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Abstract

We present a set of extensions to the knowledge-level
PKS (Planning with Knowledge and Sensing) planner,
aimed at improving its ability to generate plans in real-
world robotics domains. These extensions include a fa-
cility for using externally-defined reasoning processes,
an interval-based representation for modelling noisy
sensors and effectors, and an application programming
interface (API) to facilitate software integration. We
demonstrate our techniques in three robot domains,
which show their applicability to a broad range of robot
planning applications involving incomplete knowledge,
real-world geometry, and multiple robots and sensors.

Introduction and Motivation
A robot operating in a real-world domain often needs to do
so with incomplete information about the state of the world.
A robot with the ability to sense the world can also gather
information to generate plans with contingencies, allowing
it to reason about the outcome of sensed data at plan time.

In this paper, we explore an application of planning with
incomplete information and sensing actions to the problem
of task planning in robotics domains. In particular, building
models of realistic domains which can be used with general-
purpose planning systems often involves working with in-
complete (or uncertain) perceptual information arising from
real-world sensors. Furthermore, this task may be compli-
cated by the difficulties of bridging the gap between geo-
metric and symbolic representations: robot systems typically
reason about joint angles, spatial coordinates, and continu-
ous spaces, while many symbolic planners work with dis-
crete representations in represented in logic-like languages.

Our approach uses the PKS (Planning with Knowledge
and Sensing) planner (Petrick and Bacchus 2002; 2004) as
the high-level reasoning tool for task planning in robotics
domains. PKS is a general-purpose contingent planner that
operates at the knowledge level (Newell 1982), by reason-
ing about how its knowledge changes due to action. PKS
can represent known and unknown information, and model
sensing actions using concise but rich domain descriptions,
making it well suited for structured, partially-known envi-
ronments of the kind that arise in many robot scenarios.

While PKS has previously been successfully used in robot
domains (Petrick et al. 2009), it lacks certain features which

Figure 1: In the FORCE SENSING scenario, a robot manipu-
lator senses if containers are filled by lifting them to deter-
mine their weight. Objects must be held upright while mov-
ing to prevent spilling, unless they are empty or unopened.

could improve its applicability to a wider range of robotics
tasks. In this paper, we describe a set of extensions de-
signed to improve PKS’s ability to generate plans in real-
world robot scenarios, by focusing on three tasks: combining
high-level symbolic planning with low-level motion plan-
ning, reasoning about noisy sensors and effectors, and facil-
itating planner-level software integration on robot platforms.

PKS has also been integrated into the existing Knowl-
edge of Volumes framework for robot task Planning (KVP)
(Gaschler et al. 2013a), aimed at facilitating the use of plan-
ners on robot platforms (see Figures 1 and 5). This frame-
work serves as the basis for the robot examples below.

Planning with Knowledge and Sensing (PKS)
PKS (Planning with Knowledge and Sensing) is a con-
tingent planner that builds plans using incomplete infor-
mation and sensing actions (Petrick and Bacchus 2002;
2004). PKS works at the knowledge level by reasoning about
how the planner’s knowledge state changes due to action.
PKS works with a restricted first-order logical language,
and limited inference. Thus, unlike planners that reason with
possible worlds or belief states, PKS works directly with for-
mulae representing its knowledge state. This representation
supports features like functions and variables; however, as a
trade-off, some types of knowledge cannot be modelled.



PKS is based on a generalisation of STRIPS. In PKS,
the planner’s knowledge state, rather than the world state,
is represented by a set of five databases, each of which mod-
els a particular type of knowledge. Each database’s contents
have a formal interpretation in a modal logic of knowledge.
Actions can modify the databases, which has the effect of
updating the planner’s knowledge. To ensure efficient infer-
ence, PKS restricts the type of knowledge (especially dis-
junctions) the databases can represent:
Kf : This database is like a STRIPS database except that both
positive and negative facts are stored and the closed world
assumption is not applied. Kf can include any ground literal
`, where ` ∈ Kf means “the planner knows `.”
Kw: This database models the plan-time effects of sensing
actions with binary outcomes. φ ∈ Kw means that at plan
time the planner either “knows φ or knows ¬φ,” and that
at execution time this disjunction will be resolved. In such
cases we will also say that the planner “knows whether φ.”
Kv: This database stores function values that will become
known at execution, such as the effects of sensing actions
that return constants. Kv can contain any unnested function
term f , where f ∈ Kv means that at plan time the planner
“knows the value of f .” At execution time, the planner will
have definite information about f ’s value. Thus, Kv terms
can act as run-time variables (Etzioni et al. 1992) in plans.
Kx: This database models the planner’s exclusive-or knowl-
edge. Entries in Kx have the form (`1|`2| . . . |`n), where
each `i is a ground literal. Such formulae represent a partic-
ular type of disjunctive knowledge that arises in many plan-
ning scenarios, namely that “exactly one of the `i is true.”
LCW: This database stores local closed world information
(Etzioni, Golden, and Weld 1994). The LCW database will
not be used in this paper.

PKS databases are inspected using primitive queries that
ask simple questions about PKS’s knowledge. Basic knowl-
edge assertions are tested with a queryK(φ) which asks: “is
a formula φ true?” A query Kw(φ) asks whether φ is known
to be true or known to be false. A query Kv(t) asks “is
the value of function t known?” The negation of the above
queries can also be used. An inference procedure evaluates
queries by checking the contents of the databases, and the
interaction between different types of knowledge.

An action in PKS is modelled by its preconditions that
query the agent’s knowledge state, and its effects that update
the state. Action preconditions are simply a list of primitive
queries. Action effects are described by a set of STRIPS-
style “add” and “delete” operations that modify individual
databases. E.g., add(Kf , φ) adds φ to Kf , and del(Kw, φ)
removes φ from Kw. Actions can also have ADL-style con-
ditional effects (Pednault 1989), where the secondary pre-
conditions of an effect are described by lists of primitive
queries. Example PKS actions are shown in Figure 3.

PKS constructs plans by forward-chaining: if an action’s
preconditions are satisfied in a knowledge state, then the ac-
tion’s effects can be applied to produce a new knowledge
state. Planning then continues from this state. PKS can also
build contingent plans with branches, by considering the

possible outcomes of Kw and Kv knowledge. For instance,
if φ ∈ Kw then PKS can construct two branches in a plan:
along one branch (theK+ branch) φ is assumed to be known
(φ is added to Kf ), while along the other branch (the K−

branch), ¬φ is assumed to be known (¬φ is added to Kf ). A
similar type of multi-way branching plan can be built for
restricted Kv information. Planning continues along each
branch until the goal—a list of primitive queries–is satisfied.
A sample PKS plan with branches is shown in Figure 4.

We now consider a set of extensions to PKS which we
believe are particularly useful for robot task planning.

Extensions to PKS for Robot Task Planning
In this section we consider three recent extensions to PKS
which we believe are useful for robot task planning. First, we
describe a mechanism which allows externally-defined pro-
cedures (e.g., from support libraries) to be integrated with
the internal reasoning mechanisms of the planner. Second,
we present an extension of the PKS representation which al-
lows a form of noisy numerical information to be modelled,
for instance to represent the effects of error prone sensors.
Finally, we describe a software-level application program-
ming interface to PKS, which aids in the engineering task of
integrating the planner with a robot system.

Executing Externally-Defined Procedures
The first extension we describe aims to leverage existing
reasoning tools by providing a mechanism for PKS to in-
voke externally-defined procedures (e.g., special purpose li-
braries) during plan generation. While this idea is not new,
and has been applied in other contexts (see the discussion
section), this technique is a recent extension to PKS.

In particular, PKS provides an external query mechanism:

extern(proc(~x)),

where extern is a special keyword indicating that control
should be transferred to an external procedure with the name
proc. ~x is a set of parameters that should be passed to proc.
In general, x can contain any symbols defined in PKS’s
knowledge state, providing a link between the planner and
the externally-defined procedure.

An extern call can be used within a PKS action defini-
tion, either as a precondition or an effect. The return value
of the extern call, defined within the external procedure, is
passed back to PKS, which interprets it in the context where
it occurs in the action. For instance, consider the following
definition of a simple pickup action:
action pickup(?x : object)

preconds:
K(holding = nil) &
K(onTable(?x)) &
K(extern(isReachable(?x)))

effects:
add(Kf, ¬onTable(?x)),
add(Kf, holding = ?x),
add(Kf, weight = extern(objWeight(?x)))

In this action encoding the first two preconditions are
modelled as standard PKS primitive queries: does the plan-
ner know the hand is empty and is object ?o known to be



on the table? The third precondition combines a K (knows)
primitive query together with an extern call by invoking an
external process (e.g., a robot motion planner) to determine
the truth of the isReachable property. Here, the parame-
ter ?x is bound by the planner during plan generation before
it is passed to the external reasoner for consideration. The
result of the extern process is then used by the planner to
establish whether the K condition holds or not.

Similarly, the final action effect for pickup also contains
an extern reference. Here, an external process establishes
the value of objWeight(?x) (i.e., the weight of object ?x),
which is returned and assigned to the PKS property weight
before being stored in theKf database. In general, additional
tests or reasoning can be performed on any value returned
by an extern call, which can be assigned to a PKS domain
property and included in the knowledge state.1

While no restrictions are placed on when extern can be
used in a planning domain, in practice such calls are most
beneficial if used for complex reasoning that cannot eas-
ily be modelled in the planner’s restricted representation, or
where more efficient reasoning engines already exist. In or-
der to provide some control over the nature of an external
reasoning process, a variant of the standard extern query
can be specified as:

extern*(proc(~x)).

In contrast to an ordinary extern directive which simply
invokes the external process proc(~x), extern* directs the
planner to save the results of the call for the given input pa-
rameters ~x. Subsequent calls to extern* using the same set
of parameters are therefore guaranteed to produce the same
output, and the planner is directed to simply used the previ-
ously cached result. For instance,

add(Kf, outcome = extern(flipCoin(c1)))

could be used to model the effects of an action that flips
a coin c1 and assigns the results of the coin flip to the
property outcome. Subsequent calls may produce differ-
ent outcomes, depending on the external implementation of
flipCoin. On the other hand,

add(Kf, outcome = extern*(flipCoin(c1)))

directs the planner to save the outcome of c1’s first coin flip.
Subsequent applications of the same rule will therefore al-
ways return the same result as previously saved. Such a fa-
cility is particularly useful in cases where the external pro-
cess may be computationally expensive; however, it requires
a strict functional interpretation of the extern call, where a
particular set of inputs is associated with exactly one output.

The extern mechanism provides a simple, yet powerful
tool in robotics domains by augmenting PKS’s core reason-
ing capabilities with the addition of motion planning, colli-
sion detection, and other special purpose robotics libraries.

1Quite complex expressions can be formed by nesting PKS
function terms and extern calls. For instance,
add(Kf,holding=extern(closestObj(extern(robotLoc))))
could be used to model an action effect where a robot picks up the
closest object to the robot’s current location, using nested extern
calls to perform the necessary spatial reasoning.

E.g., geometric predicates and continuous motions can be
evaluated with extern, and reasoned about at the symbolic
level, enabling us to solve problems which may be difficult
to model directly at either the motion planning or symbolic
planning level alone. Examples of this are given below.

Reasoning with Interval-Valued Fluents
One type of sensed information that arises in many real-
world robotics contexts is numerical information, which is
often necessary for modelling state properties (the robot is
10 metres from the wall), limited resources (ensure the robot
has enough fuel), constraints (only grasp an object if its ra-
dius is less than 10 cm), or arithmetic operations (advanc-
ing the robot one step reduces its distance to the wall by
1 metre). Reasoning with numerical information is often
problematic, however, especially when planners represent
incompletely known state properties by sets of states, each
of which denotes a possible configuration of the world state.
E.g., if a fluent f could map to any natural number between
1 and 100, then we require 100 states to capture f ’s possible
mappings. The state explosion resulting from large sets of
mappings can be computationally difficult for planners that
must reason directly with individual states.

In PKS, we build on a previous planning approach which
uses interval-valued fluents (IVFs) (Funge 1998; Petrick
2011) to avoid some of the computational problems involved
with uncertain numerical information. The idea is simple:
instead of representing each possible mapping by a separate
state, a single interval mapping is used, where the endpoints
of the interval indicate the fluent’s range of possible values.
Thus, a fluent f that could map to values between 1 and 100
can be denoted in an interval-valued form by f = 〈1, 100〉.

In general, PKS treats each IVF as a function whose deno-
tation is an interval of the form 〈u, v〉. The endpoints of the
interval, u and v, indicate the bounds on the range of possi-
ble mappings for the fluent. Since we are interested in plan-
ning with incomplete information, a mapping f = 〈u, v〉
will mean that the value of f is known to be in the interval
〈u, v〉. If a fluent maps to a point interval of the form 〈u, u〉,
then the mapping is certain and known to be equal to u.

PKS’s knowledge of IVFs are stored in itsKx database, as
a generalisation of its exclusive-or information. In addition
to basic intervals, disjunctive intervals (i.e., sets of disjoint
intervals) are also permitted. For instance, if a fluent f could
possibly map to any value between 5 and 10 or, alternatively,
map to values between 15 and 18, we can represent such
information by the Kx formula (f = 〈5, 10〉 |f = 〈15, 18〉).

Certain types of IVFs can also be represented in the
Kv and Kw databases. For instance, a fluent of the form
f : 〈x− c, x+ c〉 in Kv means that the value of the fluent
f is known, and f is in the range x ± c, for some numeric
constant c and unknown fluent value x. This mechanism can
be used to model the results of noisy sensors. In Kw, we
also permit numeric relations of the form f op c, where
op ∈ {=, 6=, >,<,≥,≤} and c is a numeric constant. Thus,
f > 5 ∈ Kw can be used to model a sensing action that
determines whether f is greater than 5 or not. Since Kw is
used to build contingent branches into a plan, this extension
also enables PKS to build branches based on IVFs.



A Planning Application Programming Interface
The task of integrating planners on robot platforms often
centres around the problem of representation, and how to
abstract the capabilities of a robot and its working environ-
ment into a suitable form for use by the planner. Integra-
tion also typically requires the ability to communicate in-
formation between system components and, thus, requires a
consideration of certain engineering-level concerns, to en-
sure proper interoperability with components that aren’t tra-
ditionally considered in theoretical planning settings.

To facilitate the task of providing software-level planning
services to robot systems, we created an application pro-
gramming interface (API) which abstracts many common
planning operations into a set of functions which provide di-
rect, programme-level access to these services. For instance,
the API includes methods for manipulating domain repre-
sentations and controlling certain aspects of the plan gener-
ation process (e.g., selecting goals, generation strategies, or
planner-specific settings). Plans can also be manipulated as
first-class entities, e.g., for replanning purposes. A fragment
of the API is given in Figure 2.

Overall, the API is designed to be generic and is not tied
to a particular planner. For instance, the configuration meth-
ods are meant to provide a way to set properties of the un-
derlying planner, and provide access to features needed for
debugging. The domain configuration functions provide the
means for defining planning domain models, either from tra-
ditional domain/problem files, or via string-based descrip-
tions. A key idea behind the API is that it offers the pos-
sibility of specifying domains to the planner incrementally,
using function calls alone, rather than specifying a single
monolithic domain file. This means that an initial domain
could be specified and then later revised, for instance using
information discovered during execution (e.g., new objects,
revised action models, additional properties, etc.). Finally,
the plan generation and iteration functions provide ways of
controlling certain aspects of plan generation, and provide a
way for external processes to control monitoring and replan-
ning activities, including goal change.

The PKS API is implemented as a C++ library, but also
supports a network-based interface using the Internet Com-
munications Engine (ICE)2. An interface for the Robot Op-
erating System (ROS)3 is also currently under development.

Example Domains
To demonstrate our approach, we describe three robotics
scenarios that make use of knowledge-level planning: the
FORCE SENSING and the BIMANUAL robot scenarios, based
on domains first described in (Gaschler et al. 2013c) and
tested on real robots, and the ROBOT LOCALISATION sce-
nario, tested in simulation. In all scenarios, the robot uses
sensing actions to obtain knowledge of some domain prop-
erty which is necessary for achieving the goal. In the first
scenario, basic PKS is used. In the second scenario, PKS’s
external procedure mechanism is used to link a motion plan-

2http://www.zeroc.com/ice.html
3http://www.ros.org/

// Configuration and debugging
string getPlannerProperty(string);
bool setPlannerProperty(string, string);

// Domain configuration
bool defineDomain(string);
bool defineSymbols(string);
bool defineActions(string);
bool defineProblems(string);
bool definePlanState(string);
bool defineObservedState(string);

// Plan generation and iteration
bool buildPlan();
bool isPlanDefined();
string getCurrentPlan();
Action getNextAction();
bool isNextActionEndOfPlan();
bool setProblem(string);
bool setProblemGoal(string);

Figure 2: A fragment of the PKS API.

ning library to PKS’s internal reasoning mechanisms. In the
final scenario, we use IVFs in a simple localisation task.

Force Sensing Scenario
In the FORCE SENSING scenario, a robot manipulator must
transfer beverage containers from one table to another, as
shown in Figure 1. Using torque sensors, it can sense the
external force of a grasped container, and decide whether or
not that drink could be spilled. The robot should hold drinks
exactly upright to prevent spilling, unless a drink is known to
be completely empty, in which case a faster arbitrary motion
may be performed. For simplicity, the location of all objects
are known and no sensing except force sensing is available.

Figure 3 shows some of the PKS actions in this scenario,
which include a sensing action, senseWeight, which senses
the weight of a beverage container ?o. To perform this ac-
tion, the robot must first be grasping object ?o. To ensure
only new knowledge is gained from this action, and to in-
crease planning efficiency, we include a precondition that
the robot must not yet know whether ?o is spillable. When
this action is performed, knowledge of whether ?o is spill-
able or not is added to PKS’s Kw database.

This scenario also includes a number of actions for ma-
nipulating domain objects, including transferUpright,
transfer, grasp, and ungrasp. For example, in
transferUpright, the robot can move a grasped container
from one table to another, while keeping the orientation of
its parallel gripper fixed. Only objects that are grasped and
not yet removed can be transferred.

An example plan for the FORCE SENSING scenario is
shown in Figure 4 for the case of two objects in the do-
main. In particular, a sensing action is performed on each
object (can1 and can2) and the objects are individually ma-
nipulated depending on whether their contents are spillable
or not. The resulting plan therefore considers four contin-
gent situations which could arise during plan execution. This
scenario was tested on a joint-impedance controlled light-



action senseWeight(?o:object)
preconds:

¬Kw(isSpillable(?o)) &
K(isGrasped(?o))

effects:
add(Kw, isSpillable(?o))

action transfer(?o:object)
preconds:

K(¬isSpillable(?o)) &
K(isGrasped(?o)) &
K(¬isRemoved(?o))

effects:
add(Kf, isRemoved(?o))

action transferUpright(?o:object)
preconds:

K(isSpillable(?o)) &
K(isGrasped(?o)) &
K(¬isRemoved(?o))

effects:
add(Kf, isRemoved(?o))

action grasp(?o:object)
preconds:

K(emptyGripper) &
K(¬isRemoved(?o))

effects:
add(Kf, isGrasped(?o)),
add(Kf, ¬emptyGripper)

action ungrasp(?o:object)
preconds:

K(isGrasped(?o)) &
K(isRemoved(?o))

effects:
add(Kf, ¬isGrasped(?o)),
add(Kf, emptyGripper)

Figure 3: Actions in the FORCE SENSING domain.

weight 7-DoF robot with a force-controlled parallel gripper.
Forces were measured by internal torque sensing.

Bimanual Robot Scenario
The second scenario is a demonstration of a BIMANUAL
robot (Figure 5) whose hands can reach different areas of
a table. In this case, the robot can sense if bottles on the ta-
ble are empty or full using a top-down camera. Its goal is
to clean up all empty bottles by removing them to a cer-
tain “dishwasher” location. In order to achieve this goal,
the robot must move objects that are only accessible by its
left arm to a location that its right arm can reach, a be-
haviour which arises purely from symbolic planning. In con-
trast to the previous FORCE SENSING scenario, the BIMAN-
UAL robot scenario relies on visual information, which can
be gathered without requiring manipulation.

Figure 6 shows the PKS actions in the BIMANUAL sce-
nario. Two robot arms are tasked with removing all empty
bottles that are visible on a table to the dishwasher, which
can only be reached by the right robot arm. The domain
includes one sensing action, senseIfEmpty, which has no

1. grasp(can1) ;
2. senseWeight(can1) ;
3. branch(isSpillable(can1))
4. K+: transferUpright(can1) ;
5. ungrasp(can1) ;
6. grasp(can2) ;
7. senseWeight(can2) ;
8. branch(isSpillable(can2))
9. K+: transferUpright(can2) ;
10. ungrasp(can2).
11. K-: transfer(can2) ;
12. ungrasp(can2).
13. K-: transfer(can1) ;
14. ungrasp(can1) ;
15. grasp(can2) ;
16. senseWeight(can2) ;
17. branch(isSpillable(can2))
18. K+: transferUpright(can2) ;
19. ungrasp(can2).
20. K-: transfer(can2) ;
21. ungrasp(can2).

Figure 4: A plan for removing 2 objects from a table in the
FORCE SENSING domain.

Figure 5: In the BIMANUAL scenario, a camera is used to
recognise empty bottles which a bimanual robot should re-
move from to a “dishwasher” location on the left side, be-
hind the table (Gaschler et al. 2013a; Giuliani et al. 2013).

precondition other than the requirement that the knowledge
it gathers must be new. For manipulation, both robot arms
can perform the pickUp and putDown actions. Not all loca-
tions can be reached by both hands, so the preconditions of
these actions include an extern call to isReachable, which
is defined in a motion planning library and which checks
reachability for a specific hand and location.

Figure 7 shows a plan for the case of 4 objects. The plan
senses each object to detect whether it is empty and then
includes conditional branches to remove empty objects to
the dishwasher. The resulting plan therefore considers 16
possible configurations of empty/non-empty bottles which
could arise at execution. (The actions for the case where
bottles b0 and b2 are empty are shown.) We note that this
simple scenario already gives rise to interesting behaviour:
since the right arm cannot directly reach all objects that need
to be transferred to the dishwasher, the left arm must pass
those objects to a location reachable by both hands. This



action senseIfEmpty(?o:object)
preconds:

¬Kw(isEmptyBottle(?o))
effects:

add(Kw, isEmptyBottle(?o))

action pickUp(?r:robot, ?o:object, ?l:location)
preconds:

K(?l = getObjectLocation(?o)) &
K(handEmpty(?r)) &
K(extern(isReachable(?l, ?r)))

effects:
del(Kf, ?l = getObjectLocation(?o)),
del(Kf, handEmpty(?r)),
add(Kf, inHand(?o, ?r))

action putDown(?r:robot, ?o:object, ?l:location)
preconds:

K(inHand(?o, ?r)) &
K(extern(isReachable(?l, ?r)))

effects:
del(Kf, inHand(?o, ?r)),
add(Kf, ?l = getObjectLocation(?o)),
add(Kf, handEmpty(?r))

Figure 6: Actions in the BIMANUAL domain.

behaviour is not pre-programmed, but arises purely from
combined symbolic and geometric planning. This domain
was tested on a two 6-DoF industrial manipulator setup with
Meka Robotics H2 hands, as in (Foster et al. 2012).

Robot Localisation Scenario
In the final example, we consider a robot whose loca-
tion, represented by the IVF robotLoc, is measured by the
robot’s distance to a wall. The robot has two physical ac-
tions available to it: moveForward, which moves the robot
either 1 or 2 units towards the wall; and moveBackward,
which moves the robot 1 unit away from the wall. The robot
also has a sensing action, atTarget, which senses whether
the robot is at a target location, specified by the function
targetLoc. Additionally, the robot also has a second sens-
ing action, withinTarget, that determines whether or not
the robot is within the target distance targetLoc.

The definitions of the PKS actions for this scenario are
given in Figure 8 (all action preconditions are assumed to be
true). The robot’s initial location is specified by the interval
mapping robotLoc = 〈3, 4〉 stored in Kx. The goal is to
move the robot to the target location, i.e., K(robotLoc =
targetLoc), where targetLoc = 2 is stored in Kf .

One solution generated by PKS is the conditional plan
in Figure 9. Since forward movements may change the
robot’s position by either 1 unit or 2 units, noisyForward
in step 1 results in an even less certain position for the robot,
namely robotLoc = 〈1, 3〉 ∈ Kx. However, the sensing
action in step 2, together with the branch point in step 3,
lets us split this interval into two parts. In step 4, we as-
sume that robotLoc ≤ 2 and consider the case where
robotLoc = 〈1, 2〉. atTarget, together with the branch
in step 6, lets us divide this interval even further: in step 7,

1. senseIfEmpty(b0) ;
2. senseIfEmpty(b1) ;
3. senseIfEmpty(b2) ;
4. senseIfEmpty(b3) ;
5. branch(isEmptyBottle(b0))
6. K+: branch(isEmptyBottle(b1))
7. K+: . . .
8. K-: branch(isEmptyBottle(b2))
9. K+: branch(isEmptyBottle(b3))
10. K+: . . .
11. K-: pickUp(left,b0,l0) ;
12. putDown(left,b0,l5) ;
13. pickUp(right,b2,l2) ;
14. putDown(right,b2,dishwasher) ;
15. pickUp(right,b0,l5) ;
16. putDown(right,b0,dishwasher).
17. K-: . . .
18. K-: . . .

Figure 7: A plan for 4 objects in the BIMANUAL domain.

action moveForward
effects:

add(Kf, robotLoc := robotLoc - <1,2>)

action moveBackward
effects:

add(Kf, robotLoc := robotLoc + 1)

action atTarget
effects:

add(Kw, robotLoc = targetLoc)

action withinTarget
effects:

add(Kw, robotLoc <= targetLoc)

Figure 8: Actions in the LOCALISATION domain.

robotLoc = 2 and the goal is satisfied, while in step 8,
robotLoc = 1 and a moveBackward action achieves the
goal. In step 10 we consider the other sub-interval of the first
branch, i.e., robotLoc = 3 ∈ Kf . In this case we have def-
inite knowledge, however, a subsequent noisyForward re-
sults in robotLoc = 〈1, 2〉. The rest of the plan in steps 12–
16 is the same as in steps 5–9: the robot conditionally moves
backwards in the case that robotLoc is determined to be 1,
while the plan trivially achieves the goal if robotLoc = 2.

While we have only tested this domain in simulation, ex-
perimentation on a real robot is the focus of current work.

Related Work and Discussion
Applications of automated planning to robotics have a long
history, going back to robots like Shakey (Nilsson 1984)
and Handey (Lozano-Pérez et al. 1989). Recently, the field
has made substantial progress, with many approaches to
robot task planning proposed, including probabilistic AI
techniques (Kaelbling and Lozano-Pérez 2013), closed-
world symbolic planning (Cambon, Alami, and Gravot
2009; Plaku and Hager 2010; Dornhege et al. 2009b),
formal synthesis (Kress-Gazit and Pappas 2008; Cheng



robotLoc
0. 〈3, 4〉
1. noisyForward ; 〈1, 3〉
2. withinTarget ;
3. branch(robotLoc ≤ targetLoc)
4. K+: 〈1, 2〉
5. atTarget ;
6. branch(robotLoc = targetLoc)
7. K+: nop. 2
8. K-: 1
9. moveBackward. 2
10. K-: 3
11. noisyForward ; 〈1, 2〉
12. atTarget ;
13. branch(robotLoc = targetLoc)
14. K+: nop. 2
15. K-: 1
16. moveBackward. 2

Figure 9: A plan in the LOCALISATION domain.

et al. 2012), and sampling-based manipulation planning
(Zacharias, Borst, and Hirzinger 2006; Barry 2013).

As part of this work, we use the existing Knowledge
of Volumes framework for robot task Planning (KVP)
(Gaschler et al. 2013a; 2013b; 2013c). KVP uses PKS an
its underlying symbolic planner, and combines it with the
idea of treating 3D geometric volumes as an intermediary
representation between continuously-valued robot motions
and discrete symbolic actions, to bridge the gap between ge-
ometric and symbolic planning representations. In our case,
Motion planning and collision detection rely heavily on the
Robotics Library (RL) (Rickert 2011),4 extended with addi-
tions to swept volume computations with sets of convex bod-
ies (Gaschler et al. 2013a). The integration of PKS within
KVP is achieved using the API described in this paper.

A number of other approaches also address the problem of
integrating symbolic planning and motion planning, notably
Kaelbling and Lozano-Pérez’s work on hierarchical task and
motion planning (Kaelbling and Lozano-Pérez 2011). How-
ever, while their geometric preconditions may be similar,
their underlying aggressively hierarchical planning strategy
differs from our knowledge-level planning approach. Fur-
ther approaches that integrate symbolic and geometric rea-
soning are presented by Cambon, Alami and Gravot (2009),
handling geometric preconditions and effects; Dornhege et
al. (2009b); and, more recently, Plaku and Hager (2010),
which additionally allow differential motion constraints in
a sampling-based motion and action planner. We note that
the latter three approaches assume a closed world, where all
symbols must be true or false. We use open-world knowl-
edge, which lets us model incomplete information and high-
level sensing. Prior work has also used PKS to connect robot
vision and grasping with planning (Petrick et al. 2009).

In terms of our PKS extensions, the ability to link exter-
nal libraries to internal reasoning processes is key to our
approach. While this idea is not new, and has been pre-
viously applied (Eiter et al. 2006; Dornhege et al. 2009a;
Erdem et al. 2011), the introduction of this technique to

4http://www.roboticslibrary.org/

PKS is a recent addition. Current work is focused on extend-
ing this interface, to allow external procedures partial access
to internal PKS states, for more efficient external execution
during plan generation. One drawback with this facility, is
that there is currently no control over how long an external
procedure may take to execute, or whether it will terminate.
As a result, we are extending our extern implementation to
include a timeout facility that will force external procedure
calls to terminate if a specified cutoff time is reached.

Interval-valued numeric models have been previously in-
vestigated in planning contexts, e.g., for modelling time
as a resource (Edelkamp 2002; Frank and Jónsson 2003;
Laborie 2003). A similar representation to ours for bounding
noisy numeric properties has also been proposed by Pog-
gioni, Milani, and Baioletti (2003). This idea also has par-
allels to work on register models (van Eijck 2013). The im-
portance of numerical reasoning in planning has been recog-
nised with the inclusion of numeric state variables in PDDL,
and in planners like MetricFF. We believe representations
such as IVF offer a useful middle ground between discrete
and fully probabilistic models of uncertainty. While PKS has
provided a successful prototype for testing this representa-
tion, we are also currently adapting this technique for use in
other planners. Current work is focused on encoding a rep-
resentation of IVFs in a temporal-numeric planner, such as
POPF2 (Coles et al. 2010).

Finally, we note that our planning API can be thought of
as a set of abstract planning services which are implemented
by an underlying “black box” planner. As in other complex
software systems, such an interface removes the need for the
programmer to know how such services are actually imple-
mented, but instead allows the designer to build more com-
plex components that simply use these services. This API
has been deployed on four different robot systems to enable
access to PKS, and is being integrated on a fifth system to
provide onboard task planning services for a set of robots in
an industrial warehouse setting (Crosby and Petrick 2014).

Conclusions
We described a set of extensions to PKS, aimed at improv-
ing its applicability to problems in robot task planning. We
demonstrated these capabilities in solving typical robot tasks
at the knowledge level, including the combination of high-
level planning with low-level motion planning, with exper-
iments on real and simulated robots. simulation. As part of
ongoing work, we are continuing to refine and apply our ex-
tensions in more complex scenarios, to gather empirical data
and better understand the limits of our techniques. We be-
lieve our approach is useful for a broad range of robot plan-
ning applications that require incomplete knowledge, real-
world geometry, and multiple robots and sensors.
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