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Extending the Knowledge of Volumes Approach to Robot Task
Planning with Efficient Geometric Predicates

Andre Gaschler, Ingmar Kessler, Ronald P. A. Petrick and Alois Knoll

Abstract—For robots to solve hard tasks in real-world
manufacturing and service contexts, they need to reason about
both symbolic and geometric preconditions, and the effects of
complex actions. We use an existing Knowledge of Volumes
approach to robot task planning (KVP), which facilitates hybrid
planning with symbolic actions and continuous-valued robot
and object motion, and make two important additions to this
approach: (i) new geometric predicates are added for complex
object manipulation planning, and (ii) all geometric queries—
such as collision and inclusion of objects and swept volumes—
are implemented with a single-sided, bounded approximation,
which calculates efficient and safe robot motion paths. Our task
planning framework is evaluated in multiple scenarios, using
concise and generic scenario definitions.

I. INTRODUCTION

One of the main motivations for robot task planning is to
allow intelligent robots to solve real, complex tasks in service
and industry. While substantial progress has been made in
recent years in designing the necessary components needed
for such a framework—path planning, grasp planning, tra-
jectory generation, and symbolic reasoning—and powerful
algorithms for addressing these individual problems are
available, the generic robot task planning problem remains
challenging. One reason for this inherent challenge is the
interdependence of symbolic and geometric reasoning: a
symbolic action description (such as grasping an object) may
have complex geometric preconditions, including different
types of collision avoidance, and certain symbolic effects
(such as placing an object on a table) may only be generated
by very careful geometric choices. This implies that only
trivial instances of the robot task planning problem can be
solved by separating symbolic planning from subsequent
motion planning of the symbolic actions; real problems can
only be solved by adopting a hybrid approach.

In this work, we present two important extensions to the
existing “knowledge of volumes” (KVP) approach to robot
task planning [1], [2]. First, we define a set of geometric
predicates in order to support generic solutions to com-
plex manipulation problems. In addition to the previously
described predicates needed for collision-free picking and
placing [2], we define new predicates for inclusion check-
ing and placing objects on support surfaces. Using these
primitive queries, considerably more complex tasks can be
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Fig. 1: Robot task planning provides a generic solution to
complex manipulation tasks. When space is limited, the robot
can stack objects where possible—a solution strategy that
arises purely from symbolic and geometric planning.

solved; for instance, definitions of container objects such as
drawer or cabinets can be specified on an abstract semantic
level, enabling solution strategies such as stacking flat objects
to arise from symbolic action definitions instead of through
preprogramming. Second, we formulate all geometric queries
as single-sided, bounded approximations with controllable
precision . The boundedness ensures that collision and non-
inclusion will always be recognized, while the less critical
cases of non-collision and inclusion are approximated up to a
parameter € [1]. This type of approximation allows both safe
and efficient generation of complex manipulation plans, and
is formulated for the complete set of geometric predicates.

In general, KVP follows two main strategies. On the
symbolic side, the planner operates on the knowledge level,
and can reason with discrete uncertainty. This allows a very
clean formulation of knowledge gain and loss, information-
gathering sensing actions, and plans with contingencies, as
described in [3], [4], [5]. On the geometric side, data repre-
sentation and predicate evaluation is centred on geometric
volumes, representing all objects, robots, and even swept
volumes of robot motion as sets of convex polyhedra [6].
This strategy is combined with efficient e-precise geometric
queries [1], taking a different route from and avoiding some
of the issues of many sampling-based task planners.

II. RELATED WORK

Automatic planning has been used for autonomous robot
control since its very early days, for instance in the Shakey
system [7]. While early approaches separated symbolic plan-
ning from geometric motion planning, it was recognised that



more complex problems intrinsically require a hybrid ap-
proach. One of the first hybrid robot task planners, aSyMov,
was presented by Gravot, Cambon, and Alami in 2003 [8].
More recently, robot task planning has become a very active
research area, with approaches stemming from conventional,
sampling-based motion planning [9], [10], symbolic planning
invoking motion-planning functions [11], [8], and probabilis-
tic preimage back-chaining [12].

A typical approach to robot task planning is to evalu-
ate symbolic actions in a forward-chaining manner, sam-
pling geometric choices, and backtracking on failure, in-
cluding geometric infeasibility. For instance, the aSyMov
task planner [8] mentioned above consists of a symbolic
planner that follows several heuristics to guide the geometric
search. Symbolic and geometric searches are interleaved,
with backtracking in both layers, and probabilistic roadmaps
are created for all combinations of robot manipulators and
objects to represent the search space. Dornhege et al. [11]
add robotics-specific functions to a symbolic planner through
a semantic attachment interface. Srivastava et al. [13] solve
scenarios with large numbers of movable objects, provided
that symbolic explanations for all failures in the geometric
search are available, which are fed back to the symbolic
search. Contrary to the above search schemes, Kaelbling
and Lozano-Pérez’s hierarchical task and motion planner “in
the now” [14] performs an aggressively hierarchical, back-
chaining search, whose solution is meant for interleaved
execution and plan refinement. While their search technique
differs from ours, we borrow their notion of continuous
geometry, represent robot motions as swept volumes, and
formulate similar geometric collision predicates. In addition,
we develop the continuous geometry approach further, de-
vise additional predicates, and provide an efficient and safe
bounded approximation scheme (Section [[TI). In more recent
work, Kaelbling and Lozano-Pérez generalize their search
space to probability distributions over states and present a
belief-space hierarchical planner (BHPN) [12].

In contrast to many of the above works, our KVP approach
is among the first to use a general-purpose planning system,
the PKS planner [3], [4], for generic robot task planning,
and the first to provide a set of efficient algorithms for fast,
single-sided approximate geometric predicate evaluation.

III. APPROACH

Robot task planning requires techniques from multiple
areas of research. In the following section we discuss our
approach, beginning with the underlying symbolic planner
PKS (Section [[II-A), followed by a description of the ef-
ficient geometric predicates (Section [II-B), and finally an
evaluation in an illustrating example scenario (Section [[V).

In general, robot task planning requires a definition of the
available actions, whose execution is subject to a number
of preconditions, and which change the known world state
according to a certain set of effects. A precondition or
an effect may be purely symbolic, or geometric. Geomet-
ric preconditions and effects contain geometric predicates,
whose evaluation includes queries to the kinematic and

geometric models of the scenario, and may contain updates
to the geometric state. For this, the task planning problem
contains kinematic and geometric models of all robots and
objects of the scenario, movable or static. The solution of
a task planning problem is a sequence of actions whose
preconditions are satisfied and whose subsequent execution
produces a series of effects that brings about a knowledge
state that satisfies the goal condition of the problem.

A. Planning with Knowledge and Sensing (PKS)

The underlying symbolic planner used in this work is PKS
(Planning with Knowledge and Sensing) [3], [4], a contin-
gent planner that builds plans using incomplete information
and sensing actions. PKS works at the knowledge level by
reasoning about how the planner’s knowledge state changes
due to action. Unlike planners that reason with possible
worlds or belief states, PKS works directly with formulae
representing its knowledge state. These formulae are stored
in a set of databases, each of which models a particular type
of knowledge. The main PKS databases we use include:

Ke: This database is like a STRIPS database except that both
positive and negative facts are stored and the closed world
assumption is not applied. K can include any ground literal
¢, where ¢ € Ky means “the planner knows £.”

K. : This database models the plan-time effects of sensing
actions with binary outcomes. ¢ € K, means that at plan
time the planner either “knows ¢ or knows —¢,” and that at
execution time this disjunction will be resolved.

K., : This database stores function values that will become
known at execution, such as the effects of sensing actions
that return constants. K, can contain any unnested function
term f, where f € K, means that at plan time the planner
“knows the value of f.” At execution time, the planner will
have definite information about f’s value. Thus, K, terms
can act as run-time variables [15] in plans.

PKS databases are inspected using primitive queries that
ask simple questions about PKS’s knowledge. Basic knowl-
edge assertions are tested with a query K (¢) which asks: “is
a formula ¢ true?” A query K,,(¢) asks whether ¢ is known
to be true or known to be false. A query K,(t) asks “is
the value of function ¢ known?” The negation of the above
queries can also be used.

PKS actions are defined by preconditions that query the
knowledge state, and effects that update the state. Precon-
ditions are simply a list of primitive queries. Effects are
described by STRIPS-style “add” and “delete” operations
that modify individual databases. E.g., add(Ky,$) adds ¢
to Ky, and del(K,,, ¢) removes ¢ from K.

PKS builds plans by forward-chaining search: if an ac-
tion’s preconditions are satisfied in a knowledge state, then
its effects can be applied to produce a new knowledge state.
PKS can also build contingent plans by considering its K,
and K, knowledge: a branch is introduced for each possible
outcome of this knowledge, producing more certain knowl-
edge states. Planning continues from each new knowledge
state until the goal—a list of primitive queries—is satisfied.



PKS also provides a mechanism for invoking externally-
defined procedures (e.g., special purpose libraries) during
plan generation, extern(proc(Z)) [16], an idea similar to
that of semantic attachments [17], [18], [19]. In this case,
extern is a special keyword indicating that control should
be transferred to an external procedure with the name proc.
Z is a list of parameters that should be passed to proc. In
general, Z can contain any symbols defined in PKS’s knowl-
edge state, providing a link between the planner and any
externally-defined geometric predicates for motion planning
and collision detection. Using this facility to reason about
geometry at the symbolic level allows us to solve problems
which may be difficult to model directly at either the motion
planning or symbolic planning level alone.

B. Geometric Predicates

In previous versions of KVP [1], [2], the geometric pred-
icates covered collision checking and inverse kinematics. In
particular, the isColliding(?o0 : object, ?p : object) predicate
checked for collisions between two given objects, and the
isCollidingMotion(?0 : object, ?p : object) predicate checked
whether the robot motion to pick up a certain object would
collide with another. In the following, we present additional
geometric predicates to define more complex scenarios.

The isInside(?0 : object, ?l : location) predicate reports
whether the volume of an object is fully contained by the
volume given by a certain location. Typically, it is used to
define goal regions, rather than the discrete goal locations
in [2]. More generally, geometric inclusion allows container
objects such as boxes, cabinets, and drawers to be defined
abstractly. For efficiency, we require the volume given by the
location to be convex; the evaluation of the predicate then
reduces to a simple check whether all vertices of the mesh
of the object are inside the location region.

The isOnSupportSurface(?o object) predicate tells
whether an object rests solidly on a horizontal surface, as
opposed to placement in empty space or on the edge of a
table. This check is performed automatically based on the
models of the object and the environment and does not need
to be defined in the domain definition. We apply a simple
geometric heuristic to evaluate this predicates efficiently, as
it is frequently called in many manipulation task planning
scenarios. In our heuristic, the predicate extends short line
segments vertically down from all vertices at the bottom of
the object and checks that the object itself is collision-free
but that all of the line segments are not.

The isReachable(?0 : object) predicate tells whether the
robot can move to pick up an object without any collisions.
This predicate is based on existing solutions for the inverse
kinematics and motion planning problems provided by the
Robotics Library (RLE To improve efficiency the inverse
kinematics results are cached, which is especially effective
when the inverse kinematics is only applied to a subset of
the robot’s reachable space, e.g., a tabletop. Furthermore,

lhttp ://www.roboticslibrary.org/

geometric heuristics are applied so that full path planning
often becomes unnecessary during the planning phase.

The freeSpaceFound(?o0 : object, ?l : location) predicate
tells whether an object can be put down in a location by
combining the three predicates above. This predicate works
as a suggester function for finding a valid geometric position
for an object, at which all three other predicates are fulfilled.
This is done by sampling search positions from a search area
defined by the volume of a location. The sampling process
is space-filling and therefore complete for the quadtree and
random search strategies. For comparison, the trivial linear
search strategy searches a subset of the sampling positions
given a resolution parameter. The origin and direction for
the linear search and the quadtree search are automatically
determined depending on the orientation of the location
relative to the robot, and the type of gripper used by the
robot. These search strategies only determine the horizontal
and y coordinates as shown in Fig. 2]and a downward raycast
is applied for finding the vertical z coordinate. This predicate
enables new types of scenarios to be defined since objects
may not only be moved to predefined geometric positions,
but also intelligently to anywhere within a defined area.

More details on the implementation of these geometric
predicates are described by Kessler in [20].

123456738 2 6
910 8

Fig. 2: From left to right, examples for the first ten sampled
search positions for a linear search, quadtree search and
random search.

Fig. 3: The geometric world at the beginning of the MOVE
AND STACK scenario.

C. Efficient Geometric Predicate Evaluation

Besides the availability of the new geometric predicates
formulated in the previous section, which allow complex task
planning problems to be defined and solved, it is of great im-
portance that these predicates are implemented efficiently. In
robot task planning, geometric predicates are evaluated many
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Fig. 4: Novel bounding mesh and convex decomposition algorithms can handle a typical, non-convex robot mesh with
10% vertices (a). Exact decomposition would generate overly high numbers of polyhedra (b), which are inefficient. Our
new bounding mesh approximation [1] reduces the number of vertices to 10% at an error ¢ < 0.05m (c). Then, convex
decomposition can simplify this mesh to ~10 convex polyhedra with 20 vertices each (d, e). [1, p. 10]

times in a recursive search, and greater efficiency allows
more complex scenarios to be solved. In our KVP approach,
we propose a single-sided, bounded e-precise approximation
for all geometric queries, named bounded geometric predi-
cates [1]. A bounded geometric predicate has the following
properties. On one side, the approximation is guaranteed to
be exact. For instance, the islnside predicate will always
return false if an object is not completely contained by a
certain area, and the freeSpaceFound predicate will always
fail if a collision occurs. This behavior allows safe motion
planning and is important to many robotics applications. On
the other side, the approximation is bounded by a parameter
€. In case of the freeSpaceFound predicate, it is allowed to
fail if two bodies almost collide with a distance closer than
€. Conversely, the islnside predicate is only guaranteed to
recognize inclusions when the distance to the inner body is
at least €.

The bounded geometric predicates can be evaluated very
efficiently when bounded convex decompositions of all ob-
jects and robot models in the task planning scenario are
available from a preprocessing step. This e-bounded convex
decomposition is generated through several steps, illustrated
in Fig. @ A typical geometric model of a robot manipulator
may contain at the order of 10° vertices (see Fig. @
An exact convex decomposition is neither computationally
efficient, nor would it reduce this number of vertices (see
Fig. {ib). Our novel bounding mesh algorithm [1], however,
generates a bounding mesh, a simpler mesh that includes
the original, at a distance no more than ¢ (Fig. fid), effec-
tively reducing the number of vertices to the order of 10°.
Then, hierarchical convex decomposition routines [21] can
decompose this bounding mesh into a small bounding set of
convex bodies (Fig. 4d). Being convex, the resulting bodies
can be efficiently used in all primitive collision and inclusion
checks using the Gilbert/Johnson/Keerthi (GJK) algorithm
[22], leveraging the efficiency of all described geometric
predicates.

TABLE II: Evaluation of the REMOVE n OBJECTS scenario,
where n objects must be removed from a table while avoiding
collisions. Geometric queries such as collisions are made

efficient by the swept volume representation as sets of convex
bodies. [6, p. 5]
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Objects at random locations

2 1241 0.01 1221 0.19 .00001 2 2

3 4035 0.01 3972 0.62 .00034 6 3 3

4 3948 0.01 3874 0.70 .00111 10 4 4

5 10230 0.03 10146 0.81 .00146 15 5 5

10 143.67 0.04 141.74 1.84 01712 120 15 10

20 35698 0.10 354.01 2.81 .04442 320 64 20
Objects in a line, only 1 of n can be picked up

2 1243 0.01 1223 0.19 .00001 3 2 2

3 3987 0.01 3944 042 .00003 6 3 3

4 9946 0.02 99.01 043 .00004 10 4 4

5 15870 0.02 15826 042 .00005 15 5 5

10 351.77 0.02 350.67 1.08 .00270 55 10 10

20 35516 0.12 35243 2.57 .02974 210 20 20

IV. EVALUATION

The MOVE AND STACK scenario was chosen for testing
and evaluating the geometric predicates introduced in Sec-
tion [[II-B] since it is not a pure pick-and-place scenario,
but rather allows generic stacking of objects. The combined
symbolic and geometric planner solves the scenario with
the help of the isOnSupportSurface predicate, which allows
for generic and abstract stacking that does not need to be
preprogrammed. For this predicate the top of the can is
semantically the same as the tabletop and the only domain



TABLE I: Performance evaluation of the MOVE AND STACK scenario and three simpler variants A, B, and C.
Abbreviations: bB := blueBottle, gB := greenBottle, tB := turquoiseBottle

Scenario Variant A

B C MOVE AND STACK

K(isInside(bB, depot))

Goal Conditions A K(—isInside(gB, tray))

K(isInside(bB, depot))
A K(isInside(tB, tray))
A K(—isInside(gB, tray))

K(isInside(bB, tray))
A K(isInside(tB, tray))
A K(isInside(can, tray))

K(isInside(tB, tray))
A K(isInside(can, tray))

Number of Actions 6 8 10 12
Number of Geometric World States 26 55 79 92
Total Time [s] 0.64 1.13 2.26 3.15
thereof Planning Time [s] 0.09 0.39 0.78 1.13
thereof Path Planning [s] 0.55 0.74 1.48 2.02
Path Optimization Time [s] 8.27 11.35 23.53 30.62
(Path Planning if perform(?d at every 4.83 15.50 31.41 43.37
symbolic step [s])
Inverse Kinematics [s] 0.027 0.104 0.110 0.121
(Inverse Kinematics without Caching [s]) 0.068 0.289 0.628 0.918
Collision Checking in Planning Time [s] 0.023 0.159 0.410 0.630
isInside Number of Calls 21 161 418 698
isInside Total Time [s] 0.003 0.017 0.044 0.072
isOnSupportSurface Number of Calls 13 153 410 690
isOnSupportSurface Total Time [s] 0.000 0.009 0.024 0.040
isReachable Number of Calls 38 168 357 535
isReachable Total Time [s] 0.063 0.240 0.387 0.528
freeSpaceFound Number of Calls 14 42 86 128
freeSpaceFound Total Time [s] 0.045 0.293 0.595 0.879

) b il

pickUp(blueBottle)

pickUp(can)

pickUp(turquoiseBottle)
putDown(turquoiseBottle, tray) putDown(can,tray)

putDown(blueBottle,depot)

pickUp(blueBottle)
putDown(blueBottle, tray)

' moveToConfInit

Fig. 5: Solution for the MOVE AND STACK scenario. At the beginning, the small green bottle has to be moved to another
location to clear space for later actions (image B) and the small blue bottle is temporarily moved to the depot location as
well so that the next object in the row can be accessed. Next, the large turquoise bottle and the can are moved to the fray
location. Afterwards, the small blue bottle is automatically stacked on top of the can inside the fray location since the three
objects do not fit inside the fray location side by side (image G). A video is available at http://youtu.be/XGSMoI_BRFw.

definition necessary was to design the predicate so that all
horizontal surfaces are suitable for resting an object on them.

Fig. 3] shows the geometric world at the beginning of the
scenario. The grey arrow illustrates the symbolic goal of
moving all three objects on the right into the small purple-
transparent fray location on the left. The green and blue
bottles are small enough to fit on top of the can but the
turquoise bottle is not. The green bottle is simply in the
way and the white-transparent depot location is simply an
alternative location for storing objects. The scenario is com-

plicated by the small size of the locations and the fact that the
objects frequently act as obstacles when performing actions
on other objects. The combined symbolic and geometric
planner solved this scenario and executed the resulting plan
on the robot in the real environment in 103 seconds, as shown
and explained in Fig. [5] Table[[]shows the performance in the
MOVE AND STACK scenario and several similar scenarios
with different goal conditions. The data illustrates that the
total time is well below the execution time and that the
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remove (bottle3)

remove (bottle2)

remove(bottlel)

Fig. 6: REMOVE n BOTTLES scenario: In this scenario, the robot can remove only the rightmost of n = 3 bottles in order

to avoid collisions. [6, p. 6]

geometric predicates are efficient with their computational
time less than the path planning time.

A. Remove n Objects Scenario

In order to show that general types of scenarios can be
solved by our task planning approach, we briefly discuss
the REMOVE n OBJECTS scenario, which was previously de-
scribed in [6]. In this second scenario, the robot is supposed
to remove n objects from a table while avoiding collisions,
so this problem can be studied quantitatively. As shown in
the results in Table [II} the planning time scales reasonably
with the number of objects. While collisions are common for
higher numbers of objects, most of these geometric predicate
calls can be cached, and a goal-directed search can solve
this problem rather efficiently. A demonstration with n = 3
objects was performed on the real robot, shown in Figure [6]

V. CONCLUSION AND FUTURE WORK

In this paper, we extend the existing “knowledge of
volumes” (KVP) approach to robot task planning, adding
additional geometric predicates, and improving the efficiency
of all collision and inclusion queries by single-sided bounded
approximations. We demonstrate that these new predicates
allow generic definitions of support surfaces and enable non-
trivial task planning solutions, such as stacking objects in
confined workspaces.
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