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Abstract

Recent advances in theoretical and experimental quantum computing bring us closer to scalable
quantum computing devices. This makes the need for protocols that verify the correct functionality of
quantum operations timely and has led to the field of quantum verification. In this paper we address
key challenges to make quantum verification protocols applicable to experimental implementations.
We prove the robustness of the single server verifiable universal blind quantum computing protocol of
Fitzsimons and Kashefi (2012 arXiv:1203.5217) in the most general scenario. This includes the case
where the purification of the deviated input state is in the hands of an adversarial server. The proved
robustness property allows the composition of this protocol with a device-independent state
tomography protocol that we give, which is based on the rigidity of CHSH games as proposed by
Reichardt et al (2013 Nature 496 456—60). The resulting composite protocol has lower round
complexity for the verification of entangled quantum servers with a classical verifier and, as we show,
can be made fault tolerant.

1. Introduction

While the prospect of commercially available universal quantum computing is still distant, a number of
experiments involving multi-qubit systems have recently been developed. Irrespective of their applications,
these technologies require methods and tools for verifying the correctness of their operations. Assuming that
quantum computing is more powerful than classical computing, a simulation-based approach for quantum
verification of devices with sufficiently large number of qubits, becomes practically impossible. Aaronson and
Arkhipov showed in [3] that even a rudimentary quantum computer constructed with linear-optical elements
cannot be efficiently simulated. Similarly, verifying the correct preparation of a general n qubit state via state
tomography also involves exponential overhead since it requires collecting statistics from 4" separate
observables [4].

The verification of quantum devices becomes more complicated when the functionality involves
cryptographic primitives. In these cases, incorrect operations could be the result of actions of an adversary. Thus
itbecomes necessary to guarantee the security of the application under certain assumptions about the devices.
Ideally a protocol should remain secure even if the devices are faulty and partially controlled by adversaries. This
would lead to a solution that is device-independent and robust. However, generating such protocols has proven
difficult. Even in quantum key distribution, a complete proof of security for a device-independent protocol, in
the presence of noise, has been achieved only recently [5].

The issue of verification needs to be resolved to be able to exploit successfully any future quantum
computers. Moreover, one expects that the first large scale quantum devices are unlikely to be personal
computers. Instead, they will probably function as servers to which clients can connect and request the
computation of some difficult problem. The client may also require his computation to be private, i.e. require
that the server does not learn anything about it. We should therefore construct protocols that verify an arbitrary
delegated quantum computation and prove the security and correctness of this verification technique.

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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The approaches that have been so far successful are those based on interactive proof systems [6, 7], where a
trusted, computationally limited verifier (also known as client, in a cryptographic setting) exchanges messages
with an untrusted, powerful quantum prover, or multiple provers (also known as servers). The verifier attempts
to certify that, with high probability, the provers are performing the correct quantum operations. Because we are
dealing with a new form of computation, the verification protocols, while based on established techniques are
fundamentally different from their classical counterparts. A number of quantum verification protocols have
been developed, for different functionalities of devices and using a variety of different strategies to achieve
verification [ 1, 2, 8—17]. The assumptions made depend on the specific target and desired properties of the
protocol. For example, if the emphasis is on creating an immediate practical implementation, then this should
be reflected in the technological requirements leading to a testable application with current technology [17].
Alternatively, if the motivation is to prove a theoretical result, we may relax some requirements such as efficient
scaling [2]. An important open problem in the field of quantum verification, is whether a scheme with a fully
classical verifier is possible [18, 19]. We know, however, that verification is possible in the following two
scenarios.

(1) A verifier with minimal quantum capacity (ability to prepare random single qubits) and a single quantum
prover [1]. This is the Fitzsimons and Kashefi (FK) protocol.

(2) A fully classical verifier and two non-communicating quantum provers that share entanglement [20]. This is
the Reichardt, Unger and Vazirani (RUV) protocol.

One of our objectives is to obtain a device-independent (allowing untrusted quantum devices) version of the
FK protocol, by composing it with the RUV protocol.

Here we should make some remarks as to what constitutes a device-independent protocol. A device-
independent protocol is a protocol where the honest participants do not trust their devices. They obtain only
classical outcomes and they assume the worse, i.e. that those devices were prepared by adversaries and were
programmed to function in the most adversarial way. This means they could be exploiting pre-shared
randomness with other devices and adversaries, in such a way that any correlated attack is possible. In this view,
the verification protocols of [1] and [21, 22] are not device-independent because the honest client has to assume
that the output of his device is not correlated with the device or actions of the malicious prover. In our work, we
assume a fully classsical client, that uses two malicious but non-communicating provers. One of the provers is
only required to perform measurements and so can be viewed as an untrusted measurement device, not
necessarily a full quantum computer. In the independent work of [23], a device independent verification
protocol with a single prover and a client having an untrusted device, is proposed. These two settings are two
different views of the same situation. Since the device of the client is not trusted and is a black-box, it can be
modelled as a prover, that uses pre-shared randomness with the other prover to deceive the client.

Additional properties we aim to achieve from the composition of the FK and RUV protocol are fault
tolerance (allowing noisy devices) and reduced round complexity. Composing protocols can indeed be fruitful
since it could lead to new protocols that inherit the advantages of both constituents. The universal
composabillity framework, allowing for secure compositions, has been successfully extended to the quantum
realm [24-26]. Recently, the security of single server verifiable universal blind quantum computing protocols
has been demonstrated in an abstract cryptographic framework [27] that is also known to be equivalent to the
simulation-based composability framework. However this setting does not fulfil the necessary requirements for
our composition. This is because, when combining a single server verification scheme (FK) with an entangled
server scheme (RUV), there exists the possibility of correlated attacks, which are not explicitly treated in the
composability framework. Such attacks can occur when an untrusted server’s strategy is correlated with
deviations in the protocol’s input state. Our robustness result resolves this issue in the stand alone composition
setting and the same technique could potentially be extended to the composable framework of [27], thus
resolving the problem of correlated attacks.

The type of composition that we require is sequential. We take the output of the first protocol and use it as
input for the second. However, in general, the output of the first protocol is not necessarily an acceptable input
for the second protocol. In particular, since the verification protocols are probabilistic, their outputs typically
deviate by a small amount from the ideal one. Thus, it is necessary that the second protocol remain secure even if
the input is slightly deviated from the ideal one. Moreover, we make sure that adversaries cannot exploit any
correlations between the deviated input and their strategy to compromise the security of the protocol. Therefore
to securely compose the protocols, we need to address these new type of attacks. The main results of this paper
can be summarized as follows.
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(1) We prove that the FK protocol is strongly robust, see theorem 1. First, we show that FK can tolerate inputs
which deviate from their ideal values by a small amount, see lemma 7. However, for composition with other
protocols a stronger property is needed. We therefore proceed to show that the FK protocol is robust even
when the deviated input is correlated with an external system possessed by an adversary (for example the
provers’ private systems in the RUV protocol), see lemma 8.

(2) An immediate consequence of the robustness theorem is that we can construct a composite protocol
combining RUV with FK. The required input states for the FK protocol are prepared via the state tomography
sub-protocol of RUV. Our composite protocol inherits the device independence property of RUV, see
theorem 3. Additionally, since we do not require the full RUV protocol, the composite protocol also has an
improved round complexity. Moreover, since one of the provers is only required to run the state tomography
sub-protocol, it only needs to perform measurements. This means that only one of the provers should be
considered a quantum computer (the one running the quantum computation), whereas the other can be
viewed as an untrusted quantum measurement device.

(3) Lastly, we address the distinction between robustness and fault tolerance and show how the FK protocol can
be made fault tolerant, thereby making our proposed composite approach fault tolerant as well. Here we
should note that in [1], fault-tolerant computation and quantum error correcting codes (QEC) were used,
but with specific aim to boost the security of the protocol from polynomial to exponential. In particular, the
traps were not encoded using QEC, and thus the protocol was not tolerant to error-prone devices, since single
faults on trap qubits would lead to an honest run being aborted. As we will see the FK protocol can be made
fault-tolerant, but more care is needed.

In section 1.1 we give some preliminaries. In section 2 we present the main results, that we summarized
above, and outline their proofs. In particular we give robustness in section 2.1, composition in section 2.2 and
fault tolerance in section 2.3. Further details of the proofs are given in section 3 for robustness, in section 4 for
composition and in section 5 for fault tolerance. We conclude in section 6.

1.1. Preliminaries
We first introduce the relevant concepts used in describing verification protocols and then briefly present the
two protocols we will built on (FK and RUV).

1.1.1. Interactive proof systems

Asexplained in [6, 10], alanguage L is said to admit an interactive proof system if there exists a computationally
unbounded prover P and a BPP verifier ¥, such that for any x € L, P convinces V that x € L with probability
2%. Additionally, when x & L, P convinces V that x € L with probability s%. Mathematically, we have the
following two conditions”.

e Completeness: Pr(V <> Pacceptsx | x€ L) > %
e Soundness: Pr(V < Pacceptsx | x € L) < %
The set of languages which admit such an interactive proof system define the complexity class IP. We are

interested in the case when the prover is a polynomial-time quantum computer (i.e. a BQP machine). In [10],
the first definition of such a quantum interactive proof system was given, which we use here:

Definition 1 [10]. Quantum prover interactive proof (QPIP) is an interactive proof system with the following
properties.

(i) The prover is computationally restricted to BQP.

(ii) The verifier is a hybrid quantum-classical machine. Its classical part is a BPP machine. The quantum part is
aregister of c qubits (for some constant c), on which the prover can perform arbitrary quantum operations.
Atany given time, the verifier is not allowed to possess more than c qubits. The interaction between the
quantum and classical parts is the usual one: the classical part controls which operations are to be
performed on the quantum register, and outcomes of measurements of the quantum register can be used as
input to the classical machine.

? Note that completeness can be viewed as the probability of the verifier accepting when the prover is honest. Similarly, soundness is the
probability of accepting, when the prover is dishonest.




IOP Publishing New J. Phys. 17 (2015) 083040 A Gheorghiu etal

K K

Figure 1. An example of a complete graph, K¢, and its corresponding dotted-complete graph K.

(iii) There are two communication channels: one quantum and one classical.

The completeness and soundness conditions are identical to the IP conditions.

We are also interested in interactive protocols that use more than one prover. There are only two differences,
first that the verifier can interact with multiple provers instead of just one, and second that the provers are not
allowed to communicate. The conditions for completeness and soundness remain unchanged. The analogous
complexity class that involves multiple provers is called multi-prover interactive proof system and denoted MIP
[28]. Itis defined as the set of all languages which admit an interactive proof system with one or more non-
communicating provers. If the number of provers is fixed to be k, the corresponding complexity class is MIP[k].
A closely related class is MIP* where the multiple non-communicating provers share entangled states.

In all of these cases, the verifier is essentially delegating a difficult computation to the prover(s). This
computation can be universal with respect to the computation model of the prover(s). In our case, this means
universal for polynomial-time quantum computations. The number of classical messages exchanged between
the verifier and the prover, throughout the run of the protocol, as a function of the input size is known as the
round complexity of the protocol.

1.1.2. Quantum protocols
Throughout this subsection, we assume the reader is familiar with the teleportation-based and more generally
measurement-based quantum computing (MBQC) models, described in detail in [29, 30].

We first summarize the FK protocol [ 1] which is a QPIPprotocol. It is also known as unconditionally secure,
verifiable, universal blind quantum computing. The protocol is ‘blind’ which means that no information about
the computation is leaked to the prover, apart from its size. This property can be exploited by allowing the
verifier to insert hidden ‘traps’ within the computation. The traps are deterministic tests which the verifier can
perform in order to verify that the prover is not deviating from the protocol. Blindness ensures that the traps are
indistinguishable from the computation.

The basic idea of this protocol is that the verifier prepares and sends qubits to the prover. The prover
entangles these qubits and then performs adaptive measurements (sending the measurement outcomes to the
verifier) that will overall implement a certain unitary operation, as in the MBQC model of computation. The
traps are single isolated qubits, disentangled from the rest of the computation, and when measured in suitable
bases give deterministic outcomes that are known to the verifier (but not to the prover). Since the prover is
completely blind and does not know which qubits are traps and which are part of the actual computation, any
attempt to cheat has some probability to affect the trap and thus be detected.

The FK protocol is based on a universal resource state for the MBQC model, known as the dotted-complete
graph state. The details of this resource state are not crucial for understanding this paper, apart from the fact that,
as part of the FK protocol, the appropriate operators are performed by the untrusted server to prepare this
generic state. In particular, a series of controlled-Z operators are performed by the server, according to the
dotted-complete graph structure, for entangling the individual qubits prepared in advance by the verifier. These
initial qubits, that are sometimes referred to as the input of the FK protocol, are sent to the server at the first stage
of the protocol. This fact is used to prove some basic properties needed for our main robustness result, see
theorem 2. Therefore, for the purpose of completeness, we state here the definition of the dotted-complete
graph state, taken from [1], see also figure 1.

Definition 2 [1]. Let Ky denote the complete graph of N vertices. Define the dotted-complete graph, denoted as
Ky, to be a graph where every edge in Ky is replaced with a new vertex connected to the two vertices originally
joined by that edge. We call the quantum state corresponding to Ky the dotted-complete graph state. This multi-
partite entangled state is prepared by replacing every vertex with a qubit in the state | + ) and applyinga
controlled-Z operator for every edge in the graph.

4
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The family of dotted-complete graph states is universal for quantum computation. Moreover, any other
graph state could be obtained from a large enough dotted-complete graph state by applying the appropriate
Pauli measurements over some of the vertices (the ones shown in white, in figure 1). Concretely, in order to
construct any desired graph of N vertices from a dotted-complete graph Ky, Pauli Y measurements are
performed in order to keep a specific edge, and Pauli Z measurements in order to remove it (alternatively, one
could use the states |0), | 1) for the edges which should be removed, instead of performing a Pauli Z
measurement). This can be done blindly in order to hide the target graph. The detailed construction is not
important for the rest of this paper and hence omitted (see section 5in [1]). We give a brief description of FK,
shown here as protocol 1.

Protocol 1. Fitzsimons, Kashefi QPIP protocol from [1].

Assumptions

The verifier wants to delegate a quantum computation described by the graph G and specific measurement angles ¢, € {0, /4 ... 7n/4}
chosen to define a desired computation. He chooses a security parameter d and encodes this graph into the topological error correcting
scheme of Raussendorf et al [31], that can correct or detect errors with weight less than d. The encoded graph, G, will have N qubits. He
then considers a random hidden partitioning of the vertices of the dotted-complete graph sy into three subgraphs: the computation
graph G, and two different types of isolated traps which the verifier will use in order to test the prover’s honesty in performing measure-
ments. All measurements are performed in the XY-plane.

Protocol

(1) Verifier prepares and sends the 3N (3 N + 1)/2 qubits to the prover (the number of vertices in K3y ). These consist of dummy qubits
which are either |0) or | 1) (isolating their neighbouring vertices from the rest of the computation) and computation or trap qubits which
areoftheform| + ) = % (10) + € 1)), where 6 € {0, 7/4... 7n/4}.

(2) The prover entangles the qubits according to the structure of the K5y graph by applying controlled-Z operations between any pair of
vertices that are connected with an edge.

(3) For each qubit i, the verifier computes the measurement angle 6; = 6; + ¢ + r;7, where ¢/ is the adapted version of the computation
angle ¢;, and r;is arandomly chosen bit {0, 1}. Adapted computation angles are used to account for corrections from previous measure-
ments. The measurement angles ¢;, for the trap qubits, are randomly fixed to be 0 or 7. However, due to blindness provided by the initial
0, rotations in the preparation of individual qubits (step 1 above), the value of §; is uniformly distributed over the set {0, z/4 ... 7z/4}. The
verifier sends these measurement angles one by one to the prover. The prover measures each corresponding qubitin the | +5; ),| —5, )
basis, and sends his reply b, to the verifier.

(4) The verifier accepts if for all trap qubits, the reported measurement outcome b, is the same as the expected outcome ;.

According to definition 1 the quantum channel between verifier and prover is one-way (from the verifier to
the prover). Moreover, the constant ¢, representing the number of qubits that the verifier can possess atany
given time, is exactly one. We refer the reader to [ 1] for a more in depth description of the protocol and its
associated concepts. However, we recall the key properties of the protocol in the following lemma.

Lemma 1. Assuming the verifier wants to delegate the computation of a circuit of size N, the FK protocol has O (N?)
round complexity and uses O (N2) qubits with completeness being exactly 1 while the soundness is upper bounded by
(2/3)[¥1], where d is the security parameter.

Proof. It is clear from protocol 1 that the total number of qubits used in the protocolis 3N (3 N + 1)/2, where N
is the number of qubits for the encoded graph G. Additionally, we have the same number of rounds of classical
communication, corresponding to the measurements of qubits in the dotted-complete graph (each measure-
ment requires three classical bits to specify the measurement angle and 1 bit to specify the outcome). Both the
overall round complexity and the required quantum resources are thus O (N?).

As described in protocol 1, the verifier accepts if and only if all trap measurements succeed. This is always the
case if the prover is honest and follows the instructions, since the trap measurements are deterministic.
Therefore, the probability that the verifier accepts when the prover is honest is exactly 1 (completeness). On the
other hand, itis shown in [ 1] that in the case of classical output, the protocol is (2/3) [%] -verifiable, meaning the
soundness is upper bounded by (2/3) [+1. O

Next we summarize the RUV protocol [2] which is a MIP* protocol. It relies on the rigidity of CHSH games
(20, 32] to test the honesty of the provers (see traps at the FK protocol), and on gate teleportation to perform the
computation. In particular, the verifier directs the provers to perform a series of local measurements of their
parts of the shared entangled states. The purpose of this is to check for statistical violations of Bell’s inequality. At
the same time, the verifier makes the provers teleport quantum states into gates in order to perform his desired
quantum computation [20]. Importantly, the verifier alternates between these strategies in such a way that the
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provers are not aware (they are blind) in which strategy their measurement belongs. Moreover, the two provers
cannot use previous results in order to deviate from the protocol (i.e. there is no adaptive cheating strategy). This
is summarized as protocol 2. Due to the rigidity of the CHSH games, as proved in [2], the verifier can determine
if the two provers are being honest or not from the statistical outcomes. To ensure the verification of universal
computations, the resource preparation stage of the protocol will prepare multiple copies of the states:

{P10), (HPL[w*), (GY|y), CNOTPu([w) @ w*)): P.Qe (L X, ¥, 23},

| 00)+ | 11)

Here, |y*) denotes the Bell state which is shared among the two provers. In fact the provers share

multiple copies of |y*), each prover having one qubit from each Bell pair. Without loss of generality, we can
assume that prover 1 has the first qubit and prover 2 has the second qubit. The Hadamard, Phase and controlled-
Not gates (denoted as {H, G, CNOT}) constitute a universal gate set for quantum computation. The subscript
indices indicate on which qubits the gate acts. An arbitrary quantum circuit is thus simulated by repeatedly doing
gate teleportations, while keeping the computation blind from the two provers the entire time.

Lemma 2. Assuming the verifier wants to delegate the computation of a circuit of size n, the round complexity of the
RUV protocolis O (n°), where there exists some constant ¢, such that ¢ > 8192.

Proof. To determine an upper bound for the round complexity we only need to inspect the number of rounds of
CHSH games, since the protocol randomly alternates between this and the other three subprotocols. As shown
in protocol 2, the verifier plays N sets of CHSH games with the two provers. Each set consists of gn; games and

n, > n®. Additionally, it is required that N > (qn, )*~!, where n'? > n%, so @ > 128. These conditions are
necessary for the correctness of the state tomography and process tomography subprotocols [20]. We then have
that N > dn®128, where dis a constant of the form d = gq®~!. This is the number of sets of CHSH games and
hence the number of required games is lower bounded by #*'°%. It follows that the number of rounds is O (1),
where ¢ > 8192. Note that by ‘lower bounded’ we refer to the case when all of the CHSH statistics are consistent
and the verifier does not reject. In the case of inconsistent statistics, the verifier can reject before playing n*'**

games. O

The subprotocols of the RUV protocol are themselves verification protocols as proved in [20]. The
subprotocol that we will use is the state tomography protocol. As part of the RUV protocol, it is used to prepare
resource states which are XZ-determined, i.e. states that are uniquely determined by their traces against X and Z
operators. To compose the RUV with the FK protocol we will use a modified version of the state tomography
subprotocol, so that we can prepare all states that are allowed inputs for the FK protocol. We will give the
modified protocol in the next section.

Protocol 2. Reichardt, Unger, Vazirani MIP* protocol from [20] (for two provers).

Assumptions

The verifier delegates a quantum circuit of size  to two quantum provers. Let n, = n%/2 > n%,q=11, ng=qng, N > n;_l and 6 = 1/(6n%'8).
The two provers share Nn, Bell states.

Protocol

The verifier alternates randomly between four subprotocols. He chooses the first three with probability (1 — §)/3) and the last one with
probability 8.

(1) CHSH games. The verifier referees N sets of sequential CHSH games, each consisting of 11, games between the provers. He rejects if they
win less than:

cos*(/8)Nn, — % Nnyg log(Nny)

of the games.

(2) State tomography. The verifier chooses K € [N]uniformly at random and referees K — 1 sets of CHSH games. He sends the questions
from the Kth set to prover 1, while running a state tomography protocol with prover 2. In this protocol prover 2 is asked to prepare g-qubit
resource states by measuring his halves of the shared Bell states. This will collapse prover 1’s states to the same g-qubit resource states up to
corrections. The verifier checks this using the CHSH measurement outcomes from prover 1. These outcomes tomographically determine
the states that are being prepared. He rejects if the tomography statistics are inconsistent.

(3) Process tomography. The verifier chooses K € [N]uniformly at random and referees K — 1 sets of CHSH games. He sends the questions
from the Kth set to prover 2, while running a process tomography protocol with prover 1. In this protocol prover 1 is asked to perform Bell
measurements on his halves of the shared Bell states. The verifier checks this using the CHSH measurement outcomes from prover 2. He
rejects if the tomography statistics are inconsistent.

(4) Computation. The verifier chooses K € [N]uniformly atrandom and refereed K — 1 sets of CHSH games. In the Kth game he runsa
state tomography protocol with prover 2 and a process tomography protocol with prover 1. The combination of these two achieves
computation via gate teleportation.
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2. Main results

2.1.Robustness

The first result we prove is that the FK protocol is robust with respect to small variations in the input.
Throughout this paper, by ‘input’ we are referring to the quantum states that the verifier sends to the prover and
not the computation input. Without loss of generality we can assume that the desired computation that will be
delegated to the server has the fixed classical input 0, ...0. Dealing with arbitrary classical or quantum input is
straightforward, as explained in [1], and makes no difference for our result. Hence, for the rest of this paper we
define the input state of the FK protocol to be the tensor product of the individual qubits prepared by the verifier,
comprising the dotted-complete graph before the prover applies controlled-Z to entangle them (these include
the computation, trap and dummy qubits).

The fact that FK is robust means that the protocol’s input state can be deviated from its ideal value by some
small amount and the protocol will continue to function. In particular, this input state could be the output of
some other protocol, provided that this state was close to its ideal value. As we will see in the next subsection, the
RUV protocol is capable of such a preparation. We start by formally defining robustness in this context.

Definition 3 (Robustness). A verification protocol with quantum input is robust if, given that the protocol input
is e-close in trace distance to the ideal input, in the limit where ¢ — 0 the completeness and soundness bounds
remain unchanged.

Mathematically, if we denote the multi-qubit input state as p, and the pure states comprising the ideal input
as 7;, where i goes from 1 to the number of qubits, we have that:

lp-® =l <e (1)
i Tr

Note that p is of the same dimension as ; 7; as it does not contain any ancilla qubits from the environment.
Given the definition of robustness, we prove that:

Theorem 1. The FK protocol is robust and given an input which is e-close to its ideal value, the completeness is lower
boundedby 1 — 2e and the soundness bound changes by at most O (J€).

Because we are tracing out the environment, which could be controlled by an adversary, the security of the
protocol, with a deviated input state, needs to be re-established. We highlight this in the following proof sketch
of theorem 1:

Proof sketch. We first examine soundness which considers the case of a dishonest prover. Intuitively, when the
prover is malevolent, he will try to convince the verifier to accept an incorrect outcome and thus deviate from the
correct protocol. However, as shown in [1], no matter how much the prover deviates, the probability for the
verifier to accept a wrong outcome is bounded. If the input to the protocol is already deviated from the ideal, one
could expect that the soundness bound remains unchanged. The effect of a deviated input could be incorporated
in the deviated actions of the prover. This is indeed the case when the input is uncorrelated with any external
system and we can express the deviation as a CPTP map (see lemma 7 for detailed proof).

In the general case, however, the deviated input could be correlated with subsystems controlled by
adversaries. This deviation could be used by the prover to improve his cheating probability. Mathematically this
is manifested by the fact that the prover’s action in the presence of initial correlations is not in general a trace
preserving map. It can be expressed as a linear combination of a CPTP deviation and an inhomogeneous term
which could be either positive or negative as shown in the [33]. In this case, we use the e-closeness of the input
state to derive abound of order O (/€ ) for the norm of the inhomogeneous term. From linearity, and using the
previous argument it follows that in the general case the soundness bound changes by at most O (/€ ) (see
lemma 8 for detailed proof).

In the case of completeness, we are assuming the prover is honest. If we start with an e-close input state,
because of the linearity of the operators involved, we will end up with an output state that is O (¢)-close to the
ideal output (see lemma 9 for detailed proof). O

A similar approach to lemma 7 was used in [34] for defining approximate blindness, and in [27] to prove
universal composability for blind quantum computing protocols. However, to our knowledge, these results are
not strong enough to cover the requirements for the composition with the RUV protocol. In [34] only the
blindness property was examined while verifying the computation was not considered. In [27] they considered
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local-verifiability which does not take into account for example, the possibility of correlated attacks such as those
that are possible when the two provers have a prearranged correlated strategy.

2.2. Composition

One of our main objectives is to construct a device independent version of the FK protocol. The first step, was to
show that FK is robust. This property guarantees that if we have an input state that is only approximately the
ideal one, the protocol continues to work. We can now break the task of achieving device independent FK into
two parts, which we need to compose sequentially.

(1) State preparation—use a device independent protocol to prepare on the prover’s side a state which is eclose to
the FKinput.

(2) Verified delegated computation—run the FK protocol with the prover that has the e-close input state (since
robustness allows this).

The advantage of this technique is that we are free to use any protocol for state preparation as long as we have
the guarantee of e-closeness. This is due to our strong robustness result, which shows that FK will work even if
the deviation in the prepared state is correlated with the prover’s cheating strategy in the delegated computation
stage. In this paper, we achieve state preparation using the device-independent state tomography sub-protocol
of RUV. This sub-protocol has the e-closeness property that we require, as explained in [20]. The resulting
composite protocol will have a better round complexity than the full RUV protocol for the verification of
quantum computations. The complexity can be improved further if a more efficient state preparation protocol is
used. Recently, in an independent work that simultaneously appeared with our arxiv version, a more efficient
scheme for state preparation is proposed that is based on a self-testing approach [23] rather than the rigidity of
CHSH games [20].

We first clarify some details of the RUV protocol, which are essential in understanding how our composite
protocol will work. RUV uses the rigidity property of CHSH games to determine that the provers share multiple
copies of the Bell state |@+) = (|00) + |11))/~/2, whichis XZ-determined. They can then use X state
tomography to verify the preparation of any other XZ-determined state. In particular, they use it to
tomographically verify the preparation of a set of states which can be used to perform universal computation.
They also describe how it is possible to extend the protocol in order to have full tomography with the Y operator
aswell [20]. However, because they are using the | ®@*) Bell state, it is only possible to fix the Y operator up to a
sign change. That s, the provers can always choose to measure in either the Yor —Y bases without being
detected (this corresponds to complex conjugating the states with respect to their representations in the
computational basis). In fact this problem has been noticed by others as well [12, 35]. As explained in [20], it is
possible to force the provers to consistently choose either Y or —Y for their measurements. This makes the
resulting state prepared by state tomography close to either the ideal state or the complex conjugate of the ideal
state.

At first glance it would seem that this could be problematic for the FK protocol. We would have to show that
running the FK protocol with an input state that is close to the complex conjugated version of the ideal input
would be detected by the verifier. Intuitively this is the case, since trap qubits are in the XY-plane and complex
conjugating them would lead to different measurement outcomes. We will not prove this and instead provide a
simpler solution.

The problem stems from the fact that we are using the XZ-determined |®@™) state. Let us instead consider the
state|¥*) = (]01) + |10))/~/2. Using theorem 2 from [20], and the fact that | ¥'*) has stabilizer generator set
X ® X, Y ® Y}whichbelongsto {I, X, Y}®?we have that this state is XY-determined.

Theorem 2 [20]. A stabilizer state is determined by any of its sets of stabilizer generators.

In principle it is possible to run a form of the RUV protocol in which we choose the CHSH games such that
we rigidly determine that the provers share multiple copies of the Bell state | #*) instead of | @*). Analogous to
the previous case, the extended form of the protocol would then fix the Z operator up to a sign change (instead of
the Yoperator). This means that the provers can always perform a reflection about the XY plane with no
noticeable changes. However, the XY plane states are invariant under such a reflection. We can therefore use this
to prepare the input which will be used by the FK protocol. The only problem we encounter is that we also
require the preparation of |0) and | 1) states which act as dummy qubits in the FK protocol [1]. As described in
protocol 1 these dummy qubits are measured in order to ‘break’ the dotted-complete graph into the
computation graph and the two trap graphs. The problem is that the XY plane reflection has the effect of
flipping the computational basis states (state |0) becomes | 1) and state | 1) becomes |0)). However this deviation
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(flip) has to be applied globally otherwise it affects the statistics of the CHSH game and thus the verifier rejects
[20]. Such a global flip is detected by the FK protocol. A formal proofis given in lemma 10, section 4, while below
we give a sketch of the proof.

In the honest scenario for the FK protocol, the measurement of a dummy qubitin state | 1) introduces an
additional Z correction to its neighbouring qubits (this is because we are using the controlled-Z operation for
entangling qubits). Hence in a malicious setting the effect that a flip has on a trap qubit with an odd number of
neighbouring dummy qubits, leads to an extra Z operation. Such a Z flip changesa | +¢ ) stateto| — ). Thus,
the measurement of this trap qubit will deterministically fail and the verifier will detect this. On the other hand,
since the verifier chooses the input, he can always pad the computation such that the overall graph has trap
qubits with an odd number of neighbour dummy qubits. This is due to the fact that in a dotted-complete graphs
(definition 2), some of the traps willhave N — 1 neighbouring dummy qubits. Therefore, if the size of the input
computation N is odd, the verifier need only pad the computation size to become N + 1.

Now we are in a position to construct the composite protocol which composes RUV with FK. We give a
modified version of the state tomography protocol of RUV (see protocol 3). Proof that protocol 3 is valid
verification protocol is given in section 4. The purpose of this modification is to verifiably prepare the minimal
resource states which are subsequently used as inputs for the FK protocol.

Protocol 3. Modified state tomography protocol.

Assumptions

Let S = {(1, 0,0, (0, 1, 0), (0,0, 1), (1, 1, 0), 7 (1, =1, 0), (1, 0, 1), (1,0, =1), (0, 1, 1), 55(0, 1, =1)}.

Let M, bea2 outc_f)me projective measurement defined by the projectors: %(I +v-(X,Y,Z))and %(I -V (X,Y,2).

Letthetuple (4@, b) € S X S denote the measurements M, for prover 1 and Mj, for prover 2 that they need to perform on their halves on
an entangled state when instructed by the verifier. Sets of such tuples define CHSH games. For example the set
{(1, 0, 0), (0,0, 1)} x {%(1, 0, 1), %(1, 0, — 1)} defines the XZ CHSH game. Given S, there are six such sets of CHSH games (two
XZ,two XY and two YZ) [20]. For a suitable numbering of these games, let CHSH; be the ith CHSH game, i € {1,... 6}.

Protocol

The verifier alternates uniformly at random between the following subprotocols:

(1) CHSH games. Verifier referees 6N sets of sequential CHSH games, such that each group of N sets is one of the six possible CHSH types of
games. Each set consists of 11, games between prover 1 and prover 2. For each group of N CHSH games the verifier rejects if the two provers

win less than: .
cos?(z/8) Nng — ﬁ,/Nng log(Nny)
of the games.

(2) State tomography. Verifier chooses K € [N]uniformly at random and also randomly chooses CHSH; as one of the six possible CHSH
games. Then he referees K — 1 sets of CHSH; games, sending the questions from the Kth set to prover 1, while running a state tomography
protocol with prover 2. In this protocol prover 2 is asked to prepare resource states by measuring his halves of the shared Bell states. This
will collapse prover 1’s states to the same resource states up to corrections. In the context of composition, these resource states will
constitute the FK input. The verifier uses the measurement outcomes of prover 1 to tomographically check this preparation. He rejects if
the tomography statistics are inconsistent. In the end, if the verifier accepts, he concludes that with high probability prover 1 has a state
which is close in trace distance to the tensor product of resource states. The formal statement of this fact is given in theorem 5, taken from
[20], and more precisely in equation (42) from lemma 12.

The composite protocol, given as protocol 4, is the sequential composition of the modified state tomography
of protocol 3 with both provers followed by the FK protocol with prover 1. Note that since prover 1 is involved in
both state tomography as well as the FK protocol, the strong version of the robustness property is required. This
is to address the effect of any potential correlated attacks where provers 1 and 2 have agreed in advance on a
strategy. The deviations of prover 2, in the preparation stage, could be correlated with the deviations of prover 1
during the computation stage (FK). This is the first rigorous proof of a protocol that involves lifting the FK
protocol to the entangled provers setting. Additionally note that prover 2 is only required to perform quantum
measurements and therefore can be viewed as an untrusted measurement device. Hence our protocol is a device-
independent single-server verification protocol unlike RUV which is a multi-server protocol. We give here the
correctness and soundness of this protocol and show that it is more efficient than the RUV protocol (theorem 3)
while in section 4 we give the proof of this theorem.

Protocol 4. Composite verification protocol.

(1) Run the modified state tomography protocol (protocol 3).
(2) From the states prepared by this protocol on prover 1’s side, select the input for FK and run the FK protocol with prover 1. (Protocol 1.)
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Theorem 3. Assuming the verifier wants to delegate the computation of a quantum circuit of size n, protocol 4 isa
MIP* verification protocol having completeness lower bounded by 1 — O (n~'/128), soundness upper bounded by

(%) 1+ o0 (n~Y12), where d is the security parameter of the FK protocol, and round complexity O (n°), where there
exists some constant ¢ such that ¢ > 2048.

While the obtained round complexity is an improvement over RUV (lemma 2) it is still far from practical.
However, we believe our approach serves as a proof of principle, that this type of composition can be beneficial.
It also highlights where improvements could be made. It is the state tomography subprotocol that increases the
round complexity, while the FK protocol has a relatively low complexity”. The detailed proofs are given in
section 4.

2.3.Fault tolerance

In constructing our composite verification protocol, we used the robustness of the FK protocol. Our last result is
to characterize the difference between robustness and fault tolerance and to show that the FK protocol can be
made fault tolerant using a topological error correcting code. Note thatin [1] a quantum error correcting code is
used to further bound the deviation in the prover’s cheating strategy and thus boost the soundness parameter of
the protocol. However, in that case traps were not encoded and so in the presence of noise and faulty devices, the
acceptance probability, even for an honest prover, would decrease considerably, as we will show. We remedy this
problem in our fault tolerant version of the FK protocol. Consequently, our composite protocol can also be
made fault tolerant provided that the state tomography part is run on top of an error correcting code.

As mentioned before robustness is a protocol’s ability to continue to function given a deviated input. Fault
tolerance is when a protocol functions correctly in the presence of error prone devices. The essential assumption
for robustness is that the actual (multi-qubit) input is e-close to its ideal value. Fault tolerant protocols, on the
other hand, assume that errors can occur at each individual qubit. The faulty devices are usually represented by
the action of a partially depolarizing channel: £ = (1 — p)[I] + § ([X] + [Y] + [Z]).Herepis the probability
of error, and the square brackets indicate the action of an operator. This leads to the following observation:

Lemma 3. Let 0 = @I, p, bea system of n qubits. Assume each qubit goes through a partially depolarizing channel
& having probability of error p > 0. Let the state of the system, after all qubits have passed through the channel, be
o' = QL E(p;). Wehavethat || 6 — o'|lrx < min(1, np) and there exist states 6 for which || 6 — ¢'|lr, = 1.

This means that the deviation of an n-qubit system from the ideal input is not bounded by some constant
amount. This is intuitively clear, since by adding more qubits, we introduce more errors and the state of the
composite system is further from its intended value. In contrast to this, when considering robustness, the
distance between the actual and ideal state is bounded by an arbitrarily small quantity. We will now address how
can we do verification in an error prone setting.

Lemma 4. Assume we run the FK protocol with Ny traps and each qubit is subject to the action of a partially
depolarizing channel € having probability of error p > 0. Given the simplifying assumption that if a qubit is changed
(through the action of an X, Y or Z operator) it will produce an incorrect measurement outcome, the completeness of
this protocol is upper bounded by (1 — p)™r.

Protocol 5. Fault tolerant FK protocol.

Assumptions

The verifier wants to compute the execution of a measurement graph G having n qubits. Both the verifier and prover’s devices are subject to
noise modelled as a partially depolarizing channel acting on the preparation of the qubits and the application of the quantum gates. For
single qubits the channel is described by:

a=u—mm+%mnwn+my )

And for two qubit states by:

&=uﬂm®u+%m®m+m+w®am (3)

Additionally assume p < p. ..o Where peorrect is a threshold such that depolarizing noise bellow this threshold is corrected by the topologi-
cally protected code from [31].

* Note that the round complexity of FK could be further reduced to linear, if one is willing to admit a higher upper bound for soundness.
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(Continued.)

Let G¥ denote a brickwork state encoding the graph G and containing one trap qubit, as explained in [1]. Let £¥ denote a fault tolerant
encoding of the graph G using the topologically protected code from [31]. The encoding is done as explained in [36], hence £* will be
decorated lattices (see figures 1, 2 in [36]). The index v denotes the randomness in the 6 angles for the encoding as chosen by the verifier.
Let S = LY @ L ® -+ ® LN, where R/log (= 1) <N< R/log (—=-) + O(1), for some constants R > 1, ¢ > 2 and

cn— cn—1

U = {v---un }. We will refer to S? as a sequence of encodings.

Protocol

(1) The verifier chooses R > 1and constructs the random set 7.

(2) The verifier prepares the qubits for the sequence S? and sends them to the prover along with instructions on how to construct S?.

(3) The verifier sends measurement instructions to the prover in order to compute the executions of the encoded graphs.

(4) The prover sends the measurement outcomes to the verifier.

(5) Steps 3 and 4 repeat until the verifier either accepts or rejects.

The verifier rejects if any of the traps fail. He takes the outcome of the computation to be the majority outcome over all computations
(graphs L"),

It is evident that assuming faulty devices where each qubit behaves as if it crossed a partially depolarizing
channel, the completeness of the protocol becomes exponentially small (as function of the number of traps).
This is clearly unsatisfactory. The arguably simplest solution would be to alter the acceptance condition of the
protocol. Since it is unlikely that all trap measurements succeed, even for honest prover, the verifier should
accept aresult if the traps that succeed are above some fixed fraction.

Lemma 5. Assume we run a modified FK protocol with N traps and each qubit is subject to the action of a partially
depolarizing channel £ having probability of error p > 0. The modification is that the verifier accepts if there are
fewer than Ny (p + €) mistakes at trap measurements, where € > 0 is a suitably chosen small number. The
completeness of this protocol is lower bounded by 1 — exp (—2€*Nr).

The above modification resolves the issue raised regarding the completeness bound. However, if we were to
make such modification, we have the following consequence for the soundness of the protocol:

Lemma 6. Assume we run a modified FK protocol with N traps, N qubits in total and each qubit is subject to the
action of a partially depolarizing channel € having probability of error p > 0. The modification is that the verifier
accepts if there are fewer than Ny (p + €) mistakes at trap measurements, where € > 0 is a suitably chosen small

number. The soundness of this protocol is upper bounded by ( I;\ITT ) (%) [4].

We can see that introducing a threshold of acceptance leads to an increased bound on soundness. Again,
expected, since we allow the prover to tamper with some of the traps (and, by extension, with the computation as
well) without rejecting the output. To solve these problems we need to use a fault tolerant code. The FK protocol
already uses a fault tolerant code to encode the computation graph. However this is done in order to boost the
value of the soundness parameter. The trap qubits are not encoded with the code (only the computation is).
Thus we propose a modified FK protocol. This is described in protocol 5. In this protocol we encode both
computations and traps in a fault tolerant code and use sequential repetitions (also used in [17]). This leads to
our final main result:

Theorem 4. Under the assumption of a faulty setting where qubit preparation and quantum gates are subject to
partially depolarizing noise having bounded probability p, protocol 5 is a valid verification protocol having
completeness 1, soundness upper bounded by (1/2)R, where R is a constant such that R > 1. The protocol has round
complexity O (n?).

The proof of this theorem (and previous lemmas) are given in section 5. An important point to make is that
the composite protocol we constructed can also be made fault tolerant. To achieve this the state tomography
protocol should be run on top of a fault tolerant code. As mentioned in [20], in principle, this is straightforward
for blind, verified computation, since the provers can work on top of a quantum error-correcting code and
entanglement can be distilled with the help of the verifier [37, 38].
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3. Proof of robustness

In this section we prove the robustness of the FK protocol. We start by first proving a simpler result, namely the
robustness of the protocol under the assumption that the input is uncorrelated with any external system. We
then remove this assumption and use our results to prove the main theorem, necessary for the composition with
the RUV protocol.

Lemma 7. If the initial input state of the FK protocol is e-close to the ideal input state and uncorrelated with any
external system, the soundness bound does not change.

Proof. We will follow the same proof technique as in [ 1] and show that the soundness bound does not change.
This is done by incorporating the assumption of a deviated input into that proof. The outcome density operator
of the protocol is denoted B; (v), where v denotes the verifier’s choices of input variables and j ranges over the
prover’s choices of possible actions (j = 0 is the correct/honest action). If the outcome is incorrect it means that
all of the traps have passed, but the computation is not correct. This is associated with the following projection
operator [1]:

Pincorrect = ([] - ‘ ylideal> <ylideal . (4)

)

)

Here, | ¥gcal) ( Hideal | is the ideal output state, and ®, r|1,) (1" | is the state associated with the trap qubits.
Notice that we are projecting to a state in which the output is orthogonal to its ideal value, and the traps are
correct. This expresses the fact that the verifier will accept an incorrect computation. The associated probability
for that event is py,correct and can be expressed as:

pincorrect = Zp (U) Tr (Pil;lcorrectBj (V) ) . (5)

Which is a weighted average of the incorrect outcome probabilities (expressed by the trace operator) over all
possible input states. The outcome density operator can be written as:

Joint system statec”?
7\

3\
J

Bi(v) = Trp| 2|6+ ¢) (bl Cocp@P| (@7 10)(01) ® |#00) (!
b ~

. ~ » . ~~
Prover’s qubits Input state
PRiC) , 1) (b+cl). (6)
Notice the following, as explained in [1]:
e weare tracing over the prover’s qubits;
v,b.

e we have denoted the joint state, comprised of the input and the prover’s qubits, as 6%;
e jranges over the prover’s possible strategies (j = 0 is the honest strategy);

e bindicates the possible branches of computation parametrized by the measurement results sent by the prover
to the verifier;

e ¢ indicates corrections that need to be performed on the final, classical output due to the MBQC computation
together with the random phase introduced by the verifier;

e Pisthe computation that we want the prover to do;
e Qisthe prover’s deviation from the desired computation;
o C,parethe corrections the prover applies to its quantum output depending on the measurement outcomes

(as in the measurement-based model);

we now need to incorporate the approximate input state into this operator. We will not use the e-closeness of the
deviated state to the ideal one, and prove a stronger result, that the soundness bound does not change regardless
of the input state. Concretely, assume the deviated input is:
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py,b =& ( | 1[/y,b> < Y/u,b

) 7)

where £ is a CPTP map which represents any deviation from the ideal input state either from incorrect
preparation, a malicious prover or faulty devices. This is equivalent to applying some unitary U to the input state
tensored with some environment qubits that are traced out. We can express this mathematically as:

prb = TrE(U(( ®" 10)(0]) ® |5”b> <&”””’ )UT). (8)

The joint system state 6* becomes’:

Wb = TTE<( ®F |0><0|) ® U(( RF |0><0|) ® |Y’1/,b> <'f/l/,b

Ju). 9)
Let us consider anew unitary V = (I @ U). This allows us to rewrite the joint system state as:
ob = TrE( v(( & 10)01) ® |#) (1)) v’f). (10)

Since P, the computation, is a unitary operator, there must exists some unitary V' such that V.= PTV'P,
Substituting this into the previous expression gives us:

b = TrE(PTV,P( ( ®E+P |0><0|) ® |5Uu,b> <5Vu,b

)PTV’TP). (11)

Incorporating equation (11) into the expression for B; (v) in equation (6) we obtain:
Bj(v) = Trp[ > \ b+ c,> (b] C,., QP
b

(TrE(PTV’P(( R+ |o><0|) ® |»1w,h> <lilu,h

)PTV'TP> )

PIRIC], 1) (b +cl). (12)

The assumption of the lemma is that the input state is not correlated with any external system. Hence, the
spaces E and P are independent. This means that the prover’s deviation, £2, is not acting on E and therefore we
can ‘push’ the inner trace operator to the beginning of the equation. Also using the fact that PPT = PTP = I, we
obtain:

Bj(v) = Trp+5(2‘b + c,> (b
b

Cucs@V'P (@74 10)(01) ® |#) (0

16} (b + ¢, ) (13)

Jpiviaicy,

We can now include the input deviation given by V" into the prover deviation £2, by considering £’ = QV".
This is possible because we are bounding the probability over all possible deviations, £2, of the prover in the
computation and all possible deviations, V', from the preparation part. Thus, we can consider this to be a single,
global, deviation given by £2'.

Bj(v) = Trpys Z|b + cr> (b
b

CUc,b‘Q/P(( ®P+E |0><0|) ® |5Uz/,b> <11yu,b
16)(b + ¢, ) (14)

)PTQ’TCJC’b

As aresult, the above equation has the same form as the undeviated input scenario of equation (6). This
makes sense since all we have done is to incorporate the deviation of the input into the prover’s cheating strategy.
The original proof continues as it is in [ 1], and the bound remains unchanged

d
2\[#1
Pincorrect < ( g) . (15)

O

Here and in the following expressions we have used the fact that the partial trace is linear and can therefore be moved outside.
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The type of robustness guaranteed by this lemma is not sufficient to prove the security of any protocol that
composes RUV with FK. For example if we use prover 2 of RUV to prepare the input of the FK protocol for
prover 1, this input is in general correlated with prover 2’s system. To address this issue, we use from [20] the
following corollary of the gentle measurement lemma and the special Kraus representation in the presence of
initial correlations given in [33].

Corollary 1 [20]. Let p be astate on H; @ H,, and let & be a pure state on Hy. If for some & > 0,
Tr(z Tnp) = 1 — 6, then
llp — 7 ® Tripllre < 25 + 6. (16)

Lemma 8. If the initial input state of the FK protocol is €-close to the ideal input state the soundness bound changes by
atmost O (Je).

Proof. Consider a composite correlated state p,, where systems A and B are not communicating and let

o = Tg(pyp) and py = Tra(p,p). If p, is used as input for the FK protocol, the existence of correlations (not
present in the previous lemma) can be exploited by an adversarial prover. Hence the deviation can no longer be
expressed as a CPTP map over this subsystem. As it is shown in [33], in presence of initial correlations defined as:

Peorr = Pa — Pa @ Pp (17)
the evolution of the subsystem p, is the following:
pa = E(py) + Spy. (18)

Here £ isa CPTP map and &p, is an inhomogeneous term which is added to the CPTP evolution due to the
presence of initial correlations. In addition we have the following property:

opy = TrB(UABpCOrr ij). (19)

We can see that substituting p, in the outcome density operator of the FK protocol gives different soundness
bound than the one inlemma 7. The difference stems from the extra §p term. However we can use the fact that p
is e-close to the ideal state (lemma assumption) to show that the norm of dp, is at most of order O (/€). To
prove this we first find a bound for the norm of p ., and since dp, is justa CPTP map applied to p.,, it follows
that the norm of §p, has the same bound. Moreover, the action of the FK protocol can be modelled as a CPTP
map, therefore acting on &p, will not increase the norm. It follows that the overall soundness bound changes by
atmost O (J/€).

If we denote the ideal state as |y), we know that:

oy = lw) (wllle < e (20)
Itis also known, from the relationship between fidelity and trace distance, that:
L=yl py ) <llpa = lw) vl (21)
Combining these two yields:
(wlpsly) 21 —e. (22)

Recall that Tr(|y)(w| p,) = (w| p, lw), usingequation (22) and corollary I (where p is substituted with p, ,
and 7 with |y) (w |) we have:

llpag — W) {w| @ pglltr < 2VE + €. (23)

The trace norm of g, is simply the trace distance between p, ; and p, ® pj as can be seen from the definition.
Using the triangle inequality, we have:

1pas = P4 ® pyllre < lloas — W)Wl @ pllne + v {w| & pg — o4 ® pyllne- (24)
For the last term, using the additivity of trace distance with respect to tensor product, we get:
)Wl ® pg — pa @ pllte < v )yl — pallee + llpg — ppllee = €. (25)
Combining these last three inequalities we obtain:
lloag = P4 ® ppllre < 2VE + 2e. (26)

Since 0 < € < 1, thebound is of order O ({/€ ). We have therefore bounded the norm of ., and thus the norm
of ép,.
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We can now take our expression for the deviated input from equation (18) and substitute it into equation (8),
from lemma 7. Since trace is a linear operation, it will result in the addition of an inhomogeneous term to each
equation that involves the outcome density operator. But since the inhomogeneous term has bounded trace
norm, and the action of the outcome density operator is trace preserving, it follows that we obtain the same
bound as in lemma 7 with the addition of an extra term of order O (/€ ). This concludes the proof. O

Lemma 9. If the initial input state of the FK protocol is €-close to the ideal input state, the completeness is lower
boundedby1 — 2e.

Proof. In the simplest sense, the FK protocol can be abstractly thought of as a CPTP map P, that takes some
input state to an output state. Since we are assuming the prover is honest, the output state will be By (v).
However, this is in the case where the input is assumed to be ideal. We are dealing with a deviated input, hence
our output state will be B (v). Writing these out explicitly we have:

Bo(v) = P("f’”> (v ) (27)
Bj(v) = P(p*), (28)

where, p* is the deviated input, and by assumption
o = |#*) (|l <e. (29)

Note that in the following we do not need to consider non CPTP map evolution since the provers are assumed to
behave honestly. Hence even in the presence of initial correlation, the subsystem will evolve according to the
desired CPTP map of the protocol. However CPTP maps cannot increase the trace distance, which leads to:

I Bo@) = By, < N[ #7) (#7] = p* I <. (30)

This also applies for projection operators and if in particular we consider P, recr, the projection onto the correct
output state, we also have that:

I Prorrect Bo () — PcorrectBé (V)”Tr < | Bo(v) — B(; (V)“Tr <e. (31)

Next we use the reverse triangle inequality, which gives us:

| ” PcorrectBO (U)”Tr - ” PcorrectB(S (V)”Tr

< ” PcorrectBO (U) - PcorrectBé (U)”Tr < €. (32)

And since we are dealing with positive definite operators, we know that:

1
” PcorrectBO (V)”Tr = 5 Tr(H:orrectBO (l/))’ (33)

I PaneaBi @)l = 5 Tr( PaneaBi ) (34)
But Tr (Borrect Bo () ) = 1 (the completeness when we have ideal input), so:
1= Tt (PomreaBs (1)) | < 2. (35)
Lastly, because Tr (Porrect By (V) ) < 1, we get:
1= 2¢ < Tr (Porrea By (1) ). (36)

Thus, the probability of accepting a correct outcome, under the assumption that the input state is e-close to the
ideal input, is greater than 1 — 2e. O

Itis now easy to see that the proof of theorem 1 follows directly from definition 3 and lemmas 8 and 9.
Having the robustness property, the FK protocol can receive an input, which is e-close to its ideal value, from
another protocol. As we have shown, even if this input is correlated with an external system, we can still perform
the verification as long as we have e-closeness.

4. Proof of compositionality

To prove the security of the composite protocol (theorem 3), we first need to prove that the FK protocol rejects
with high probability a state close to a reflection about the XY-plane (lemma 10). Then we prove that the
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modified state tomography protocol (protocol 3), satisfies the e-closeness property required by the (robust) FK.
This is achieved by showing lemmas 11 and 12. Finally we give the proof of theorem 3.

Lemma 10. If the initial input state of the FK protocol is €-close to a reflection about the XY -plane of the ideal input
state, the protocol will reject it with high probability.

Proof. First we note that the input to the FK protocol consists of XY -plane states and dummy qubits which are
either |0) or | 1). The XY-plane states are invariant under the reflection, while the dummy states will be flipped.
Assume that there is a trap that has an odd number of (dummy) neighbours. The verifier knows that he sent the
state | +¢ ) and expects to make a Z correction if the number of | 1) neighbours is odd. However, if instead of
what the verifier expects, there is an overall reflection with respect to the XY-plane, then for each of the
neighbours of the trap there will be a new Z correction (the |0) will become | 1) inducing a Z, while the | 1) will
become |0) undoing the previous Z correction, which is equivalent with another Z correction since Z2 = 1).
Therefore, if the neighbours of a trap are odd in number, he will expect the exact opposite result and will
deterministically detect the deviation. For this to happen it suffices that the verifier makes sure that at least one
trap has odd number of neighbours, something that can be easily achieved. Therefore, the FK protocol will
always reject the reflected ideal input state. Given that the input is e-close to this, we have shown in lemma 8 that
the outcome density operator changes by at most O (/€ ) from its ideal value. Thus, the output state is O (/€)
close to the reflected ideal input state. It follows that the protocol will reject this state with at most probability

1 - O0(Je). O

In proving the correctness of our protocol we first need to show the correctness of the modified state
tomography protocol. Here we focus on the main results that we use for showing the correctness and security of
this protocol. We start with a theorem from [20]:

Theorem 5 [20]. Fix Q = {z\, ..., n%"} a complete, orthonormal set of g-qubit XZ -determined pure states. For a
sufficiently large constant o and for sufficiently largen, let m = m(n) > qnand N > m®~\. Let 6 € [m]1" be alist
of distinct indices. Consider a combination of the following two protocols between the verifier, Eve, and the provers,
Alice and Bob.

(1) CHSH games: in the first protocol, Eve referees Nm sequential CHSH games. She accepts if

‘ {] € [Nm]: AjBj = X; ® YJ}| > cos?(n/8)Nm — %JNm log(Nm) . (37)

(2) State tomography: in the second protocol, Eve chooses K € [N] uniformly at random. She referees (K — 1)m
CHSH games. For the Kth set, she referees a state tomography protocol with parameters q, n, m, Q and c. She
accepts if the following criteria are satisfied:

#{j: Oj=o} —n/Zq‘ < 41 nlogn (38)
- Tr(;r"P)| < 41 /(logn)/n. (39)

max
06[2‘1]

max
06[2‘1],PG{I,X,Z}®‘1

The combined protocol satisfies the following completeness and soundness conditions:

Completeness: if Alice and Bob use Nm shared EPR states to play the CHSH games according to an ideal strategy,
and if Bob uses an ideal strategy with respect to the projections Q on the Kth set of m EPR states in the state
tomography protocol, then in both protocols

Pr[Eve accepts] > 1 — O(n‘1/2). (39)

Soundness: assume that for both protocols, Pr(Eve accepts) > 1 — n™1/3. Let p be Alice’s state in the second
protocol after (K — 1) m games and conditioned on Bob’s messages Oy, ..., O,. Then there exists an isometry
XA Hy<(C?)®" @ M, such that letting P, ; be XApXAT reduced to Alice’s qubits {c (j, i): i € [q]},
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g

Here, the probability is over K, the first (K — 1)m gamesand O, ..., O,.

{j € [n]: Tr(pmjzzoi> >1- O(n‘”‘é)}‘ > (1 - O(n‘1/16>)n] >1— 4n~ V12, (40)

We give the following corollary to this theorem:

Corollary 2. By changing the measurement operators accordingly, a state tomography protocol for q-qubit XY -
determined (YZ-determined) states exists, and achieves the same completeness and soundness bound as the one from
theorem 5.

Proof. As mentioned, if we consider the extended CHSH game (comprising of six CHSH games) and try to
rigidly determine the existence of a tensor product of | ¥*) states, we can fix the strategies of the provers up to an
XY plane reflection. In particular, the results of an XZ state tomography in the original setting hold here for XY
(YZ) tomography. Therefore, it is possible to certify the preparation of g-qubit XY-determined (YZ-
determined) states. O

We can now present the main lemma proving that protocol 3 is a verification protocol.

Lemma 11. Protocol 3 has completeness lower bounded by 1 — O (n~'/2) and soundness upper bounded by
0 (n—1/12)‘

Proof. According to corollary 2, the six state tomography protocols that constitute protocol 3 are valid
verification protocols achieving the same bounds for completeness and soundness as the original protocol from
theorem 5. We will ignore the case of XY plane reflections since, as we have shown in lemma 10, these are
detected with overwhelming probability by the FK protocol. These protocols can be ‘stitched’ together in the
same way the subprotocols of the RUV protocol are stitched together. In fact, our case requires a much simpler
analysis since the six state tomography protocols are independent of each other. This means that in each
subprotocol, the verifier is not basing his questions on the results of any previous subprotocol. This nonadaptive
technique contrasts the RUV protocol in which the questions were adaptive. In the case of honest provers, the
verifier accepts if all subprotocols succeed. For each one, we know from theorem 5 that the probability of
acceptanceis =1 — O (n~'/2), hence for the whole protocol the probability of acceptance is

>(1 — O(n72))° = 1 — O (n~"/?). Thus, we see that the completeness bound remains unchanged. For
soundness, assuming the provers are dishonest we know, again from theorem 5, that the probability of accepting
anincorrect outcome is <4n~'/12, In our protocol, the provers can be dishonest in any of the six subprotocols,
therefore, by a union bound the probability of accepting an incorrect outcome is <6 - 4n~1/12 = 2471712,
Therefore, we can say that the soundness of our protocol is upper bounded by O (n~1/12). O

We are now able to give the proof of our main result (theorem 3) which concerns the properties of the
composite protocol (protocol 4). To do this, we require an additional property.

Lemma 12. Assume the verifier wants to prepare a state p consisting of tensor products of qubits which are all
determined in either the XZ, XY or YZ bases. A successful run of protocol 3 certifies that, prover 1 has a state p’ such
that p and p’ are close in trace distance.

Proof. The proof s partially given in [20]. In the state tomography protocol, a prover prepares multiple copies of
aresource state. In [20] itis stated that if the verifier accepts, then, with high probability, a subset of states of the
prover are close in trace distance to copies of the resource state.

The soundness condition of theorem 5 states that:

i

Itis shown in [20] that this condition translates to the fact that with probability atleast 1 — O (n~1/#%) we have:

[ Ps(Ol,n) — ®jes 17 I < O(n—1/64) @)

{j & [n): Tr(p,;2%) > 1 - O(n‘”m)}‘ > (1 - o(n—l“ﬁ))n] > 1 — 4n 12, (41)
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Where Sis uniformly random subset of size O (n!/%*). If we denote O (n~'/%*) as ¢, O (n=V*®) as p, ps (Oy,,) as p,
and ®je; 7Y as p,, then the state p’, that prover 1 has, is:

p = (1 —p)p€+p(1—p€). (43)

We can see that, for sufficiently large 1, the values of p and e tend to 0. Consequently, p’ approaches p. and p,
approaches the ideal state, p;;. Computing the trace distance between p’and p,;, we obtain:

10" = pa lhe = 1L =p)p + (1= ) = pig lhre < W o = pig e + 11 p (1 = 29l (44)
And using inequality (42), we have:
I o = py Il < O<n—1/64) +2p= O(n—1/64> + O<n—1/48) — O(n—l/64)‘ (45)

Therefore, the state that prover 1 has, conditioned on his messages O ,, is close to the state comprised of copies
of the resource states. Depending on which type of state tomography is done, the resource states are determined
in either the XZ, XY or YZ bases. O

Proof of theorem 3. According to lemmas 11 and 12, protocol 3 is capable of preparing with high probability, a
multi-qubit state p on prover 1’s side, such that p is e-close to a tensor product of states determined in either the
XZ, XY or YZDbases. In fact, each subprotocol is capable of such a preparation. For the two XY state tomography
protocols we choose the resource state to be:

l+)® ‘ +e/a > ® | +an/4 > ® ‘ +3n/4 > ® | +an/4 > ® ‘ +s2/4 > ® | +ox/4 > ® | +7n14 > (46)
For the two XZ state tomography protocols we choose the resource state to be:

10) ® 1) ® [0) ® [1). (47)

This allows us to prepare multi-qubit states on prover 1’s side which are close in trace distance to the FK input
consisting of XY-plane states and dummy qubits (the |0), | 1) qubits). If we denote as p, the multi-qubit state
consisting of multiple copies of the XY resource state and p, as the multi-qubit state consisting of multiple copies
of the XZ resource state, then the FK input is effectively p; ® p,. Lemma 12 shows that with high probability
prover 1 will have a state p, thatis e,,c,-close to p, and a state p, thatis ep,e,-close to p,, where

€prep = O (n717%4). Therefore, p| @ p, is 2€prep-close to p; ® p,. Moreover, in [20] it is proven in the state
tomography protocol prover 1 is completely blind regarding his state. Given this, and using theorem 1, we can
compose the modified state tomography protocol (protocol 3) with the FK protocol to achieve a new blind
verification protocol. The state p| ® p; is used as input for the FK protocol, since itis e-close to theideal input,
where € = 2¢prcp.

The bound on completeness for the new protocol can be computed from the completeness bounds of the
constituent protocols. In the honest provers setting, the verifier’s acceptance probability for modified state
tomographyis 1 — O (n~'/2), and for FK with deviated inputitis1 — O (v/€) = 1 — O (n~1/128). Multiplying
these together and taking the leading order terms we find that completeness of the protocol is upper bounded by
1 — O(n1/128),

For soundness, in the dishonest setting if the verifier would reject in either modified state tomography or FK
then he would reject in the new protocol as well. The bound on soundness for modified state tomography is
O (n~112) and for FK is (%)[%], where d is the security parameter of the FK protocol that specifies the size of the
encoding for the computation graph. From a union bound we get that the soundness for our composite
approachis(%)[zsq + O (n~Y12),

The last part of the proof deals with the round complexity of our composite approach. In the previous
proof of lemma 12 we mentioned that prover 1’s state restricted to subset of O (n!/®*) qubits is close in trace
distance to the ideal state. However we need 7 to be sufficiently large so that this subset of qubits can
encompass the entire FK input. We know that the FK input comprises of O (|C |*) qubits, where C is the
computation the verifier wants to perform. This means, that we need O (|C ['?®) qubits in total so that we can
claim that a state of O (|C |*) qubits s close to its intended value. Recall that from thereom 5, the number of
rounds for state tomography is O (n*), where we know from [20] that & > 16. This means that the total
number of rounds must be O (|C |°), where ¢ > 128 - 16 = 2048. If we relabel n to be |C | then the round
complexityis O (n°). O
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5. Proof of fault tolerance

The main result of this section is the proof of theorem 4 that gives a fault tolerant FK protocol. We first prove
lemmas 3—6 that as stressed in section 2.3, highlights why we cannot use results similar to the robustness and why
the simplest approaches fail. Then we proceed in the proof of theorem 4.

Proof of lemma 3. We can compute a bound on the trace distance between an arbitrary qubit p;and € (p;):
Il i = €l = 11 pi = (1 = p)p; = (p/3)([X] + [Y] + [ZDp (IX] + [Y] + [Z]D) e (48)
Il o = EP)llre =p Il o = (1/3)(IX] + [Y] + [ZD)p (1XT + [Y] + [ZD e (49)

But we know that the trace distance is upper bounded by 1, so:

Il pi = &)l < p. (50)
Now we compute the trace distance between 6 = @', p,and ¢’ = @, & (p,):
n
lo—o Il = Il ®Ly o — &y €l < 2l oy = EPllre. < mp (51)
i=1

Since the trace distance is upper bounded by 1 and since np can exceed 1 for sufficiently large 1, we have:

Il 6 — o llre < min(1, np). (52)

Consider 0 = ®_; |0)(0[. Under the action of the depolarizing channel the trace distance between oand ¢ is

n [[10)¢0] — € (10)<0D)|Ir,. However [[[0) (0] — &£ (|0}{OD)lr: = E, therefore the distance between sand ¢ is

n,/ %P . For sufficiently large # this can clearly reach the maximum value of 1.

O

Proof of lemma 4. Because of the action of the partially depolarizing channel, each trap qubit has a probability p
of being changed. We make the simplifying assumption that an affected qubit will produce a wrong
measurement result. This assumption is only valid for completeness, where we assume that the devices are
honest but faulty’. We then have that the probability of a trap measurement producing a correct outcome is
upper boundedby 1 — p. Given that trap measurements are independent of each other, and assuming we have
Nrtraps, the probability that all trap measurements produce correct outcomes is upper bounded by (1 — p)™r.
Since the verifier accepts if and only if all trap measurements succeed it follows that the completeness is upper
bounded by (1 — p)™. O]

Proof oflemma 5. Define the following Bernoulli random variable:

X, = (1, if measurement o.f trap ¢ fails, (53)
0, otherwise.
Under the simplifying assumption of the previous lemma, we have Pr(X; = 1) = p > 0. Next, we define:
Nr
F=)X. (54)
=1
Itis clear that E (F) = Nyp. Additionally, using a Hoeffding inequality, we have that:
Pr(F> (p + e)NT) < exp(—2€2NT). (55)

This gives the probability that the number of failed traps is greater than our threshold of pN7. The complement
of this is the completeness, which is therefore bounded by 1 — exp (—2¢2Nr) O

If the devices were dishonest, we would need to take into account the deviation on the trap qubits resulting from malevolent behaviour.
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Proof oflemma 6. Recall that soundness is the probability of accepting an incorrect outcome. In the original FK
protocol this meant that all the traps succeeded but the computation output was orthogonal to the correct
output. This is expressed with the projector P, ® Pr.Here P projects the computation output onto the
orthogonal state and Py projects the trap outputs onto the correct outputs. If the accepting condition is given by
athreshold of correct traps, the projector must change accordingly. This means that there should not be only one
trap projector but one for each accepting situation. Taking the threshold to be pN;, means that the verifier
acceptsif T = Nr — pN. traps succeeded. Since these traps can be any combination of T out of the possible N,

there are (I;{T ) possible accepting situations. Therefore, the trap projector Prbecomes a sum of ( I;{T ) projectors

(one for each accepting choice of traps). It therefore follows from linearity that the soundness bound becomes
T
T )\

Proof of theorem 4. In [36], Morimae and Fujii show how a blind quantum computation can be made fault
tolerant by encoding it in a topologically protected error-correcting code [31]. The encoding then uses a
decoration trick so that the prover only needs to perform XY-plane measurements and this can be done blindly
using the UBQC protocolin [1]. Here, we use the same idea to encode a computation which also contains an
isolated trap. This follows from the first verification protocol introduced in [1] which uses a brickwork state to
perform the computation. Encoding this in the fault tolerant code give us the lattice £, which according to [36]
can be executed blindly by the prover.

Throughout the run of the protocol, if the prover is always honest then the fault tolerant code will correct for
any errors (since we have assumed the error rate is smaller than the threshold of correctable errors). This proves
that the completeness of the protocol is 1.

To compute the soundness, note that the computed bound for the brickwork state protocol in [1] is:

1
pincorrect < (1 - %)’ (56)

O

where 1 is the number of qubits in the brickwork state. Similar to the robustness proof, the proof of this bound
assumes that the outcome density operator of the protocol is projected onto a state where the trap succeeded but
the computation outcome is incorrect. It is can been shown that the same bound as the non-fault tolerant case
holds. This means that we have:

pincorrect < (1 - 21 /)’ (57)
n

where n’ is the number of qubits in a lattice £%, out of the Nlattices used in the protocol. We note that n’ is of the
same order as 11 [31], and we can choose a constant ¢ > 2 such that 2n’ = cn. In protocol 5 the verifier creates
independent encodings LY, each depending on classical randomness. He accepts the sequence of encodings if all
trap measurements succeed in each encoding. This means that the prover can deceive the verifier if he can deviate
the computation in each encoding £* while at the same time passing all the traps. However, for any given
encoding we know that the probability of this happening is given by pincorrect and because of independence, the
prover will succeed for the sequence with probability:

N < (1 - L)N. (58)

p incorrect
cn

Weknow that N/R > 1/log (L). However, this is equivalent to:
-

N/R > — l/log(l - i), (59)
cn
(N/R)log(l - i) <- 1 (60)
ch
Note that we used the fact that log(1 — i) < 0. Through exponentiation we get:
o 1 N/R 1
(1 - —) < —. (61)
cn 2
And we finally obtain:
1
pilr\llcorrect < Z_R (62)

Hence, the probability that the prover deceives the verifier is less than (1/2)R and so the soundness of the
protocol is upper bounded by this value.
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Lastly we compute the round complexity of this protocol. For the given sequence we have N encodings and
for each encoding we have O(n) qubits” and a corresponding round complexity of O() to compute the
execution of that encoding. It follows that the overall complexity is O(Nn). But we know that

N < R/log(l +

n ) + O(1),and given that R is a constant, we can show that Nis O(#). This follows from
n —

the observation that dividing the function 1/ log(l + n ) with (ecn — 1) givesa constantin the n — oo
-

limit:

1
li - 1)1 1+ = — 63
nl—r»I:o(m )og( - 1) In2 (63)

Incorporating this result yields overall complexity O (n?). Note that this proof technique works for the case of
classical output since we are interested in the classical output of each encoding. The encodings are independent
from each other, which allows us to bound the probability for the whole sequence. O

6. Conclusion

We have shown that the single server universal verifiable blind quantum computing protocol of [ 1] is robust
even against general adversaries. This protocol is currently the optimal protocol in terms of the verifier’s
requirements. The robustness result further strengthens the scheme for realistic applications where the effect of
noisy devices should also be considered, as highlighted in a recent experimental demonstration of the protocol
[17]. Moreover, it enables us to compose the FK protocol with other quantum verification protocols, extend it to
the entangled servers setting and make it device independent. The key property that we proved, is that the
protocol remains secure even against correlated attacks. To achieve this, we considered the deviation of the
evolution of a correlated subsystem from the evolution of uncorrelated subsystems. The former could be written
mathematically as a non-CPTP map which differs from a CPTP map by an inhomogeneous term. However, for
inputs which are e-close to the ideal FK input, we showed that this deviation (the inhomogeneous term) is
bounded by a term of order O (/€ ). Our proof technique is generic and can be potentially applied to other
multi-party protocols where sequential composition is required. This result complements the local-verifiability
proof of [27] which is based on the universal composability framework. The latter, in its current form, is
insufficient for composing entanglement-based protocols, such as RUV, with the FK protocol because of the
possibility of correlated attacks. Our robustness result, however, leads to a stand alone secure composite
verification protocol. Additionaly, the proposed composition scheme could potentially be used to extend the
composable framework of [27] to incorporate multiple provers.

Our proposed composite protocol achieves verification with a classical client (device independence) and
gives improved round complexity in comparison to the RUV protocol. It uses only the (modified) state
tomography part of RUV as input for the FK protocol. The improved round complexity of the composite
protocol s still too high to allow for any practical implementation in the near future. However, the reason for
this high round complexity is the state tomography subprotocol and therefore, any improvement on how to
prepare the FK inputs (e.g. by exploiting the shared entanglement of the provers or using self-testing techniques
asin [23]) will directly improve the efficiency of our composite protocol as well.

Finally we outlined how to make our verification protocol fault tolerant. To do so we constructed a fault
tolerant version of the FK protocol which is interesting in its own right. This complements the work presented in
[36] which addresses the fault tolerance of a (non-verifiable) blind quantum computing protocol. We used the
same topological error correcting code as [36] and a sequential repetition scheme in order to correct for faulty
devices.
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