

Edinburgh Research Explorer

Centralised High-Level Planning for a Robot Fleet

Citation for published version:
Crosby, M & Petrick, R 2014, Centralised High-Level Planning for a Robot Fleet. in Association for the
Advancement of Artificial Intelligence.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Association for the Advancement of Artificial Intelligence

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43715266?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/centralised-highlevel-planning-for-a-robot-fleet(b6e090c8-8201-4851-9b04-e202331f7f31).html

Centralised High-Level Planning for a Robot Fleet

Matthew Crosby and Ronald P. A. Petrick
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, Scotland, UK

m.crosby@ed.ac.uk, rpetrick@inf.ed.ac.uk

Abstract

This paper describes an application of automated plan-
ning to the problem of computing and distributing goals,
and initial action sequences (plans), to a fleet of factory
robots using a centralised controller. The initial plans
must be designed and distributed such that the total ex-
pected execution time is reduced. Whilst we found that
existing decomposition-based approaches could find
plans in the required time frames for this task, the re-
turned plans were of low quality in terms of agent dis-
tribution. As a result, this paper introduces new methods
for decompositional planning that output more balanced
plans, whilst still retaining enough of the speed benefits
of the original approach to meet our time constraints.

Introduction
This paper describes an application of automated planning
to the real-world problem of assigning goals and actions to
a fleet of mobile robots in a factory environment. In this do-
main, robots must navigate a factory floor, each collecting a
set of parts to be used in a manufacturing process. Due to the
limitations of the environment. and the robots themselves,
they must follow a preset path and cannot overtake one an-
other as they move through the factory. A centralised con-
trolled, called the mission planner, is tasked with creating
initial high-level plans for the robots in the fleet. The plan-
ner has information about the capabilities of each robot and
the goals for the fleet as a whole, and the plans it generates
are responsible for assigning goals, setting partial-order ex-
ecution constraints, and providing initial plans to the robots.

While it might be argued that a domain-specific (non-
planning) technique, tailored to the exact nature of the prob-
lem, could provide an efficient solution in this environ-
ment, technology reuse remains an important factor in mod-
ern industrial settings. As such, general purpose domain-
independent planning offers an approach that can be utilised
even as the constraints of the problem and domain evolve
over time, while also providing certain desirable properties
in an industrial setting: 1) the technology can be reused with
only minor modifications to the input (PDDL files) when
robot capabilities and the environment change, 2) the system

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

can be upgraded as more advanced (multiagent planning) al-
gorithms become available, and 3) the outputs (plans) are
produced in a standard format based on well-defined inputs
(PDDL) that can subsequently be processed by other sys-
tems (such as execution monitors or other task planners).

Although planning offers a promising solution, the na-
ture of the domain itself presents certain technical chal-
lenges, even for state-of-the-art approaches. Initial experi-
ments in this domain showed that standard planners strug-
gled with this type of problem, especially as the number of
robots increased. For instance, temporal planners could find
plans with low makespan, but could only cope with small
‘toy’ instances of the domain (2 robots, 4 goals). Standard
single-agent planners could solve slightly larger problems
(2 robots, 6 goals), but still not scale to the sizes needed (10
robots, 10 goals). The planners struggled especially with the
number of robots in the domain.

One positive result from these initial experiments came
in the form of multiagent decomposition techniques. Even
though the domain is not loosely coupled (all actions are
public and can affect what other agents can do), it is still
amenable to decomposition-based approaches. In particular,
the multiagent decomposition-based planner ADP (Crosby,
Rovatsos, and Petrick 2013) was able to decompose the do-
main automatically, separating out the robots and finding so-
lutions to the full size problem in under a second. The au-
tomatic decomposition also meant that a flat PDDL encod-
ing could be used, without any additional special markup
to specify agents. Unfortunately, the solutions did not dis-
tribute the plans amongst the agents in any meaningful way.

This paper focuses on our particular application domain
and the problem of creating a new version of ADP, we have
named ADBP (Agent Decomposition Balancing Planner),
that builds on the partial success of the basic ADP technique
to generate higher-quality (i.e., better balanced) plans. The
aim of this work is to enable ADBP to still solve our testing
domains within a reasonable time frame (10 seconds), whilst
also outputting plans with reduced makespan compared to
ADP. To explore the limits and further possible applications
of this work, we also tested ADBP on multiagent planning
domains taken form the International Planning Competition
that ADP is known to perform well on.

Background
Planning has a long association with robotics research, with
the application of modern planning techniques to robotics
problems gaining popularity in recent years. However, the
general use of planning has often centred around robot-level
task planning which, while abstracted from low-level robot
control, still needs to deal with contingencies, sensing ac-
tions, and other robot-level considerations. The work dis-
cussed in this paper considers a problem that is abstracted
even further; while we avoid some of the complexities that
arise in typical robotics planning problems, we also intro-
duce new complications (e.g., multiple robots). As such, the
problem we address is more akin to that of classical planning
but with real-world constraints that cannot easily be avoided.

The domain encoding we use in this paper is moti-
vated by the abstraction of robot-level motor programs into
robot skills (Bøgh et al. 2012). Robot skills are designed to
bridge the gap between robot-level control operations and
planning-level actions, by providing a structured representa-
tion of both the requirements (preconditions) and expected
outcomes (effects) of a robot-level action, encapsulated to-
gether with a set of methods for verifying these conditions
in the real world through sensing. Our encoding of the do-
main abstracts away the verification components of the skills
structure to encode just the preconditions and effects.

Initial testing in this domain focused on a temporal plan-
ning encoding using the capabilities introduced in PDDL 2.1
(Fox and Long 2003). This enabled the use of numeric flu-
ents to simplify the encoding, resulting in low makespan
plans in which robot actions were scheduled concurrently.
While temporal planning has been previously used in multia-
gent settings, it has not been prevalent since (Brenner 2003),
and initial testing with POPF2 (Coles et al. 2010), a forward
chaining partial-order planner that was the runner up in the
temporal track of the 2011 IPC (Coles et al. 2012), estab-
lished it could not scale to the full version of our domain.

Other tests were also performed using the popular plan-
ners LAMA (Richter and Westphal 2010) and FF (Hoffmann
and Nebel 2001) on a standard STRIPS-style PDDL encod-
ing of the domain (Fikes and Nilsson 1971). While these
planners managed to solve larger problems, they broke down
as the number of robots increased.

Given the centralised and cooperative nature of our ap-
plication, and motivated by the results of the initial testing,
this work instead focuses on multiagent techniques that at-
tempted to exploit the underlying structure inherent in multi-
agent domains (Brafman and Domshlak 2008), while avoid-
ing approaches that deal with decentralised planning, strate-
gic elements or privacy concerns. The particular planner se-
lected for this application, ADP (Crosby, Rovatsos, and Pet-
rick 2013), performs its decomposition automatically, mean-
ing the approach can use standard PDDL domains without
additional agent markup. (See also (Nissim, Apsel, and Braf-
man 2012) for other work on automatically calculating de-
compositions.) Due to the structure of the problem domain,
we could also ignore many of the complexities of multiagent
planning, such as concurrency constraints for joint actions,
which could instead be encoded encoded into the standard
preconditions and effects of actions.

Robot Staging AreaP1P2P3P4P5P6P7P8

P20P19P18P17P16P15P14P13

P9

P10

P11

P12

Empty Kits

Robot
1

Robot
2

Conveyor Taking
Away Completed

Kits

One-way Route Around Supermarket

Figure 1: The warehouse planning environment. Robots
must follow the track around the warehouse and cannot over-
take. Parts are stored in labelled boxes, and must be appro-
priately selected to complete a kit. When complete, kits are
placed on the conveyor. Robots may carry up to two kits at
a time and may pass one another when in the staging area.

The major focus of this paper is to address an important
problem in decompositional multiagent planning which is
essential for planning in our domain: balancing the gen-
erated plans amongst the available agents. This problem
is very similar to the issue discussed in (Borrajo 2013) in
which different possible goal assignment strategies for mul-
tiagent planning are categorised. Borrajo proposed 4 differ-
ent categories: all-achievable, rest-achievable, best-cost and
load-balance. Of these categories, we found that the all-
achievable decomposition gave the best results, and this ap-
pears in ADBP, albeit not explicitly. It’s also worth noting
that ADP uses a version of best-cost.

Problem Domain and Encoding
In this section, we briefly discuss the features of the problem
domain and its encoding in PDDL. A pictorial representation
of the domain is shown in Figure 1. In the domain, a fleet of
robots must travel on a preset path and gather a given list
of parts to assemble a kit. The robots cannot overtake each
other except in the staging area (in which case they can re-
turn to their base and then leave before another robot). A kit
box is a box with a number of compartments, each designed
to fit a specific part. Each robot can carry up to two kit boxes
at a time. The aim of the mission planner is to provide ini-
tial plans for each of the robots in the fleet so that they can
complete their task of assembling kits within a specific time
frame and without conflicting with other robots.

For the encoding, it was necessary to model the robots,
the position of the kits on the robots, the kits themselves, the
available parts, and the various locations in the warehouse.
Robots then could perform the following actions: move,
pick-and-place, get-kit, and deliver-kit. At
first, the pick and place skills were modelled as separate ac-
tions,s which allowed the robot to travel while still holding
a part in its gripper; however, this reduced the number of
instances that the original planners tested could solve.1

1In practice, we found that we had to test a number of domain

Problem No. of No. of POPF2 FF LAMA ADP
Number Robots Goals time(s) cost ms time(s) cost ms time(s) cost ms time(s) cost ms

1 2 4 0.52 29 13 0.01 30 18 0 24 12 0.01 24 24
2 2 4 – – – 0.34 54 27 0.01 54 27 0 54 54
3 2 4 – – – 0.01 74 37 0.01 74 37 0.01 74 74
4 2 6 – – – 7.11 132 74 0.04 111 74 0.02 132 132
5 4 6 – – – – – – – – – 0.02 111 111
6 4 8 – – – – – – – – – 0.03 148 148
7 6 8 – – – – – – – – – 0.05 148 148
8 6 10 – – – – – – – – – 0.06 185 185
9 8 10 – – – – – – – – – 0.08 185 185
10 10 10 – – – – – – – – – 0.11 185 185

Table 1: Table showing the performance of planners on testing domains as the size of the problem increases to the size required
for application in the real-world domain. Results show the time in seconds, the total cost and the makespan when the output is
contracted to a multiagent plan with joint actions. A ‘–’ means that the planner did not return a plan within 300 seconds.

One interesting aspect of the domain encoding concerned
how to determine when a kit was full and ready to be placed
on the conveyor. In the course of writing the PDDL files,
multiple approaches were considered, such as:

• Numeric fluents that counted the number of parts in a
kit and actions with conditional effects that considered
whether a kit was full.

• A ‘close-kit’ action that could only be performed when
the numeric fluents counted the correct number of parts in
a kit. The ‘close-kit’ action would need to be performed
before the kit could be deposited on the conveyor.

• Both of the above approaches, except with the numeric
fluents represented by counting encoded in number ob-
jects with a successor relation.

• High-arity predicates or actions with a large number of
parameters, coupled with either equality constraints (one
for each possible pair of parts) to ensure that parts were
not assigned twice, or a careful encoding to ensure that
the parts were guaranteed to be different in any applica-
ble action. For example, a high-arity ‘deliver-kit’ action
requiring 6 parts might include the parameters:

(?r - robot ?l - location ?k - kit
?p1 - part ?p2 - part ?p3 - part

?p4 - part ?p5 - part ?p6 - part)

None of these attempts were solvable by the initial planners
we tested for any but the smallest of domains. Even for the
cases that were successful, the latter solutions were not well
suited to problems with variable kit sizes.

In the end, we adopted a solution that encoded kit in-
formation as part of the goal for each problem, with sepa-
rate propositions denoting ‘delivered(kit)’ and ‘in-kit(part)’.
This avoided the need for high-arity predicates or param-
eters, numeric fluents, and inequalities, and was the only
method tested that allowed the temporal and single-agent
planners to solve even small domain instances. However, as

variations before we had an accurate encoding that was also solv-
able, even in the smallest instances, by the planners. We note that
ADP could still find solutions when the actions were separated but
there was no need to continue with this encoding for our purposes.

will be seen below, such an encoding created slight compli-
cations with the goal distribution during search in ADP.

Beyond the specific encoding choices, the particular do-
main we are encoding has many features that make it well
suited to the approach presented in this paper. We list them
here as a useful reference when considering similar possible
applications of ADBP. In particular, the general features of
our domain and its encoding include:
• A flat PDDL representation.
• Multiple agents that can act concurrently.
• No need to explicitly model concurrency constraints on

joint actions.
• Goals that can be completed by multiple agents.

Initial Results
Using the above domain description, we tested our encod-
ing on a set of off-the-shelf planners (POPF2, FF, LAMA,
and ADP). The complete version of the domain was mod-
elled with 10 robots, 10 goals and a kit size of 6, however,
this problem was not solvable by most of the planners in our
initial tests. We therefore created smaller problem instances
for testing purposes by varying the number of agents and
goals. Each problem still contained the full number of loca-
tions and parts, and parts-per-kit, except for two problems (0
and 1). These problems only required one part per kit, and
one problem (0) included only a quarter of the number of
locations and parts.

The results of the initial testing are shown in Table 1,
and indicate that the traditional planning approaches start to
break down as soon as the number of robots in the domain is
increased. In some respects this could be regarded as coun-
terintuitive, as adding robots in this deomain creates new
possibilities for solutions to the problem, without removing
any existing ones. However, without specific decomposition
techniques, the increased size of the search space is clearly
the dominant factor. While it would be possible to create
more testing domains so that the behaviour of the algorithms
can be discerned in more detail, it can be seen that the lim-
iting factor is related to the number of agents and, once they
are increased from 2 to 4, then only ADP can find solutions.

As well as time and cost, the results also show the
makespan of the returned plans. For POPF2, this is simply
the makespan as the temporal domain was designed with a
direct mapping from actions at a time step in the temporal
plan to joint actions. For the other approaches, the makespan
can be calculated manually by post-processing plans using
the algorithm presented in (Crosby, Jonsson, and Rovatsos
2014). For our particular domain, the highest number of ac-
tions assigned to a single agent is a good enough approxima-
tion of the final makespan, and there was no need to calculate
the exact joint plan at this stage. We use this approximation
in the results reported in this paper.

The makespan results show that, while ADP has no trou-
ble finding solutions to the problem, the makespan exactly
matches that of the full cost of the plan, meaning that each
action is performed by a single robot. As all goals are achiev-
able by all agents at the same initial estimated cost, this just
happens to be the agent that is listed first in the internal rep-
resentation of the planner.

Thus, while the initial testing demonstrated the utility of
using a method like ADP in order to find solutions to our
planning problem, it also illustrated the need to modify the
ADP algorithm in order to return more balanced plans. This
is the main focus of the work we describe below.

ADP Planning Formalism
The input to our planning formalism is a planning prob-
lem in typed PDDL, with no additional requirements neces-
sary. The input is converted into an MPT Π = 〈V, I,G,A〉
(we assume there are no axioms in the domain) by the Fast
Downward planning system (Helmert 2006), where:
• V is a finite set of state variables v, each with an associ-

ated finite domain Dv ,
• I is a state over V called the initial state,
• G is a partial variable assignment over V called the goal,

and
• A is a finite set of (MPT) actions over V .

A state is represented by a variable assignment, a function
f : V → Dv . An MPT action a = 〈pre, eff 〉 consists of a
precondition, a partial variable assignment pre over V , and
a finite set of effects which are triples 〈cond, v, d〉, where
cond is a (possibly empty) partial variable assignment called
the effect condition that must hold for the action to be ap-
plied, v is an affected variable, and d ∈ Dv is the new value
for v after completing the action. We say that v ∈ pre(a)
only if v belongs to the domain of the precondition of action
a. We say that v′ ∈ eff (a) if v′ is the v in some triple of the
effects of a.

ADP Overview
The operation of ADP can be summarised by the high-level
pseudo-code shown in Algorithm 1. The algorithm consists
of an initial preprocessing agent decomposition phase, fol-
lowed by greedy best-first search. States in the search (as
well as being variable assignments over V) are associated
with an agent, a set of goals, and a macro heuristic value,
which are used to partition the problem into a single-agent

Algorithm 1: High-level Summary of ADP
Input : MPT 〈V, I,G,A〉
Output: Plan or ⊥

1 Calculate Agent Decomposition Φ
2 S ← I
3 Initialise S.agent, S.goals and S.macro
4 repeat
5 Greedy BFS from S

[When the successor of S is generated it copies
S.agent, S.goals and S.macro from its
predecessor]

6 until Goal Reached or Whole Space Explored

subproblem for which the hff heuristic value is calculated
(Hoffmann and Nebel 2001). The extra state information is
carried over to successor states and recalculated at coordi-
nation points. A coordination point is any point where all
the goals in S.goals have been reached, the initial state, or
a state in which it is not possible to reach S.goals but that
isn’t a global dead end. (I.e., any point where the single-
agent subproblem is no longer useful.)

ADP Decomposition
The first part of the ADP algorithm is a decomposition
process by which the MPT is decomposed into multiple
‘agents’. Given that the decomposition part of the algorithm
was successful during our initial testing, we left this part un-
changed, and do not provide exact details here. However,
certain properties of the decomposition are relevant to un-
derstanding both ADP and ADBP, which we outline below.

Decomposition creates a partitioning of the variable set V
into variable subsets φi for each agent i, and a public vari-
able set P that contains the variables that pertain to the en-
vironment. The idea is that the elements of φi represent the
internal state of an agent such that no other agent has ac-
cess to an action that can change them. The elements of P
represent the world that the agents are acting in, which can
potentially be modified by any of the agents.

Actions in the domain are split amongst the agents based
on the decomposition. An action is said to be an internal
action of agent i iff:

∃v ∈ pre(a) : v ∈ φi, and

v ∈ pre(a)→ v ∈ φi ∪ P.
In other words, the preconditions of a must depend on an
internal state variable of i and can only change i’s internal
state variables or the domain’s public variables.

A public action is any action where:

v ∈ pre(a)→ v ∈ P,

i.e., where the preconditions do not depend on the inter-
nal state of any of the agents. The decomposition algorithm
only finds decompositions such that all actions become ei-
ther internal or public, while trying to maximise the num-
ber of agents and minimise the number of public variables.

Algorithm 2: Heuristic Value Calculation of ADP
Input : State S with S.agent, S.goals and S.macro
Output: h+ S.macro

1 if S is Coordination Point then
2 Relaxed Planning Graph Generation
3 if Max layer > 0 then
4 Calculate Subgoals
5 Assign Goals

S.agent← agent with most goals with min h add
S.goals← all goals achievable by S.agent
S.macro← N × |G \ S.goals|

6 h← hff (V |S.agent, S|S.agent, G|S.goals, A|S.agent)

An agent’s action set is the set of all internal actions of that
agent, denoted by Acti.

In a decomposition returned by ADP, the sets φi are guar-
anteed to have the agent property. In particular, a variable set
φi (as part of a full decomposition Φ) has the agent property
when for all a ∈ A and variables v ∈ V :

v ∈ φi ∧ v ∈ eff (a)→ a ∈ Acti.

In other words, any agent variable can only be modified by
an internal action of that agent. This corresponds to the idea
that agent sets are sets of variables that represent the inter-
nal states of agents. For our domain, the decomposition sep-
arates out the variables for each robot corresponding to their
locations, and the kits that they are currently holding.

Given this definition of a decomposition, we can create
a taxonomy of the actions in the domain. For our purposes,
the interesting types of actions are actions that are either in-
fluenced or influencing. An action is influenced (by the en-
vironment) if it contains in its preconditions a member of
P ; i.e., if another agent could potentially change whether or
not it is applicable. An action is influencing (it influences
the environment) if it contains in its effects a member of P ;
i.e., the action may change what another agent is capable of.
An action can be neither influenced nor influencing if it only
affects and depends on the internal state of an agent (e.g., a
robot changing its gripper).

ADP Heuristic Calculation
The ADP heuristic calculation is formed in two steps. First,
there is a global coordination point calculation that is per-
formed infrequently and is used to pick out a single agent
and a set of goals for that agent to attempt to achieve. If an
agent has already been found and it still has achievable un-
met goals then there is a local single-agent calculation of the
FF heuristic value of the chosen agent. We first focus on the
components of the coordination point calculation.

Relaxed Planning Graph Generation: This part of the
coordination point calculation generates relaxed planning
graphs for each agent. The information from these struc-
tures is then used to assign subgoals and to pick the agent
for S.agent. Given a state, each agent generates their full
relaxed planning graph for the restricted problem from that
state. That is, each agent generates a graph containing all

possible actions it can perform (ignoring delete effects) and
all possible propositions that can be reached by performing
those actions.

It may happen that some propositions can only be reached
if agents cooperate with one another. For example, one agent
may need to unlock a door before another can pass through.
Because the agents create their own planning graphs (with-
out interactions) they will not include any parts of the search
space only reachable by cooperation. Therefore, if not all
goals are reached in the initial calculation, the collected final
state of all the agents is formed and used as input for a sub-
sequent layer of relaxed planning graphs. Each successive
iteration introduces a new layer with the first being layer 0.
Repeating this process until no more states are added by any
agent is guaranteed to cover every reachable state in the full
problem.

Calculate Subgoals: If more than one layer of relaxed
planning graphs have been generated, then subgoals are cal-
culated. From our door example, if the second agent wants
to pass through the door, it needs to assign the subgoal of
unlocking the door to the first agent. Any time a goal propo-
sition appears for the first time in a layer above 0 it cannot
be reached by an agent on its own. Therefore, plan extrac-
tion is used to find out which proposition is utilised from
the previous layer. All necessary propositions from layer 0
are added as subgoals to the agent that achieved them first.
In our door example, the first agent will have the additional
goal to unlock the door assigned to it.

Assign Goals to Agents: The next part of the coordina-
tion point calculation chooses which agent is going to be per-
forming the local search. First, each goal is assigned to the
agent that can achieve it with the lowest estimated cost from
the relaxed planning graphs. That is, it is assigned to the
agent that added it with the lowest h add value. An agents
goal set is then formed of all goals and subgoals assigned to
it. The agent with the largest goal set is chosen as S.agent
along with all of its goals (and subgoals).

As a final part of the coordination point calculation the
value S.macro is calculated. This is used to provide a global
heuristic estimate of how far through the search space we
are. This is calculated asN×|G\S.goals|whereN is some
large number chosen such that it dominates the FF heuristic
value of a state.

Heuristic Calculation: Having had all the hard work al-
ready performed at the most recent coordination point, all
that is left to do is calculate hff for S.agent and S.goals.
The heuristic value calculation is identical to that used by
FF on the planning problem restricted to S.agent and the re-
turned heuristic value is added to S.macro. The idea is that
(if we ignore backtracking) ADP essentially solves a series
of single agent planning problems one after the other.

Applying ADP to the Problem Domain
We now discuss how ADP functions on our warehouse do-
main. We will be using output from problem 1 in Table
1. ADP finds the decomposition represented by ground in-
stances of the following variables:

g1 g2 g3 g4 g5 g6 g7 g8
robot0 6 5 4 3 8 8 8 8
robot1 6 5 4 3 8 8 8 8

Table 2: The h add values of each agent after generating re-
laxed planning graphs from the initial state of problem 1.

Agent0:
->at-robot(robot1, ?location)
->on-robot(robot1, ?kit, ?compartment)
Agent1:
->at-robot(robot2, ?location)
->on-robot(robot2, ?kit, ?compartment)

In other words an agent is defined by its location and the kits
that it is carrying.

The initial state is a coordination point so relaxed plan-
ning graphs are generated by each agent. A goal table can be
output based on each agent’s h add value for each goal and
is shown in Table 2. There are eight goals in problem 1, one
for delivering each of the four kits and one for placing the
correct part in each of the four kits. The first four numbers
show the h add value for putting a part in a kit and the latter
four show the h add value for delivering an empty kit. We
can see that, from the initial state, each goal is achievable at
the same estimated cost in each agents subproblems. There
is no reason to choose one goal over another for assignment
to an agent based on this information alone.

During the initial coordination point calculation no sub-
goals need to be calculated and ADP greedily assigns all
goals to robot0. The search doesn’t ever end up in a local
dead end so single-agent search effectively continues until a
plan is found. As a robot can only carry two kits at a time
the same robot makes multiple trips around the warehouse in
order to fulfil all the orders. This explains both the fast plan-
ning time of ADP and the high cost and makespan of the
returned plans. This pattern is repeated in all the problem
domains.

The ADBP Algorithm
In order to modify ADP for our purposes we need to take a
less greedy approach to assigning goals to agents. However,
as Table 2 starts to show, there is no obvious way to choose
between goal assignments from the initial state. One reason
for this is based on the choice to encode the information of
which part should be put in which kit in the goal state itself.
Referring back to the goal table for problem 1, it turns out
that the goals g1 and g5 belong together as g1 specifies the
part that needs to be placed in kit1 and g5 specifies that kit1
needs to be delivered. We attempted many methods for clus-
tering these goals together but could not find a generalisable
algorithm for doing so based on information available from
the relaxed planning graphs.

The ADP paper claims that minimising the number of
coordination points is important because the coordination
point calculation is costly. However, we tested a version of
ADP where an extra dummy coordination point calculation
is performed at each state of the search. We found that the
maximum time difference was on problem 10 of the test-

Algorithm 3: Heuristic Value Calculation of ADBP
Input : State S, Goals G
Output: h max , h square, or h total

1 Relaxed Planning Graph Generation (full)
2 if Max layer > 0 then
3 Calculate Subgoals

G← G ∪ subgoals
4 foreach agent i do
5 foreach Goal g ∈ G do
6 if h add(g, i) > 0 then
7 ExtractRelaxedPlan(g, i)
8 hff (i)← RelaxedP lan(i).cost
9 h max = max i hff(i)

10 h square =
∑

i hff(i)2
11 h total =

∑
i hff(i)

ing set which took 0.25s instead of 0.11s. This means that,
for our purposes, we can be more liberal with coordination
point-like calculations. Unfortunately it also means that a
lot of the power of ADP must be in the heuristic values it
returns, which we have to change.

The overall structure of ADBP is identical to ADP ex-
cept that S.agent, S.goals and S.macro are no longer used.
The new heuristic value calculation is shown in Algorithm
3. Compared to the original ADP the notion of coordina-
tion points is removed so that every state follows the ex-
act same heuristic calculation. The Relaxed Plan Generation
and Calculation of Subgoals remain, but goals are no longer
assigned to agents and no single agent is chosen. Instead,
each agent is included in the calculation of each heurisstic
value. While this means that are algorithm performs slower
than ADP, we found it necessary in order to output the kind
of plans we were looking for.

The first step of the heuristic calculation is Relaxed Plan-
ning Graph Generation and this proceeds exactly the same
as in ADP, except that we no longer stop if all goals have
been reached by at least one agent. Instead generation is
performed, layer by layer, until no further propositions can
be added by any of the agents. This results in the full re-
laxed plan space being explored. The reason that we can no
longer terminate relaxed planning generation early is that
each agent that can achieve a goal (not just the first as in
ADP) contributes to the heuristic value of a state.

The step to calculate subgoals is performed exactly as in
ADP except that all found subgoals are added to the set of
goals for the problem. These later form a part of the heuristic
calculation from all agents and not just the agent that added
it with the lowest cost as in ADP.

In the final step of the heuristic calculation each agent cre-
ates a relaxed plan to every goal in the goal set (including
subgoals) that it can achieve. The value hff (i) is the cost of
the agent i’s relaxed plan. This only counts each action once
(even if it is used to reach multiple goal propositions). 2

2Note that, like ADP, ADBP supports preferred operators. Any
action that appears in a relaxed plan (of any agent) that is also ap-
plicable in the current state is set as a preferred operator. Without

Problem No. of No. of Time (seconds) Plan Length Makespan
Number Agents Goals orig max squ total orig max squ total orig max squ total

1 2 4 0.01 0.01 0.01 0.01 24 24 24 24 24 12 12 12
2 2 4 0 0.01 0.01 0.01 54 54 54 54 54 27 27 27
3 2 4 0.01 0.03 0.02 0.02 74 74 74 74 74 37 37 37
4 2 6 0.02 0.46 13.11 13.07 132 132 153 154 132 66 95 95
5 4 6 0.02 3.91 0.19 0.19 111 174 111 111 111 58 37 37
6 4 8 0.03 – 0.35 0.35 148 – 147 147 148 – 37 37
7 6 8 0.05 – 0.96 0.95 148 – 148 148 148 – 37 37
8 6 10 0.06 – 1.59 1.6 185 – 185 185 185 – 37 37
9 8 10 0.08 – 3.42 3.41 185 – 185 185 185 – 37 37

10 10 10 0.11 – 6.33 6.31 185 – 185 185 185 – 74 74

Table 3: Table showing the performance of the different versions of ADP on the testing domains. Key: orig is the original ADP
algorithm. max is ADBP-max, squ is ADBP-square and total is ADBP-total.

Different Heuristic Values
We found that even slight variations on the previously ex-
plained heuristic calculation caused ADBP to perform much
worse. However, there was some scope to test different pos-
sibilities for how the information in the relaxed plans was
converted into a heuristic value. We tested three different
versions:

ADBP-max uses the value h max which is the maximum
hff value of all the agents. This discards a lot of the infor-
mation that has been calculated, but is as close as possible
to the estimated makespan of the plan from the current state.
As we are primarily concerned with minimising makespan
this seemed like a natural heuristic value to investigate. The
downsides of this calculation are that it discards a lot of po-
tentially useful information and has little concern for how
close we are to the goal state. For example, five agents with
hff = 9 returns a worse heuristic value than if four have
hff = 0 and one has hff = 10.

ADBP-total takes the other extreme and uses the sum
of each agents hff values. This is much further from the
makespan heuristic estimate but encodes more information
about the distance from the state to the goal. It should be
noted that this is different from the single-agent FF value for
the state because goals are repeated by all agents that can
achieve them and subgoals are included in the calculation.
The downside of this calculation is that it does not take the
makespan into account at all (beyond the fact the value is
calculated over multiple agents).

ADBP-square attempts to sit in the space between the
two extremes and uses the sum of squares of the hff values
of the agents. The idea is to use all the information available
whilst also taking the variance between the agent values into
account.

Evaluation
Table 3 shows the results for the different versions of ADBP
on the warehouse testing domains (the same problems as are
shown in 1). The first thing to note is that the makespans of
all the ADBP algorithms are significantly lower than those
for the original ADP. All the versions achieve (to some ex-
tent) the goal of distributing the plans amongst the agents.

this both ADP and ADBP practically useless.

From the table we also see that ADBP-max is not able to
solve any problem beyond number 5. However, this is still
one more problem than both FF and LAMA were able to
solve so there is still an improvement over the single-agent
approach. This is perhaps somewhat surprising given the ap-
parent lack of information contained in the heuristic value.

The most interesting feature about the results for ADBP-
max is not shown in the table but can be found in the plans
it outputs. Both ADBP-total and ADBP-square output plans
in which the robots perform many actions in a row, normally
completing a goal before another agent moves. Whereas the
plans returned by ADBP-max contain actions that are very
much interleaved between the different robots, the second
agent follows directly behind the first as they navigate the
warehouse. Given that we can compute a reduced makespan
plan with post processing, this may not seem important, but
the result shows an interesting area for future work where
interleaved actions may be more significant.

The last conclusion to draw from Table 3 is that there was
very little difference between ADP-square and ADP-total.
We also note that both ADP-square and ADP-total find re-
duced makespan plans within our allotted 10 second time
requirement. We hope to be able to update these results as
we continue to work on the application, and study the be-
haviour of the domain and the algorithms in more detail.

Multiagent IPC Domains
We also tested the algorithms on a set of multiagent IPC do-
mains (IPC 2011), to see if these techniques could be used to
find reduced makespan plans there. The results of these tests
are shown in Table 4. We did not expect to produce com-
petitive times given that our version was performing sixty
times slower than the original ADP in the largest warehouse
domain instance. However, we did hope to show improved
makespan over ADP and to be able to solve problems with a
similar order of magnitude slowdown.

For the Rovers domain we can see that ADBP is not com-
petitive with either the original ADP or traditional single-
agent planners in terms of planning speed. As with the ware-
house domain, ADBP-max cannot solve the larger prob-
lems. However, unlike in the warehouse domain, in this case
ADBP is already failing on problems found trivial by ex-
isting planners. The makespan of the returned plans are not

Prob Search Time (s) Plan Length Agent Makespan
No. ff lama a a-m a-s a-t ff lama a a-m a-s a-t ff lama a a-m a-s a-t

Rovers
10 0.01 0.02 0.01 0.86 0.19 0.19 37 40 37 37 41 41 13 17 16 17 18 18
12 0 0.01 0 0.22 0.06 0.06 19 19 21 23 22 22 9 9 17 11 9 9
14 0.01 0.01 0.01 0.59 0.24 0.24 28 32 30 35 37 37 15 19 18 31 16 16
16 0.01 0.02 0.01 1.02 0.23 0.24 45 45 48 47 49 49 25 25 36 37 44 44
18 0.02 0.03 0.01 – 16.36 16.44 50 49 51 – 59 59 18 12 33 – 24 24
20 0.09 0.22 0.05 – 170 170.35 96 86 98 – 103 103 23 24 50 – 21 21

Satellite
10 0.01 0.04 0.02 – 3.58 3.58 35 39 51 – 43 43 14 18 47 – 19 19
12 0.03 0.09 0.04 – 13.91 13.9 45 44 56 – 54 54 24 22 46 – 26 26
14 0.05 0.14 0.04 – 6.87 6.63 43 45 55 – 51 51 18 29 41 – 23 23
16 0.05 0.13 0.05 – 59.51 59.09 49 52 50 – 65 65 31 19 33 – 19 19
18 0.02 0.12 0.02 – 6.77 6.91 38 44 41 – 48 48 23 14 13 – 16 16
20 0.04 0.92 0.09 – 85.3 84.95 107 113 115 – 114 114 36 30 97 – 38 38

Elevators
10 0.01 0.08 0.01 – 36.28 14.69 29 32 27 – 31 30 15 17 15 – 14 14
12 0.01 0.21 0.01 11.58 0.49 0.48 32 33 27 38 37 36 15 17 10 15 14 11
14 0.01 0.14 0.01 3.23 0.9 0.55 27 27 25 28 37 38 15 14 15 12 13 17
16 0.02 0.15 0.01 29.91 0.84 0.31 28 31 36 33 35 34 16 18 22 17 18 18
18 0.01 0.12 0.01 21.35 2.16 1.6 30 33 29 34 34 34 15 17 15 16 16 16
20 0.01 0.01 0.01 191.89 14.41 17.36 25 36 26 56 44 45 12 16 13 24 14 16

Table 4: Table showing the performance of different versions of ADP over IPC domains. Key: a is ADP, a-m is ADBP-max, a-s
is ADBP-square and a-t is ADBP-total.

conclusively better than ADP’s over the problems tested. We
believe this is because agents in the Rovers domain have dif-
ferent capabilities, unlike in the warehouse domain, and not
all goals can be completed by all agents. This is also indi-
cated by the fact that ADP’s makespans are low compared
to its plan costs, even with it’s completely greedy goal as-
signment strategy.

Satellite provides us with a domain where there is more
choice in which agent solves each goal. Here we see ADBP
having a much improved makespan over ADP in the ma-
jority of cases. However, the traditional single-agent ap-
proaches also find plans with low agent makespan. The plan-
ning times of the ADBP algorithms are again an issue, with
ADBP-max not even managing to solve a single problem.

Finally, we tested ADBP on the Elevator domain as this
domain had the property when used with the original ADP
that it contained multiple layers and was therefore hard to
solve. The Elevator problems used were those from the op-
timal track of the 2011 IPC competition (the problems from
the satisficing track proving too complicated to show in-
teresting results). These results finally show a divergence
of the ADBP-square and ADBP-total versions of the algo-
rithm, although this difference is still small. We believe that
this could be in part due to using a greedy search algorithm,
as ADBP-square and ADBP-total produce similarly ordered
heuristic values when not comparing states that are very sim-
ilar. The behaviour that ADBP-max exhibited in the ware-
house domain is repeated in Rovers and Elevators. The re-
turned plans contain a much stronger interleaving of differ-
ent agent’s actions than the plans of the other algorithms.

Conclusion and Future Work
In this paper we presented a new decomposition-based plan-
ning algorithm for use in a multi-robot mission planning ap-

plication in a factory setting. We found that the proposed al-
gorithm improved the quality of the returned plans compared
to the existing algorithm, whilst still finding plans within our
allotted time constraints.

We also tested our algorithm on multiagent IPC domains,
but found that it is not competitive in its current instantiation.
However, it is interesting to observe that ADBP works at
all for domains with different properties to the warehouse
domain. This indicates that the heuristic function is returning
a somewhat useful estimate, even when the domain is not
symmetrical and not all goals are completable by all agents.

The algorithm is currently at a state where it satisfies its
intended role in our application domain, but will need to be
improved and updated as the requirements of the environ-
ment evolve. It is expected that our encoding will be updated
over time and it may be possible to find more efficient encod-
ings, especially for use with decompositional approaches.

There is still much room for investigating different al-
gorithms that lie between ADP and ADBP. For example,
ADBP currently does not exploit the fact that some actions
are not influencing and therefore cannot change the capabili-
ties of the other agents in the system. After a non-influencing
action is used to generate a successor state, there should be
no need to preform the full heuristic calculation again.

Finally, if progress is made on the problem encoding or
the planning algorithms, we intend to explore to what extent
optimal planning can be employed. It seems likely it will be
possible to find interesting pruning techniques based on the
structure afforded by that decomposition of the domain.

Acknowledgements
The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
under grant agreement no. 610917 (STAMINA).

References
Bøgh, S.; Nielsen, O. S.; Pedersen, M. R.; Krüger, V.; and
Madsen, O. 2012. Does your Robot have Skills? In Pro-
ceedings of the International Symposium on Robotics (ISR
2012).
Borrajo, D. 2013. Plan sharing for multi-agent planning.
In Proceedings of the Distributed and Multi-Agent Planning
workshop, 57–65. ICAPS.
Brafman, R. I., and Domshlak, C. 2008. From One to Many:
Planning for Loosely Coupled Multi-Agent Systems. In
Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS 2008), 28–35.
Brenner, M. 2003. A Multiagent Planning Language. In
Proceedings of the Workshop on PDDL at the International
Conference on Automated Planning and Scheduling (ICAPS
2003).
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2010.
Forward-Chaining Partial-Order Planning. In Proceedings
of the International Conference on Automated Planning and
Scheduling (ICAPS 2010), 42–49.
Coles, A. J.; Coles, A.; Olaya, A. G.; Celorrio, S. J.; López,
C. L.; Sanner, S.; and Yoon, S. 2012. A Survey of the
Seventh International Planning Competition. AI Magazine
33(1):83–88.
Crosby, M.; Jonsson, A.; and Rovatsos, M. 2014. A single-
agent approach to multiagent planning. In 21st European
Conference on Artificial Intelligence.
Crosby, M.; Rovatsos, M.; and Petrick, R. P. A. 2013. Au-
tomated Agent Decomposition for Classical Planning. In
Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), 46–54.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. Artificial Intelligence 2(3-4):189–208.
Fox, M., and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research 20:61–124.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research 14:253–302.
IPC. 2011. http://www.plg.inf.uc3m.es/ipc2011-
deterministic/. Web Site.
Nissim, R.; Apsel, U.; and Brafman, R. 2012. Tunnel-
ing and Decomposition-Based State Reduction for Optimal
Planning. In Proceedings of the European Conference on
Artificial Intelligence (ECAI), 624–629.
Richter, S., and Westphal, M. 2010. The lama planner: Guid-
ing cost-based anytime planning with landmarks. J. Artif.
Intell. Res. (JAIR) 39:127–177.

