

Edinburgh Research Explorer

Plan-Based Social Interaction with a Robot Bartender

Citation for published version:
Petrick, RPA & Foster, ME 2013, Plan-Based Social Interaction with a Robot Bartender. in Proceedings of
the ICAPS 2013 Application Showcase. pp. 10-13.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the ICAPS 2013 Application Showcase

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43715279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/planbased-social-interaction-with-a-robot-bartender(fe62fa04-ba5e-427d-84a9-4a7eabc3eb4c).html

Plan-Based Social Interaction with a Robot Bartender

Ronald P. A. Petrick
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, Scotland, UK
rpetrick@inf.ed.ac.uk

Mary Ellen Foster
School of Mathematical and Computer Sciences

Heriot-Watt University
Edinburgh EH14 4AS, Scotland, UK

M.E.Foster@hw.ac.uk

Abstract

A robot coexisting with humans must not only be able
to perform physical tasks, but must also be able to in-
teract with humans in a socially appropriate manner.
We describe an application of planning to task-based
social interaction using a robot that must interact with
multiple human agents in a simple bartending domain.
The resulting system infers social states from low-level
sensors, using vision and speech as input modalities,
and uses the knowledge-level PKS planner to construct
plans with task, dialogue, and social actions.

Introduction and Motivation
As robots become integrated into daily life, they must in-
creasingly deal with situations in which socially appropriate
interaction is vital. In such settings, it is not enough for a
robot simply to achieve its task-based goals; instead, it must
also be able to satisfy the social goals and obligations that
arise through interactions with people in real-world settings.
As a result, a robot not only requires the necessary physical
skills to perform objective tasks in the world, but also the ap-
propriate social skills to understand and respond to the inten-
tions, desires, and affective states of its interaction partners.
To address this challenge, we are investigating task-based
social interaction in a bartending domain, by developing a
robot bartender (Figure 1) that is capable of dealing with
multiple human customers in a drink-ordering scenario.

Key to our approach is the use of high-level planning
techniques, which are responsible for action selection and
reasoning in the robot system. Specifically, we use the
knowledge-level planner PKS (Petrick and Bacchus 2002;
2004), a choice that is motivated by PKS’s ability to work
with incomplete information and sensing actions: not only
must the robot perform physical tasks (e.g., handing a cus-
tomer a drink), it will often have to gather information
it does not possess from its environment (e.g., asking a
customer for a drink order). Moreover, since interactions
will involve human customers, speech will be the main in-
put modality and many of the planner’s actions will corre-
spond to speech acts, providing a link to natural language
processing—a research field with a long tradition of using
planning, but where general-purpose planning techniques
are not the focus of mainstream study.

Figure 1: The JAMES robot bartender

While planning offers a tool for action selection, it is only
one component in a larger system that operates in a real-
world environment. A second, central component in our sys-
tem is the state manager which mediates between the low-
level input sensors and the planner, and which overcomes
some of the representational difficulties involved in bridg-
ing the gap between continuous, low-level input streams and
symbolic, high-level state-based reasoning.

In the rest of the paper we give a technical description
of the robot system, with a focus on the role of the planner
and how it is integrated in this framework. The application
of this work is a simple bartending scenario, which is mod-
elled as a PKS planning domain. More details on this work
can be found in (Petrick and Foster 2013). This work forms
part of a project called JAMES (Joint Action for Multimodal
Embodied Social Systems; see james-project.eu).

Robot System Architecture and Components
The target application for this work is a bartending scenario,
using the robot platforms shown in Figure 1. The robot hard-
ware itself (Figure 1) consists of two 6-degrees-of-freedom
industrial manipulator arms with grippers, mounted to re-
semble human arms. Sitting on the main robot torso is an
animatronic talking head capable of producing facial expres-
sions, rigid head motion, and lip-synchronised synthesised
speech. For testing and demonstration purposes, the simu-
lated robot shown in Figure 1 is also available.

A sample interaction in a simple bartending scenario is
shown in Figure 2. In this example, two customers enter the
bar and attempt to order a drink from the bartender. When

A customer approaches the bar and looks at the bartender
ROBOT: [Looks at Customer 1] How can I help you?
CUSTOMER 1: A pint of cider, please.
Another customer approaches the bar and looks at the bartender
ROBOT: [Looks at Customer 2] One moment, please.
ROBOT: [Serves Customer 1]
ROBOT: [Looks at Customer 2]

Thanks for waiting. How can I help you?
CUSTOMER 2: I’d like a pint of beer.
ROBOT: [Serves Customer 2]

Figure 2: An example interaction in the bartending scenario.

the second customer appears while the bartender is engaged
with the first customer, the bartender reacts appropriately
by telling the second customer to wait, finishing the current
transaction, and then serving the second customer.

Even this simple interaction presents challenges which
have motivated the design of the overall system: a vision
system must track the locations and body postures of the
agents; a speech-recognition system must detect and deal
with speech in an open setting; reasoning components must
determine that both customers require attention and ensure
they are served in the correct order; while the output com-
ponents must select and execute concrete actions for each
output channel that correctly realise high-level plans. The
software architecture of the robot system is shown in Fig-
ure 3, with the main components highlighted below.

Input Processing: One of the primary input channels for
the robot is computer vision. The full JAMES vision system
tracks the location, facial expressions, gaze behaviour, and
body language of all people in the scene in real time, using
a set of visual sensors (Baltzakis, Pateraki, and Trahanias
2012); a limited-functionality vision system is also avail-
able that can run on a single Kinect for demo and testing
purposes. Information from the vision system is constantly
published to the state manager multiple times a second.

The other primary input modality in the system is linguis-
tic, combining a speech recogniser with a natural-language
parser to create symbolic representations of the speech pro-
duced by all users. For speech recognition, we use the
Microsoft Kinect and the Microsoft Speech API, with a
scenario-specific speech grammar to constrain the recogni-
tion task. Recognised speech is then parsed using a grammar
implemented in OpenCCG (White 2006); the grammar con-
tains syntactic and semantic information, and is used both
for parsing the spoken input and for surface realisation of the
selected output (see below). The parsed speech, confidence
score, and source angle are passed to the state manager.

State Management: The primary role of the state man-
ager is to turn the continuous stream of messages produced
by the low-level input components into a discrete represen-
tation that combines social and task-based properties. The
state representation is based on a set of fluents: first-order
predicates and functions that denote particular qualities of
the world, the robot, and other entities in the domain. A state
is a snapshot of all fluent values at a given point in time.
Intuitively, states represent a point of intersection between

Real World

Visual
Processing

Speech
Recogniser

Parser

State
Manager

Planner /
Execution Monitor

Output
Generation

Talking-Head
Controller

Robot Motion
Planner

Figure 3: Software architecture of the robot system

low-level sensor data and the high-level structures used by
components like the planner. Since states are induced from
the mapping of sensor observations to fluent values, the chal-
lenge of building an effective state manager rests on defining
appropriate mapping functions.

In the bartender robot, we treat each low-level input com-
ponent as a set of sensors. The linguistic interpreter corre-
sponds to three sensors: two that observe the parsed content
of a user’s utterance and its associated confidence score, and
another that returns the estimated angle of the sound source.
The vision system also senses a large number of properties
about the agents and objects in the world, each of which
corresponds to a set of individual sensors. Certain low-level
output components are also treated as sensors. For exam-
ple, the robot arms provide information about the start and
end of manipulation actions, while the speech synthesiser
reports the start and end of all system utterances. Modelling
output components as sensors allows information from these
sources to be included in the derived state, ensuring the cur-
rent state of interaction is accurately reflected (e.g., the state
of turn-taking or the completion of physical actions).

In the current robot bartender system, the state includes
information about all agents in the scene: their locations,
torso orientations, attentional states, and drink requests if
they have made one. The mapping from sensors to states is
rule-based. One set of rules infers user social states (e.g.,
seeking attention) from the low-level sensor data, using
guidelines derived from a study of natural bartender inter-
actions (Huth 2011). The state manager also incorporates
rules that convert the logical forms produced by the parser
into communicative acts (e.g., drink orders), and that use the
source angle from the speech recogniser together with the
vision properties to determine which customer is likely to
be speaking. A final set of rules determines when new state
reports are published, which controls turn-taking.

To deal with the more complex states required in future
versions of the bartender system, we are currently exploring
the use of supervised learning classifiers trained on multi-
modal corpora. In an initial study, the trained classifiers sig-
nificantly outperformed the hand-coded rules both in cross-
validation and when tested with real users (Foster 2013).

Planning and Execution Monitoring: The high-level
planner is responsible for taking state reports from the state
manager and choosing actions to be executed on the robot.
Plans are generated using PKS (Planning with Knowledge
and Sensing) (Petrick and Bacchus 2002; 2004), a condi-
tional planner that works with incomplete information and

sensing actions. PKS operates at the knowledge level and
reasons about how its knowledge state, rather than the world
state, changes due to action. To do this, PKS works with
a restricted first-order representation with limited inference.
While features such as functions and run-time variables are
supported, these restrictions mean that some types of knowl-
edge (e.g., general disjunctive information) cannot be mod-
elled. To ensure efficient inference, PKS restricts the type of
knowledge it can represent to a set of four databases:
Kf : This database is like a STRIPS database except that

both positive and negative facts are permitted and the
closed world assumption is not applied. Kf can include
any ground literal or function (in)equality mapping `,
where ` ∈ Kf means “the planner knows `.”

Kw : This database models the plan-time effects of “bi-
nary” sensing actions. φ ∈ Kw means that at plan time
the planner either “knows φ or knows ¬φ,” and that at
run time this disjunction will be resolved. PKS uses such
information to build conditional branches into a plan.

Kv : This database stores functions whose values will be-
come known at run time. In particular, Kv can model the
plan-time effects of sensing actions that return terms. Kv

can contain any unnested function, where f ∈ Kv means
that at plan time the planner “knows the value of f .”

Kx : This database models the planner’s “exclusive-or”
knowledge. Entries in Kx have the form (`1|`2| . . . |`n),
where each `i is a ground literal. Such formulae repre-
sent a type of disjunctive knowledge common in planning
domains, namely that “exactly one of the `i is true.”
A PKS action is modelled by a set of preconditions that

query PKS’s knowledge state, and a set of effects that up-
date the state. Preconditions are a list of simple questions
about PKS’s knowledge state (e.g., a query K(φ) asks if
φ is known). Effects are described by a set of STRIPS-
style “add” and “delete” operations that modify the contents
of individual databases. E.g., add(Kf , φ) adds φ to the Kf

database, while del(Kw, φ) removes φ from Kw. PKS con-
structs plans by reasoning about actions in a simple forward-
chaining manner, and can build plans with branches be con-
sidering the possible outcomes of itsKw andKv knowledge.
Goals are specified in a form similar to action preconditions.

PKS is also aided by an execution monitor which controls
replanning. The monitor takes as input a PKS plan, and a de-
scription of the sensed state provided by the state manager.
The monitor must assess how close an expected, planned
state is to a sensed state in order to determine whether the
current plan should continue to be executed. To do this, it
tries to ensure that a state still permits the next action (or set
of actions) in the plan to be executed, by testing an action’s
preconditions against the current set of (sensed) state prop-
erties. In the case of a mismatch, the planner is directed to
build a new plan, using the sensed state as its initial state.

Output Generation: Output in the system is based on di-
viding actions selected by the planner into speech, head mo-
tions, and arm manipulation behaviours that can be executed
by the robot. To do so, we use a structure containing speci-
fications for each of the output modalities (Isard and Mathe-

action ask-drink(?a : agent)
preconds: K(inTrans = ?a) ∧ ¬K(ordered(?a)) ∧

¬K(otherAttnReq) ∧ ¬K(badASR(?a))
effects: add(Kf , ordered(?a)), add(Kv , request(?a))

action serve(?a : agent, ?d : drink)
preconds: K(inTrans = ?a) ∧ K(ordered(?a)) ∧

Kv(request(?a)) ∧ K(request(?a) = ?d) ∧
¬K(otherAttnReq) ∧ ¬K(badASR(?a)) ∧
K(ackOrder(?a))

effects: add(Kf , served(?a))

Figure 4: Example PKS actions in the bartender domain

son 2012), based on a rule-based approach which splits each
planned action into its component subparts. The resulting
structure is then passed to the multimodal output generator,
which sends specific commands to each output channel.

OpenCCG is used to generate speech output for the robot,
using the same grammar that is used to parse the input. The
output description is specified in terms of high-level com-
municative acts, which are translated into logical forms and
sent to the OpenCCG realiser. The realiser then outputs text
strings that are turned into speech by the robot’s animatronic
head. In addition to speech, the robot also expresses itself
through facial expressions, gaze, and arm manipulation ac-
tions. The animatronic head can produce a number of ex-
pressions and can gaze at customers or objects, while the
robot arm can perform tasks like grasping to hand over a
drink to a customer; motion planning and robot control make
use of the Robotics Library (Rickert 2011).

System Integration: Like most interactive multimodal
systems, the robot bartender is made up of a number of dis-
tributed, heterogeneous software components, drawing on
diverse research paradigms, each with individual hardware
and software requirements. These components must all com-
municate with one another to support interactions in the bar-
tender scenario. The planner must also be situated in this
system and use the same interfaces as other components.

For inter-module communication in the robot bartender,
we use the Ice object middleware (Henning 2004), which
provides platform- and language-independent communica-
tion among the modules and supports direct module-to-
module communication as well as publish-subscribe mes-
saging. On the planning side, adapting the off-the-shelf
PKS planner for use with Ice is achieved by creating a
communication-level API to common planning features, and
re-engineering the backend planner into a suitable library
that supported this interface. Common operations like plan-
ner configuration, domain definition, and plan construction
were abstracted into a class definition that allowed a PKS
planner instance to be created as a C++ object. The interface
to this library was built into a simple server which provided
a transparent network interface to its functions over Ice.

Planning Interactions for Social Behaviour
The robot’s available high-level actions are modelled as part
of a PKS planning domain, rather than using specialised
tools as is common in many dialogue systems. For instance,

the basic bartender domain consists of the following actions,
available to the robot for interacting with human customers:

greet(?a) greet an agent ?a,
ask-drink(?a) ask agent ?a for a drink order,
ack-order(?a) acknowledge agent ?a’s drink order,
serve(?a, ?d) serve drink ?d to agent ?a,
bye(?a) end an interaction with agent ?a,
not-understand(?a) inform agent ?a was not understood,
wait(?a) tell agent ?a to wait, and
ack-wait(?a) thank agent ?a for waiting.

Actions model high-level robot behaviours that include a
mix of physical, sensory, and speech acts. Examples of two
PKS actions in the bartender domain are shown in Figure 4.

Information about human agents is not hard-coded in the
domain but is detected by the vision system and passed to the
planner by the state manager through its state updates. Sim-
ilarly, changes to the agent list are also sent to the planner in
state reports, causing it to update its domain model. The goal
is simply to serve each agent seeking attention. This goal is
viewed as a rolling target which is reassessed each time a
state report is received by the planner. For instance, if two
agents (a1 and a2) are seeking attention, PKS can build the
following plan (similar to the interaction in Figure 2):

wait(a2), [Tell agent a2 to wait]
greet(a1), [Greet agent a1]
ask-drink(a1), [Ask a1 for drink order]
ack-order(a1), [Acknowledge a1 ’s drink order]
serve(a1, request(a1)), [Give the drink to a1]
bye(a1), [End a1 ’s transaction]
ack-wait(a2), [Thank a2 for waiting]
ask-drink(a2), [Ask a2 for drink order]
ack-order(a1), [Acknowledge a2 ’s drink order]
serve(a2, request(a2)), [Give the drink to a2]
bye(a2). [End a2 ’s transaction]

Here, a1 ’s drink order is taken and processed, followed by
a2 ’s order. The ask-drink action is a sensing action that re-
turns information about the term request (an agent’s drink
order), which is then used as a run-time variable in the serve
action. The wait and ack-wait actions are used to defer a
transaction with a2 until a1 ’s transaction has finished.

Once a plan is built, it is executed by converting each
action into its head, speech, and arm behaviours, based on
a simple set of rules. Execution is monitored for plan cor-
rectness by comparing states from the state manager against
states predicted by the planner. In the case of divergence, the
planner is directed to construct a new plan using the sensed
state as its new initial state. For example, if a1 ’s response
to ask-drink(a1) was not understood, the execution monitor
will direct PKS to build a new plan. One result is a modified
plan that first informs a1 they were not understood before
repeating the ask-drink action and continuing the old plan.

Another consequence of execution monitoring is that cer-
tain types of overanswering can be detected and handled
through replanning. For instance, a greet(a1) action by the
robot might cause the customer to respond with an utterance
that includes a drink order. In this case, the monitor would
detect that the preconditions of ask-drink(a1) aren’t met and

Figure 5: The JAMES software interface

direct PKS to replan. A new plan could then omit ask-drink
and proceed to acknowledge and serve the requested drink.

The complete bartender system uses the physical or sim-
ulated robot to process interactions similar to those shown
above. Users interact with the system using speech, while
the main system interface (Figure 5) displays the reasoning
and execution status of the core components, including plan-
ning and state management.

Acknowledgements
The authors thank their JAMES colleagues who helped im-
plement the bartender system: Andre Gaschler, Manuel Giu-
liani, Amy Isard, Maria Pateraki, and Richard Tobin. This
research has received funding from the European Union’s
7th Framework Programme under grant number 270435.

References
Baltzakis, H.; Pateraki, M.; and Trahanias, P. 2012. Visual tracking
of hands, faces and facial features of multiple persons. Machine
Vision and Applications 23(6):1141–1157.
Foster, M. E. 2013. Evaluating engagement classifiers for a robot
bartender. In submission.
Henning, M. 2004. A new approach to object-oriented middleware.
IEEE Internet Computing 8(1):66–75.
Huth, K. 2011. Wie man ein Bier bestellt. MA thesis, Fakultät für
Linguistik und Literaturwissenschaft, Universität Bielefeld.
Isard, A., and Matheson, C. 2012. Rhetorical structure for natural
language generation in dialogue. In Proceedings of SemDial 2012
(SeineDial), 161–162.
Petrick, R. P. A., and Bacchus, F. 2002. A knowledge-based ap-
proach to planning with incomplete information and sensing. In
Proceedings of AIPS 2002, 212–221.
Petrick, R. P. A., and Bacchus, F. 2004. Extending the knowledge-
based approach to planning with incomplete information and sens-
ing. In Proceedings of ICAPS 2004, 2–11.
Petrick, R. P. A., and Foster, M. E. 2013. Planning for social
interaction in a robot bartender domain. In Proceedings of ICAPS
2013, Special Track on Novel Applications.
Rickert, M. 2011. Efficient Motion Planning for Intuitive Task Exe-
cution in Modular Manipulation Systems. Dissertation, Technische
Universität München.
White, M. 2006. Efficient realization of coordinate structures in
Combinatory Categorial Grammar. Research on Language and
Computation 4(1):39–75.

