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Abstract. Our recently developed lattice Boltzmann model is used to simulate droplet
dynamical behaviour governed by thermocapillary force in microchannels. One key
research challenge for developing droplet-based microfluidic systems is control of
droplet motion and its dynamic behaviour. We numerically demonstrate that the ther-
mocapillary force can be exploited for microdroplet manipulations including synchro-
nisation, sorting, and splitting. This work indicates that the lattice Boltzmann method
provides a promising design simulation tool for developing complex droplet-based
microfluidic devices.

AMS subject classifications: 76T99
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1 Introduction

Droplet-based microfluidics has recently emerged as a promising, versatile platform for
biological and chemical processes due to its advantages such as cost and time savings,
improved analysis sensitivities, efficiency and accuracy. Unlike continuous-flow-based
microfluidics, droplet-based microfluidics that creates discrete volumes with the use of
immiscible fluids, allows for independent control of each droplet, thereby generating
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droplet microreactors that can be individually processed for transportation, mixing and
analysis [1]. Since reagents and samples can be confined in the droplets, it eliminates the
issues associated with Taylor dispersion and surface adsorption, which can cause sam-
ple dilution and cross-contamination [2]. Droplet microfluidics offers great potential for
performing a large number of reactions without increasing system size or complexity [3].
In addition, several studies [4, 5] demonstrated that droplet microfluidics has the ability
to implement simple Boolean logic functions, a critical step towards the realisation of a
microfluidic computer.

Exploiting the benefits of droplet-based microfluidics efficiently, thus facilitating a
wide range of applications, requires manipulation of droplets with high precision and
flexibility. The most commonly encountered droplet manipulations include droplet gen-
eration, fission, fusion, mixing and sorting. Diverse mechanisms have been used for
these droplet manipulations, including hydrodynamic stress, electrowetting, magnetic
force, optical forces, thermocapillary force, surface acoustic waves, and dielectrophore-
sis [6]. Among these, thermocapillary force becomes increasingly attractive because it
can be generated easily by means of substrate embedded microheaters [7, 8] or by laser
heating [9,10], which allows contactless, reconfigurable, and real-time control of multiple
droplets without the need for any special microfabrication or moving parts. To date, the
thermocapillary force has been combined with the geometry of the microchannel to re-
alise various droplet manipulations including mixing, sorting, fission, fusion, sampling
and switching [11, 12].

Experimental studies have helped to understand thermocapillary flows in microflu-
idic devices, but it is still very difficult to conduct precise experimental measurements of
the local temperature and flow fields during the transport process of a droplet. Thus, cur-
rent applications of microfluidics are very largely done by experimental trial and error.
Numerical modelling and simulations can complement experimental studies, providing
an efficient pathway to enhance our understanding of dynamical droplet behaviour at
the microscale. However, it is challenging to use traditional CFD (computational fluid
dynamics) methods, e.g., the volume-of-fluid (VOF) [13] and level-set (LS) [14] methods,
for simulating thermocapillary flows in microchannels because of numerical instability
arising at the interface region when the interfacial tension becomes a dominant factor
in microdroplet behavior [15]. Also, minimising the spurious velocities at the interface
still remains a major challenge for these methods. In addition, a suitable slip model with
slip length at the molecular scale has to be introduced to avoid stress singularities at
the moving contact-line. Microscopically, the interface between different phases and the
contact-line dynamics on the solid surface are due to interparticle interactions [16]. Thus,
mesoscopic level models are expected to describe accurately the thermocapillary flows in
a microchannel.

Recently, the lattice Boltzmann method (LBM) has developed into a promising alter-
native to traditional CFD methods for simulating complex fluid flow problems. LBM
is a pseudo molecular method based on particle distribution functions that performs
microscopic operations with mesoscopic kinetic equations and reproduces macroscopic
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behaviour. Its mesoscopic kinetic nature offers many of the advantages of molecular
dynamics, making LBM particularly suited for modelling multiphase, multicomponent
flows. A number of multiphase, multicomponent models have been proposed in the
LBM community, which can be classified into four major types: colour-fluid model [18],
phase-field-based model [19, 20], interparticle-potential model [21], and mean-field the-
ory model [22]. These models have been applied successfully to simulate various mul-
tiphase flow problems with a constant interfacial tension [23]. In Ref. [24], Liu et al.
proposed the first thermocapillary LBM based on the colour-fluid model, which used the
concept of continuum surface force (CSF) to model the capillary and Marangoni forces,
and a recolouring algorithm by Latva-Kokko and Rothman [25] to produce phase separa-
tion. Later, Liu et al. developed two phase-field-based thermocapillary models with one
focusing on high-density-ratio two-phase flows [26] and the other on modelling fluid-
wall interactions [27]. The phase-field-based model can effectively eliminate unphysical
spurious velocities at the phase interface. Small droplets or bubbles in the phase-field-
based model, however, are prone to dissolve, when the multiphase system evolves to
minimise the free energy. In contrast, the colour-fluid model can ensure strict mass con-
servation of each fluid. Although the study by the thermocapillary colour-fluid model
has demonstrated that thermocapillary forces induced by the laser heating can block the
droplet motion [24], it is restricted to a relatively simple microfluidic channel with the
absence of fluid-wall interactions, and the model’s capability for droplet manipulations
is not fully investigated. In this paper, we will use the thermocapillary colour model
to study droplet dynamical behaviour in several different microchannels when the ther-
mal gradients are introduced by substrate embedded microheaters. We will reveal that
the thermocapillary actuation can be a promising route towards performing various mi-
crofluidic functions including synchronisation, sorting and splitting.

2 Lattice Boltzmann method

The lattice Boltzmann (LB) equation can be expressed as [17, 28, 29]

fi(x+eiδt,t+δt)− fi(x,t)=Ωi(x,t), (2.1)

where fi(x,t) and Ωi(x,t) are the particle distribution function and collision operator in
the ith direction at the position x and the time t; δt is the time step, ei is the lattice velocity
in the ith direction, which is defined as e0=(0,0), e1,3=(±c,0), e2,4=(0,±c), e5,7=(±c,±c),
and e6,8=(∓c,±c) for the two-dimensional 9-velocity (D2Q9) model, where c=δx/δt is the
lattice speed and δx is the lattice spacing. The most commonly used collision operator is
the single relaxation time Bhatnagar-Gross-Krook (BGK) collision operator [30,31] which
is given by

Ωi(x,t)=− 1

τf
( fi(x,t)− f

eq
i (x,t)), (2.2)
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where τf is the relaxation time, and f
eq
i is the equilibrium distribution function, which is

defined as [32]

f
eq
i (x,t)=ρ(x,t)ωi

[

1+
ei ·u(x,t)

c2
s

+
1

2

(ei ·u(x,t))2

c4
s

− 1

2

u2(x,t)
c2

s

]

, (2.3)

where ρ and u are the local density and velocity, cs = 1/
√

3c is the lattice sound speed,
and wi is the weight factor with w0=4/9, w1−4=1/9 and w5−8=1/36. The density and
momentum at each lattice node can be calculated using

ρ(x,t)=∑
i

fi(x,t), (2.4)

ρu(x,t)=∑
i

fi(x,t)ei, (2.5)

and the viscosity of the fluid is related to the relaxation time τf by

ν=
(

τf −
1

2

)

c2
s δt. (2.6)

To simulate thermocapillary flows, we use the colour-fluid LB model developed by Liu et
al. [24]. In this model, the concept of CSF [33] is used to model the interfacial tension force
and Marangoni stress, and a convection-diffusion equation is solved using the passive
scalar approach to obtain the temperature field, which is coupled to the interfacial tension
through an equation of state. The colour-fluid model introduces two particle distribution
functions ri and bi to represent “red” and “blue” fluids. The total particle distribution
function fi is defined as

fi(x,t)= ri(x,t)+bi(x,t), (2.7)

which undergoes the collision and streaming operations as

fi(x+eiδt,t+δt)− fi(x,t)=− 1

τf
( fi(x,t)− f

eq
i (x,t))+Φi, (2.8)

where Φi is the perturbation term, which contributes to the mixed interfacial regions and
generates an interfacial force F [24, 34]:

Φi(x,t)=

(

1− 1

2τf

)

ωi

[

ei−u(x,t)
c2

s
+

ei ·u(x,t)
c4

s
ei

]

·F(x,t)δt, (2.9)

where u is the velocity of fluid mixture, which is redefined to incorporate the spatially
varying interfacial force, i.e., [24, 34, 35]

ρu=∑
i

fiei+
1

2
Fδt. (2.10)
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Note that the equilibrium distribution function f
eq
i in Eq. (2.8) is still written in the form

of Eq. (2.3), but the velocity in the equilibrium distribution function should use Eq. (2.10)
instead of Eq. (2.5) due to the interfacial force involved.

An indicator function ρN is introduced to identify the location of interface, and is
defined by

ρN(x,t)=
ρr(x,t)−ρb(x,t)
ρr(x,t)+ρb(x,t)

, (2.11)

where ρr and ρb are the local densities of red and blue fluids and defined by

ρr(x,t)=∑
i

ri(x,t), (2.12)

ρb(x,t)=∑
i

bi(x,t). (2.13)

In the LBM community, the CSF concept [33] was first used by Lishchuk et al. [36] to
model the interfacial force with a constant interfacial tension. It was later extended by Liu
and Zhang [24] to model the interfacial force with a temperature-dependent interfacial
tension and the Marangoni stress. Following [24], the interfacial force reads as

F(x,t)=
1

2
|∇ρN |∇·[σ(I−n⊗n)]=

1

2
|∇ρN |(σκn+∇sσ), (2.14)

where I is the second-order identity tensor, ∇s = (I−n⊗n)·∇ is the surface gradient
operator, σ is the interfacial tension, n is the interfacial unit normal vector defined by

n=
∇ρN

|∇ρN | , (2.15)

and κ is the local interface curvature related to n by

κ=−∇s ·n=−∇·n. (2.16)

To account for temperature effects on the interfacial tension, the relationship

σ(T)=σre f +σT(T−Tre f ) (2.17)

is used, where T is the temperature, σre f is the interfacial tension at the reference tem-
perature Tre f , and σT is the interfacial tension gradient with respect to temperature. In
this study only a linear relationship between interfacial tension and temperature is used.
Eq. (2.14) can then be modified to

F(x,t)=
1

2
|∇ρN |[σκn+σT(I−n⊗n)·∇T]. (2.18)

To model the temperature field evolution, another particle distribution function gi is
used, with the governing equation

gi(x+eiδt,t+δt)−gi(x,t)=− 1

τg
(gi(x,t)−g

eq
i (x,t)), (2.19)
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where τg is the relaxation parameter linked to the thermal diffusivity

k=
(

τg−
1

2

)

c2
s δt, (2.20)

and g
eq
i is the equilibrium distribution function

g
eq
i (x,t)=T(x,t)ωi

[

1+
ei ·u(x,t)

c2
s

+
1

2

(ei ·u(x,t))2

c4
s

− 1

2

u2(x,t)
c2

s

]

, (2.21)

where the temperature T is calculated by T =∑i gi. Using the Chapman-Enskog expan-
sion, Eq. (2.19) can recover the following macroscopic equation when the velocity is given
by Eq. (2.10), i.e.,

∂tT+u·∇T=∇·(k∇T). (2.22)

Note that thermal flows can also be modelled by the use of a multi-speed approach [46],
which is regarded as an extension of the isothermal LBM. However, the multi-speed ap-
proach requires using a large set of discrete velocities along with higher-order velocity
terms in the equilibrium distribution function, resulting in a higher computational cost
than the currently used passive scalar approach. In addition, the multi-speed approach
may suffer from severe numerical instability and an unphysical fixed Prandtl number.

The partial derivatives required for the curvature and normal vector calculations are
obtained using the finite difference stencil. For example, for a variable h, its partial
derivatives can be calculated by [37]

∂αh(x,t)=
1

c2
s
∑

i

ωih(x+eiδt,t)eiα. (2.23)

Although the perturbation term generates an interfacial tension and the Marangoni stress,
it does not guarantee the immiscibility of both fluids. To promote phase segregation and
maintain the interface, we use the recolouring algorithm proposed by Latva-Kokko and
Rothman [25], which can effectively reduce the unphysical spurious velocities at the in-
terface and overcome the lattice pinning problem [38, 39]. Following their algorithm, the
post-collision, recoloured red and blue fluid particle distribution functions are

ri =
ρr

ρ
f ∗i +β

ρrρb

ρ
ωiei.n, (2.24)

bi =
ρb

ρ
f ∗i −β

ρrρb

ρ
ωiei.n, (2.25)

where f ∗i is the total distribution function after the collision operation, and β is a segre-
gation parameter which is set to 0.7 for numerical stability and model accuracy [38, 39].

For the hydrodynamic boundary conditions, we impose a no-slip boundary condi-
tion at the microchannel walls by using the simple bounceback scheme halfway between
the solid and fluid nodes [40], and specify a fixed velocity profile at the inlets of the mi-
crochannels and a fixed pressure boundary condition at the outlets of the microchannels
following Zou and He [41]. For the thermal boundary conditions, the wall temperatures
are specified by the method of Liu et al. [42].
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3 Results and discussion

3.1 Droplet synchronisation using thermal gradients

In many microdroplet applications, the mixing of droplets containing different reagents
is necessary. To ensure that droplets from different microchannel branches collide and
merge, synchronisation mechanisms are necessary. Although microchannels have been
designed to passively synchronise droplets [43], it may also be desirable to use active
synchronisation strategies in many integrated lab-on-a-chip systems with multiple func-
tions [44]. Here we numerically demonstrate the use of thermal gradients to synchronise
droplets.

The simulation geometry is shown in Fig. 1 with two connected microchannels, where
two droplets are initially placed at the inlets of these microchannels, with one droplet
at each inlet. A thermal gradient is applied locally at the bottom microchannel, in the

Figure 1: Simulation snapshots when no thermal gradient is applied at 0, 58000, 140000 and 206000 timesteps.
The droplet in the lower microchannel reaches the channel intersection first as it has less distance to travel. For
the non-isothermal cases, a linear thermal gradient is applied at the microchannel walls in the area within the
dashed lines. The wall temperatures inside the dashed lines follow a linear distribution with the temperature TL
at the left hand side and TR at the right hand side.
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(a) (b)

Figure 2: Evolution of droplet location and the temperature contours when a thermal gradient (indicated in red)
is applied at the bottom microchannel with (a) σT=−0.0015 and (b) σT=−0.001 at 52000, 182000 and 244000
timesteps. In (a) the velocity of the droplet in the lower branch is significantly reduced while passing through
the thermal gradient and as a result the droplet in the upper microchannel reaches the channel intersection
first. Compared to (a), the droplet in (b) does not slow down as much due to a smaller σT, which leads to the
droplets colliding and merging upon reaching the intersection.

area inside the dashed lines, by specifying the temperatures at the microchannel walls,
where a high temperature TL is specified at the left hand side which varies linearly to
a temperature TR at the right hand side. The fluid properties are chosen as ρr = ρb = 1,
νr = νb = 0.05, kr = kb = 0.025, σre f = 0.08 and Tre f = 0. The domain size of the simulation
is 450×120 lattice units, and the droplets have a diameter of 30 lattice units. The average
inlet channel velocity is fixed at uin=0.003 for both channels. Note that all fluid properties
are kept constant except the interfacial tension.

The simulation is first carried out under isothermal conditions, i.e. TL = TR = 0. As
shown in Fig. 1, both droplets travel at the same velocity, but the droplet in the lower mi-
crochannel will reach the intersection of both channels first as it has less distance to travel.
Then a thermal gradient is applied on the bottom microchannel, where the temperature
follows a linear distribution in the heated section with TL=30 and TR=0. Fig. 2(a) shows
the evolution of droplet position and temperature field for σT =−0.0015. The droplet
in the lower microchannel is observed to slow down while passing through the ther-
mal gradient, which results in the droplet in the top microchannel reaching the channel
intersection first. The droplet slows down because the thermal gradient in the lower
microchannel causes a thermocapillary force to act opposite to the droplet’s direction of
travel. By changing the value of σT to −0.001, the droplet at the lower branch is slowed
down just enough for the droplets in both branches to collide and merge as shown in
Fig. 2(b). In both cases where a thermal gradient is applied the temperature profile is
only slightly affected, which suggests that thermal gradients can provide thermocapil-
lary force to synchronise multiple droplets.



J. Li et al. / Commun. Comput. Phys., 17 (2015), pp. 1113-1126 1121

3.2 Droplet sorting using thermal gradients

For biological and chemical analyses, samples are often required to be sorted for further
processing and analysis. Since these sample droplets can have different σT, depending
on the fluids used and the surfactants added, they can be exploited for sorting droplets
under thermal gradients.

The microchannel geometry is shown in Fig. 3, where three microchannels are con-
nected together. For each simulation a droplet is initially placed in the middle inlet mi-
crochannel and a thermal gradient is applied at the microchannel intersection, indicated
by the area within the dashed lines in Fig. 3(a), where the top wall is at temperature
TH = 20 and the bottom wall is at temperature TL = 0. The fluid properties are selected
as ρr = ρb = 1, νr = νb = 0.05, kr = kb = 0.025, σre f = 0.08, σT =−0.0001 and Tre f = 10. The
domain size of the simulation is 400×100 lattice units, and the droplets have a diameter
of 20 lattice units. The velocity at each microchannel inlet is specified as uin=0.003. Using
these parameters, it is observed in Fig. 3(a) that the droplet migrates towards the top mi-
crochannel outlet, where the temperature is higher. At the microchannel intersection, the
temperature difference between the top and bottom of the droplet creates an interfacial
tension gradient, which causes a force to act upwards on the droplet.

(a)

(b)

Figure 3: Droplet locations in sorting simulations for (a) σT =−0.0001 and (b) σT =0.0001 at (i) 0, (ii) 40000,
(iii) 84000 and (iv) 150000 timesteps. A thermal gradient is applied at the channel intersection, indicated by the
area within the dashed lines in (a), by setting the temperature at the top wall to TH =20 and the temperature
at the bottom wall to TL = 0. In (a), as σT is negative, the thermal gradient at the channel intersection
causes the droplet to move towards the top microchannel outlet. In (b), the droplet moves towards the bottom
microchannel outlet as σT is positive.
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By changing σT to 0.0001, the droplet is observed in Fig. 3(b) to migrate towards the
lower microchannel branch, where the temperature of the fluid is lower. Since the inter-
facial tension dependency on the temperature gradient is positive, the thermocapillary
force acts to move the droplet downwards, causing the droplet to exit through the bot-
tom microchannel outlet. The results shown in Fig. 3 show that droplets with different
σT can be sorted into different microchannels by use of thermal gradients. This demon-
strates a new separation method for sorting droplets using thermal gradients.

3.3 Droplet splitting at a T-junction bifurcation

For the final simulation case the microchannel geometry in Fig. 5 is used, where the mi-
crochannel splits into two and the lower microchannel branch is heated near the inlet in
the area specified within the dashed lines. Here we study the effects of thermocapillarity
on droplet splitting and compare our simulation results to those obtained in a previously
published experiment by Yap et al. [45], in which a microheater is embedded on one side
of the microchannel near the inlet of the lower microchannel branch. The simulation do-
main size is 1000×1000 lattice units and the simulation parameters are set to be ρr=ρb=1,
νr = νb =0.05, kr = kb =0.025, σre f =0.05, σT =−0.002 and Tre f =0. The main channel and
the branch channels have a width of 100 and 50 lattices, respectively. The droplet plug is
initially placed in the main channel with a length of 168 lattices. The mean velocity at the
inlet is given as uin =0.025.

When the heater is not turned on and the droplet reaches the intersection, the vis-

Figure 4: Droplet splitting at the T-junction under isothermal condition at 76000, 130000, 190000 and 214000
timesteps. The droplet splits evenly as the microchannel geometry is symmetrical.
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Figure 5: Droplet splitting at the T-junction with time taken at 76000, 130000, 156000 and 182000 timesteps
when the heater, indicated by the area within the dashed lines, is switched on. We set the heater temperature
T=10 and σT =−0.001. The temperature difference at the heater on the lower microchannel branch results in
the lower daughter droplet being larger than the upper daughter droplet.

cous force from the carrier fluid overcomes the capillary force of the droplet, splitting
the droplet into two equal parts due to the microchannel symmetry, which is shown in
Fig. 4. When the heater is on, mimicked by setting the wall temperature to be 10 in the
heated section, the temperature difference creates an interfacial tension gradient at the
fluid-fluid interface near the lower microchannel branch. This pulls the droplet towards
the lower microchannel branch and causes the droplet to split unevenly, with the lower
daughter droplet being larger in size than the upper daughter droplet as shown in Fig. 5.

In the experimental study by Yap et al. [45] which uses a similar setup to our simula-
tions, when the heater was switched off the incoming droplet was found to split evenly;
when the heater was switched on, the droplets were found to split unevenly and in the
extreme case (i.e. when the thermal gradient is large enough), the droplet would not
split and would only enter the lower microchannel branch. Our simulation results show
similar behaviour, suggesting an important role of thermocapillary force in droplet split.

4 Conclusion

In this study, our lattice Boltzmann model, which can describe thermocapillary force,
is used to study microdroplet flows under thermal gradients. We demonstrate that the
thermocapillary effects can be exploited to manipulate droplet dynamical behaviour and
provide a novel approach for droplet synchronisation, sorting and splitting.
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