M., and Petrick, R. P. A. 2007. Planning dialog actions.
In Proceedings of SIGdial-2007, 265–272.
Steedman, M. 2000. The Syntactic Process. MIT Press.
Stone, M. 2000. Towards a computational account of knowl-
edge, action and inference in instructions. Journal of Language
and Computation 1:231–246.
Traum, D., and Allen, J. 1992. A speech acts approach to ground-
ing in conversation. In Proceedings of ICSLP-1992, 137–140.
Vinciarelli, A.; Pantic, M.; and Bourlard, H. 2009. Social sig-
nal processing: Survey of an emerging domain. Image and Vision
Computing 27(12):1743–1759.
White, M. 2006. Efficient realization of coordinate structures in
Combinatory Categorial Grammar. Research on Language and
Computation 4(1):39–75.
Young, R. M., and Moore, J. D. 1994. DPOCL: a principled ap-
proach to discourse planning. In Proceedings of the International
Workshop on Natural Language Generation, 13–20.

