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Convolutional Neural Networks
for Distant Speech Recognition

Pawel Swietojanski, Student Member, IEEE, Arnab Ghoshal, Member, IEEE, and Steve Renals, Fellow, IEEE

Abstract—We investigate convolutional neural networks
(CNNs) for large vocabulary distant speech recognition, trained
using speech recorded from a single distant microphone (SDM)
and multiple distant microphones (MDM). In the MDM case we
explore a beamformed signal input representation compared with
the direct use of multiple acoustic channels as a parallel input to
the CNN. We have explored different weight sharing approaches,
and propose a channel-wise convolution with two-way pooling.
Our experiments, using the AMI meeting corpus, found that
CNNs improve the word error rate (WER) by 6.5% relative
compared to conventional deep neural network (DNN) models
and 15.7% over a discriminatively trained Gaussian mixture
model (GMM) baseline. For cross-channel CNN training, the
WER improves by 3.5% relative over the comparable DNN
structure. Compared with the best beamformed GMM system,
cross-channel convolution reduces the WER by 9.7% relative,
and matches the accuracy of a beamformed DNN.

Index Terms—distant speech recognition, deep neural net-
works, convolutional neural networks, meetings, AMI corpus

I. INTRODUCTION

D ISTANT speech recognition (DSR) [1] is a challenging
task owing to reverberation and competing acoustic

sources. DSR systems may be configured to record audio data
using a single distant microphone (SDM), or multiple distant
microphones (MDM). Current DSR systems for conversational
speech are considerably less accurate than their close-talking
equivalents, and usually require complex multi-pass decoding
schemes and sophisticated front-end processing techniques
[2]–[4]. SDM systems usually result in significantly higher
word error rates (WERs) compared to MDM systems.

Deep neural network (DNN) acoustic models [5] have ex-
tended the state-of-the-art in acoustic modelling for automatic
speech recognition (ASR), using both hybrid configurations
[6]–[11] in which the neural network is used to estimate
hidden Markov model (HMM) output probabilities and poste-
riorgram configurations [12]–[15] in which the neural network
provides discriminative features for an HMM. It has also
been demonstrated that hybrid neural network systems can
significantly increase the accuracy of conversational DSR [16].
An advantage of the hybrid approach is the ability to use
frequency domain feature vectors, which provide a small but
consistent improvement over cepstral domain features [17].

P Swietojanski and S Renals are with the Centre for Speech Technology
Research, University of Edinburgh, email: {p.swietojanski,s.renals}@ed.ac.uk

A Ghoshal was with the University of Edinburgh when this work was done.
He is now with Apple Inc., email: aghoshal@apple.com

This research was supported by EPSRC Programme Grant grant, no.
EP/I031022/1 (Natural Speech Technology), and the European Union under
FP7 project grant agreement 287872 (inEvent).

Convolutional neural networks (CNNs) [18], which restrict
the network architecture using local connectivity and weight
sharing, have been applied successfully to document recog-
nition [19]. When the weight sharing is confined to the time
dimension, the network is called a time-delay neural network
and has been applied to speech recognition [20]–[22]. CNNs
have been used for speech detection [23], directly modelling
the raw speech signal [24], and for acoustic modelling in
speech recognition in which convolution and pooling are
performed in the frequency domain [25]–[27]. Compared to
DNN-based acoustic models, CNNs have been found to reduce
the WER on broadcast news transcription by an average of
10% relative [26], [27].

Here we investigate weight sharing and pooling techniques
for CNNs in the context of multi-channel DSR, in particular
cross-channel pooling across hidden representations that corre-
spond to multiple microphones. We evaluate these approaches
through experiments on the AMI meeting corpus [28].

II. CNN ACOUSTIC MODELS

Context-dependent DNN–HMM systems use DNNs to clas-
sify the input acoustics into classes corresponding to the HMM
tied states. After training, the output of the DNN provides an
estimate of the posterior probability P (s | ot) of each HMM
state s given the acoustic observations ot at time t, which
may be used to obtain the (scaled) log-likelihood of state s
given observation ot: log p(ot | s) / log P (s | ot)� log P (s)
[6], [8], [29], where P (s) is the prior probability of state s
calculated from the training data.

A. Convolutional and pooling layers

The structure of feed-forward neural networks may be
enriched through the use of convolutional layers [19] which
allows local feature receptors to be learned and reused across
the whole input space. A max-pooling operator [30] can be
applied to downsample the convolutional output bands, thus
reducing variability in the hidden activations.

Consider a neural network in which the acoustic feature vec-
tor V consists of filter-bank outputs within an acoustic context
window. V = [v1,v2, . . . ,vb, . . . ,vB ] 2 RB⇥Z is divided
into B frequency bands with the b-th band vb 2 RZ compris-
ing all the Z relevant coefficients (statics, �, �

2, . . .) across
all frames of the context window. The k-th hidden convolution
band hk = [h1,k, . . . , hj,k, . . . , hJ,k] 2 RJ is then composed
of a linear convolution of J weight vectors (filters) with F
consecutive input bands uk = [v(k�1)L+1, . . . ,v(k�1)L+F ] 2
RF⇥Z , where L 2 {1, . . . , F} is the filter shift. Fig 1 gives
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Fig. 1. Frequency domain max-pooling multi-channel CNN layer (left), and
a similar layer with cross-channel max-pooling (right).

an example of such a convolution with a filter size and shift
of F = 3 and L = 1 respectively. This may be extended
to S acoustic channels V

1...VS (each corresponding to a
microphone), in which the hidden activation hj,k can be
computed by summing over the channels:

hj,k = �

 
bj,k +

SX

s=1

w

s
j ⇤ u

s
k

!
, (1)

where �(·) is a sigmoid nonlinearity, ⇤ denotes linear valid
convolution1, w

s
j 2 RF⇥Z is a weight vector of the j-th filter

acting on the local input u

s
k of the s-th input channel, and

bj,k is an additive bias for the j-th filter and k-th convolutional
band. Since the channels contain similar information (acoustic
features shifted in time) we conjecture that the filter weights
may be shared across different channels. Nevertheless, the for-
mulation and implementation allow for different filter weights
in each channel. Similarly, it is possible for each convolutional
band to have a separate learnable bias parameter instead of the
biases only being shared across bands [25], [26].

The complete set of convolutional layer activations h =

[h1, . . . ,hK ] 2 RK⇥J is composed of K = (B � F )/L + 1

convolutional bands obtained by applying the (shared) set of
J filters across the whole (multi-channel) input space V (as
depicted in Fig 1). In this work the weights are tied across
the input space (i.e. each uk is convolved with the same
filters); alternatively the weights may be partially shared, tying
only those weights spanning neighbouring frequency bands
[25]. Although limited weight sharing was reported to bring
improvements for phone classification [25] and small LVSR
tasks [32], a recent study on larger tasks [27] suggests that full
weight sharing with a sufficient number of filters can work
equally well, while being easier to implement.

A convolutional layer is usually followed by a pooling layer
which downsamples the activations h. The max-pooling oper-
ator [30] passes forward the maximum value within a group
of R activations. The m-th max-pooled band is composed of
J related filters pm = [p1,m, . . . , pj,m, . . . , pJ,m] 2 RJ :

pj,m =

R
max

r=1

�
hj,(m�1)N+r

�
, (2)

1The convolution of two vectors of size X and Y may result either in the
vector of size X + Y � 1 for a full convolution with zero-padding of non-
overlapping regions, or the vector of size X � Y + 1 for a valid convolution
where only the points which overlap completely are considered [31].

where N 2 {1, . . . , R} is a pooling shift allowing for overlap
between pooling regions when N < R (in Fig 1, R = N = 3).
The pooling layer decreases the output dimensionality from K
convolutional bands to M = (K � R)/N + 1 pooled bands
and the resulting layer is p = [p1, ...,pM ] 2 RM⇥J .

B. Channel-wise convolution

Multi-channel convolution (1) builds feature maps similarly
to the LeNet-5 model [19] where each convolutional band is
composed of filter activations spanning all input channels. We
also constructed feature maps using max-pooling across chan-
nels, in which the activations hs

j,k are generated in channel-
wise fashion and then max-pooled (4) to form a single cross-
channel convolutional band ck = [c1,k, . . . , cj,k, . . . , cJ,k] 2
RJ (Fig 1 (right)):

hs
j,k = � (bj,k + wj ⇤ u

s
k) (3)

cj,k =

S
max

s=1

�
hs

j,k

�
. (4)

Note that here the filter weights wj need to be tied across
the channels such that the cross-channel max-pooling (4)
operates on activations for the same feature receptor. The
resulting cross-channel activations c = [c1, . . . , cK ] 2 RK⇥J

can be further max pooled along frequency using (2). Channel-
wise convolution may also be viewed as a special case of 2-
dimensional convolution, where the effective pooling region is
determined in frequency but varies in time depending on the
actual time delays between the microphones.

C. Fully-connected layers

The complete acoustic model is composed of one or more
CNN layers, followed by a number of fully-connected layers,
with a softmax output layer. With a single CNN layer, the
computation performed by the network is as follows:

h

l
= �(W

l
h

l�1
+ b

l
), for 2  l < L (5)

a

L
= W

L
h

L�1
+ b

L,

P (s|ot) =

exp{aL
(s)}P

s0 exp{aL
(s0)} , (6)

where h

l is the input to the (l+1)-th layer, with h

1
= p; W

l

is the matrix of connection weights and b

l is the additive bias
vector for the l-th layer; �(·) is a sigmoid nonlinearlity that
operates element-wise on its input vector; a

L is the activation
at the output layer.

III. EXPERIMENTS

We have performed experiments using the AMI meeting
corpus [28] (http://corpus.amiproject.org/) using an identical
training and test configuration to [16]. The AMI corpus com-
prises around 100 hours of meetings recorded in instrumented
meeting rooms at three sites in the UK, the Netherlands, and
Switzerland. Each meeting usually has four participants and
the language is English, albeit with a large proportion of non-
native speakers. Multiple microphones were used, including
individual headset microphones (IHM), lapel microphones,
and one or more microphone arrays. Every recording used a
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primary 8-microphone uniform circular array (10 cm radius),
as well as a secondary array whose geometry varied between
sites. In this work we use the primary array for our MDM
experiments, and the first microphone of the primary array for
our SDM experiments. Our systems are trained and evaluated
using the split recommended in the corpus release: an 80
hour training set, and development and test sets each of
9 hours. We use the segmentation provided with the AMI
corpus annotations (v1.6). For training purposes we consider
all segments (including those with overlapped speech), and
the WERs of the speech recognition outputs are scored by the
asclite tool [33] following the NIST RT recommendations
for scoring simultaneous speech (http://nist.gov/speech/tests/
rt/2009). WERs for non-overlapped segments only may also
be produced by asclite, using the -overlap-limit 1

option. Here, we report results using the development set only:
both development and test sets are relatively large, and we
previously found that the best parameters selected for the
development set were also optimal for the evaluation set [16].

All CNN/DNN models, unless explicitly stated otherwise,
were trained on 40-dimensional log Mel filterbank (FBANK)
features appended with the first and the second time deriva-
tives [17]. Our distant microphone systems within this work
remain unadapted to both speakers and sessions. Ascribing
speakers to segments without diarisation is unrealistic while
a small mismatch between training and evaluation acoustic
environments makes feature-space maximum likelihood linear
regression only moderately effective (less than 1% absolute
reduction in WER) for session adaptation. Our experiments
were performed using the Kaldi speech recognition toolkit
[34], and the pylearn2 machine learning library [35].

Our experiments used a 50,000 word pronunciation dictio-
nary [4]. An in-domain trigram language model (LM) was es-
timated using the AMI training transcripts (801k words). This
was interpolated with two further trigram LMs – one estimated
from the Switchboard training transcripts (3M words), and the
other from the Fisher English transcripts (22M words) [36].
The LMs are estimated using modified Kneser-Ney smoothing
[37]. The LM interpolation weights were as follows: AMI
transcripts (0.73); Switchboard (0.05); Fisher (0.22). The fi-
nal interpolated LM had 1.6M trigrams and 1.5M bigrams,
resulting in a perplexity of 78 on the development set.

IV. RESULTS

We have tested the CNNs with both SDM and MDM inputs.
In each case we compare the CNN to two baseline systems:
(1) a Gaussian mixture model (GMM) system, discriminatively
trained using boosted maximum mutual information (BMMI)
[38], with mel-frequency cepstral coefficient (MFCC) features
post-processed with linear discriminative analysis (LDA) and
decorrelated using a semi-tied covariance (STC) transform
[39]; and (2) a deep neural network (DNN) with 6 hidden
layers, with 2048 units in each layer [16] trained using the
same FBANK features as used for for the CNNs. We used
restricted Boltzmann machine (RBM) pretraining [40] for the
baseline DNN systems, but not for the CNN systems. The
CNN results are reported for the networks composed with

TABLE I
WORD ERROR RATES (%) ON AMI DEVELOPMENT SET – SDM.

System with overlap no overlap
BMMI GMM-HMM (LDA+STC) 63.2 55.8
DNN +RBM (FBANK) 53.1 42.4
CNN (R = 3) 53.3 42.8
CNN (R = 2) 51.3 40.4
CNN (R = 1) 52.5 40.9

a single CNN layer followed by 5 fully-connected layers.
The CNN hyperparameters are as follows: number of filters
J = 128, filter size F = 9, and filter shift L = 1.

A. Single Distant Microphone

We applied two CNN approaches to the SDM case, in
which acoustics from a single channel only is used. In the first
approach the same bias terms were used for each band [26]
(section II-A), and the results of the single channel CNN can
be found in Table I. The first two rows are the SDM baselines
(reported in [16])2. The following three lines are results for
the CNN using max-pool sizes (PS) of R = N = 1, 2, 3. By
using CNNs we were able to obtain 3.4% relative reduction in
WER with respect to the best DNN model and a 19% relative
reduction in WER compared with a discriminatively trained
GMM-HMM. Note, the total number of parameters of the
CNN models vary here as R = N while J is kept constant
across the experiments. However, the best performing model
had neither the highest nor the lowest number of parameters,
which suggests it is due to the optimal pooling setting.

B. Multiple Distant Microphones

For the MDM case we compared a delay-sum beamformer
with the direct use of multiple microphone channels as input
to the network. For beamforming experiments, we follow
noise cancellation using a Wiener filter with a delay-sum
beamforming on 8 uniformly-spaced array channels using
BeamformIt [41]. The results are summarised in Table II.
The first block of Table II presents the results for the case
in which the models were trained on a beamformed signal
from 8 microphones. The first two rows show the WER for
the baseline GMM and DNN acoustic models as reported in
[16]. The following three rows contain the comparable CNN
structures with different pooling sizes (PS) R = N = 1, 2, 3.
The best model (pool size R = 1, equivalent to no max-
pooling) scored 46.3% WER which is 6.4% relative WER
better than the best DNN network and a relative improvement
in WER of 16% compared with a discriminatively trained
GMM-HMM system.

The second part of Table II shows WERs for the models
directly utilising multi-channel features. The first row is a
baseline DNN variant trained on 4 concatenated channels
[16]. Then we present the CNN models with MDM input
convolution performed as in equation (1) and pooling size
of 2, which was optimal for the SDM experiments. This

2DNN baseline WERs are lower than [16] due to the intial values chosen
for the hyper-parameters.
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TABLE II
WORD ERROR RATES (%) ON AMI DEVELOPMENT SET – MDM.

System with overlap no overlap
MDM with beamforming (8 microphones)
BMMI GMM-HMM 54.8 46.1
DNN +RBM 49.5 37.4
CNN (R = 3) 46.5 34.2
CNN (R = 2) 46.8 34.4
CNN (R = 1) 46.3 34.3
MDM without beamformer
DNN +RBM 4ch concatenated 51.2 40.3
CNN (R = 2) 2ch conventional 50.5 39.5
CNN (R = 2) 4ch conventional 50.4 38.7
CNN (R = 2) 2ch channel-wise 50.0 38.5
CNN (R = 2) 4ch channel-wise 49.4 37.5

TABLE III
WORD ERROR RATES (%) ON AMI DEVELOPMENT SET – IHM

System WER(%)
BMMI GMM-HMM (SAT) 29.4
DNN +RBM (FBANK) 26.6
CNN (R = 1) 25.6

scenario decreases WER by 1.6% relative when compared
to a DNN structure with concatenated channels. Applying
channel-wise convolution with two-way pooling (outlined in
section II-B) brings further gains of 3.5% WER relative.
Furthermore, channel-wise pooling works better for more input
channels: conventional convolution on 4 channels achieves
50.4% WER, practically the same as the 2 channel network,
while channel-wise convolution with 4 channels achieves
49.5% WER, compared to 50.0% for the 2-channel case. These
results indicate that picking the best information (selecting
the feature receptors with maximum activations) within the
channels is crucial when doing model-based combination of
multiple microphones.

C. Individual Headset Microphones

We observe similar relative WER improvements between
DNN and CNN for close talking speech experiments (Table
III) as were observed for the DSR experiments (Tables I
and II). The CNN achieves 3.6% WER reduction relative to
the DNN model. Both DNN and CNN systems outperform
a BMMI-GMM system trained in a speaker adaptive (SAT)
fashion by 9.4% and 12.9% relative WER respectively. We
did not see any improvements by increasing pooling size. [26]
has previously suggested that pooling may be task dependent.

D. Different weight-sharing techniques

When using multiple distant microphones directly as input
to a CNN, we posit that the same filters should be used across
the different channels even when cross-channel pooling is
not used. Each channel contains the same information, albeit
shifted in time, hence using the same feature detectors for each
channel is a prudent constraint to learning. The first two rows
of Table IV show the results when a separate set of filters
are learned for each channel. Sharing the filter weights across

TABLE IV
WORD ERROR RATES (%) ON AMI DEVELOPMENT SET.

DIFFERENT WEIGHT SHARING AND POOLING TECHNIQUES.

System with overlap no overlap
MDM without beamformer
CNN (R = 3) 2ch not tied ws

j 51.2 -
CNN (R = 2) 2ch not tied ws

j 51.3 -
SDM
CNN (R = 3) bias bj 53.3 42.8
CNN (R = 3) bias bj,k 52.5 40.9
CNN (R = 2) bias bj,k 51.9 40.5

channels improves the WER by 0.7% absolute (comparing
with the 2 channel CNN, Table II).

The second block of Table IV shows the effect of training
a separate bias parameter for each of the K convolutional
bands for the SDM system of Table I. These results are
generated for non-overlapping pools of size 3 and 2. If the
pooling size is too large, we observe that the WER increases.
This increase in WER is mitigated by using a band-specific
bias. We hypothesise that, under noisy conditions, the max-
pooling operator, which may be interpreted as a local hard-
decision heuristic, selects non-optimal band activations, while
the not-tied bias can actually “boost” the meaningful frequency
regions (on average). A band-specific bias does not lead to
further improvements: e.g., when R = 2, the overlapped
speech CNN with tied biases had a WER of 51.3% compared
to 51.9% for the not-tied version.

V. DISCUSSION

We have investigated using CNNs for DSR with single
and multiple microphones. A CNN trained on a single distant
microphone is found to produce a WER approaching these of
a DNN trained using beamforming across 8 microphones. In
experiments with multiple microphones, we compared CNNs
trained on the output of a delay-sum beamformer with those
trained directly on the outputs of multiple microphones. In
the latter configuration, channel-wise convolution followed by
a cross-channel max-pooling was found to perform better than
multi-channel convolution.

A beamformer uses time-delays between microphone pairs
whose computation requires knowledge of the microphone
array geometry, while these convolutional approaches need no
such knowledge. CNNs are able to compensate better for the
confounding factors in distant speech than DNNs. However,
the compensation learned by CNNs is complementary to
that provided by a beamformer. In fact, when using CNNs
with cross-channel pooling, similar WERs were obtained by
changing the order of the channels at test time from the order
in which they were presented at training time, suggesting that
the model is able to pick the most informative channel.

Early work on CNNs for ASR focussed on learning shift-
invariance in time [20], [42], while more recent work [25],
[26] have indicated that shift-invariance in frequency is more
important for ASR. The results presented here suggest that
recognition of distant multichannel speech is a scenario where
shift-invariance in time between channels is also important,
thus benefitting from pooling in both time and frequency.



5

REFERENCES

[1] M Wölfel and J McDonough, Distant Speech Recognition, Wiley, 2009.
[2] A Stolcke, “Making the most from multiple microphones in meeting

recognition,” in Proc IEEE ICASSP, 2011.
[3] K Kumatani, J McDonough, and B Raj, “Microphone array processing

for distant speech recognition: From close-talking microphones to far-
field sensors,” IEEE Signal Process. Mag., vol. 29, no. 6, pp. 127–140,
2012.

[4] T Hain, L Burget, J Dines, PN Garner, F Grezl, AE Hannani, M Hui-
jbregts, M Karafiat, M Lincoln, and V Wan, “Transcribing meetings with
the AMIDA systems,” IEEE Trans. Audio, Speech, Language Process.,
vol. 20, no. 2, pp. 486–498, 2012.

[5] G Hinton, L Deng, D Yu, GE Dahl, A-R Mohamed, N Jaitly, A Senior,
V Vanhoucke, P Nguyen, TN Sainath, and B Kingsbury, “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” IEEE Signal Process. Mag., vol. 29, no. 6, pp.
82–97, 2012.

[6] H Bourlard and N Morgan, Connectionist Speech Recognition: A Hybrid
Approach, Kluwer Academic Publishers, 1994.

[7] S Renals, N Morgan, H Bourlard, M Cohen, and H Franco, “Connec-
tionist probability estimators in HMM speech recognition,” IEEE Trans.
Speech Audio Process., vol. 2, no. 1, pp. 161–174, 1994.

[8] N Morgan and H Bourlard, “Neural networks for statistical recognition
of continuous speech,” Proceedings of the IEEE, vol. 83, no. 5, pp.
742–772, 1995.

[9] AJ Robinson, GD Cook, DPW Ellis, E Fosler-Lussier, SJ Renals, and
DAG Williams, “Connectionist speech recognition of broadcast news,”
Speech Communication, vol. 37, no. 1–2, pp. 27–45, 2002.

[10] TN Sainath, B Kingsbury, B Ramabhadran, P Fousek, P Novak, and
A Mohamed, “Making deep belief networks effective for large vocab-
ulary continuous speech recognition,” in Proc IEEE ASRU, 2011.

[11] GE Dahl, D Yu, L Deng, and A Acero, “Context-dependent pre-trained
deep neural networks for large-vocabulary speech recognition,” IEEE
Transactions on Audio, Speech & Language Processing, vol. 20, no. 1,
pp. 30–42, 2012.

[12] H Hermansky, DPW Ellis, and S Sharma, “Tandem connectionist feature
extraction for conventional HMM systems,” in Proc IEEE ICASSP,
2000, pp. 1635–1638.

[13] Q Zhu, A Stolcke, BY Chen, and N Morgan, “Using MLP features in
SRI’s conversational speech recognition system,” in Proc. Eurospeech,
2005.
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