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Abstract

Hierarchical structure similar to that associated with
prosody and syntax in language can be identified in
the rhythmic and harmonic progressions that underlie
Western tonal music. Analysing such musical struc-
ture resembles natural language parsing: it requires the
derivation of an underlying interpretation from an un-
structured sequence of highly ambiguous elements—
in the case of music, the notes. The task here is not
merely to decide whether the sequence is grammati-
cal, but rather to decide which among a large number
of analyses it has. An analysis of this sort is a part of
the cognitive processing performed by listeners familiar
with a musical idiom, whether musically trained or not.

Our focus is on the analysis of the structure of ex-
pectations and resolutions created by harmonic progres-
sions. Building on previous work, we define a theory of
tonal harmonic progression, which plays a role analo-
gous to semantics in language. Our parser uses a formal
grammar of jazz chord sequences, of a kind widely used
for natural language processing (NLP), to map music, in
the form of chord sequences used by performers, onto
a representation of the structured relationships between
chords. It uses statistical modelling techniques used for
wide-coverage parsing in NLP to make practical pars-
ing feasible in the face of considerable ambiguity in the
grammar. Using machine learning over a small corpus
of jazz chord sequences annotated with harmonic anal-
yses, we show that grammar-based musical interpreta-
tion using simple statistical parsing models is more ac-
curate than a baseline HMM. The experiment demon-
strates that statistical techniques adapted from NLP can
be profitably applied to the analysis of harmonic struc-
ture.

Keywords: harmony, expectation, grammars, ma-
chine learning, cognition.

1 Introduction

Hierarchical structure can be identified in rhythmic pat-
terns of musical melodies and the harmonic progres-
sions that underlie them (Winograd, 1968; Lindblom
and Sundberg, 1969; Keiler, 1981; Lerdahl and Jack-
endoff, 1983; Steedman, 1984; Johnson-Laird, 1991;
Pachet, 2000; Chemillier, 2004; Rohrmeier, 2011; Katz
and Pesetsky, 2011). Similar structure is found in the
prosody and syntax of language, commonly analysed
using tree diagrams that divide a passage of speech or
text recursively into its constituents, down to the level
of individual words. It is reasonable to expect that the
techniques used to process natural language might ap-
ply to the interpretation of music.

In natural language processing (NLP), analysing the
syntactic structure of a sentence is usually a prerequi-
site to semantic interpretation. The main obstacle to
such analysis is the high degree of ambiguity in even
moderately long sentences and the search problem it en-
genders. In music, a similar sort of structural analysis,
exhibiting a similar degree of ambiguity, is fundamental
to interpretation by a listener (Lerdahl and Jackendoff,
1983; Steedman, 1984; Temperley, 2001). Hierarchical
structures have been proposed to characterize the cogni-
tive structures that underlie a listener’s processing and
recollection of a musical signal (Keiler, 1981; Steed-
man, 1984; Rohrmeier and Cross, 2009) and an analy-
sis of these structures underlies the raising of harmonic
expectation in a listener (Huron, 2006). The same anal-
ysis is involved in practical computational tasks such as
key identification and score transcription. These tasks
in general depend on both a harmonic (tonal) analysis
and a rhythmic (metrical) analysis.

Our focus in the present paper is on analysis of
the structures of harmonic expectation and resolution
that underlie the cognition of harmonic progressions
(Huron, 2006). We use the three-dimensional tonal har-
monic space first described by Euler (1739) and others,
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and developed in computational terms, including the
distance metric we use, by Longuet-Higgins (1962a,b)
and Longuet-Higgins and Steedman (1971). This rep-
resentation provides the basis for a theory of tonal har-
monic progression—that is, a framework in which to
analyse the relationships between the chords underly-
ing a passage of music.

The input to the analysis is a sequence of chord sym-
bols of the sort used by jazz performers on lead sheets.
An assumption of our approach, in common with many
others, is that this serves as a proxy for some intermedi-
ate level of representation which features in the process
of harmonic analysis of a performance undertaken un-
consciously by a listener. We treat this analysis of the
tonal relations between chords analogously to the logi-
cal semantics of a natural language sentence. By defin-
ing a representation of relations in the tonal space in a
form similar to that used to represent natural language
semantics, we are able to apply techniques from NLP
directly to the problem of harmonic analysis.

We define by hand a small formal grammar of jazz
chord sequences using a formalism based closely on
one widely used for NLP and developed from the
version developed for musical purposes by Steedman
(1996). We then use statistically-based modelling tech-
niques commonly applied to the task of parsing nat-
ural language sentences with such grammars. The
parser maps music, in the form of chord sequences,
onto its harmonic interpretation expressed as a trajec-
tory through the tonal space. To obtain the parsing
model, we use supervised learning over a small corpus
of chord sequences of jazz standards taken from lead
sheets used by performers. Each is annotated by hand
with harmonic analyses that we treat for the purposes of
the parsing task as a gold standard.

It is important to be clear that the purpose of the
handbuilt grammar is not to capture all and only the
sequences in this corpus. It is rather to assign possi-
ble harmonic analyses to a much larger, essentially in-
finite, set of sequences in the same idiom. Although
this grammar is small enough to write on a single page
(figure 14), it is extremely ambiguous. Like natural
language grammars, it allows large numbers of anal-
yses, most of which are semantically ridiculous, for
even quite simple examples. The purpose of the pars-
ing model is to assign probabilities to these alternatives
expressing their likelihood estimated on the basis of the
training sample data, in order to choose the most likely,
and even to exclude the least likely entirely, in order to
reduce the search space for the correct one.

As in NLP, the parser is evaluated by the degree to
which the analyses it chooses for held out unseen sen-
tences correspond to those assigned by human annota-
tors. In this connection, it is important to realize that
it is more important that the training data be consistent
than that it be correct in every detail. If it is consistent,
then the parser will be able to recover the interpretations
implicit in the annotation, and any other comparably
consistent annotation it is trained on. However, if the
annotation is not internally consistent, then it cannot be
modelled.

It is for this reason that certain annotations in the
standard parsing corpus for English, the Penn Treebank
(Marcus et al. 1993), are tolerated despite being techni-
cally incorrect linguistically—for example, the distinc-
tion between N-modifiers and NP-modifiers was judged
not to be reliably drawn by the annotators, so all nom-
inal modifiers are annotated, often incorrectly, as NP-
modifiers. Similarly, one can take linguistic issue over
the choice of a “small clause” analysis of object control
for the treebank—but no-one really cares, because the
same modelling technique would be able to recover the
alternative analysis, and the two are interconvertible.

Musical treebanking is the same. Opinions may dif-
fer as to whether in a chord sequence C F C, the F is
harmonically dependent on the first C, the last C, or
both. So long as the notation is both coherent and con-
sistent on such points, it does not much matter which
we choose.

Of course, both for NLP and the musical equivalent,
we ultimately want an extrinsic evaluation, via objec-
tive success on a task in the real world, such as question
answering from text or successful improvization. How-
ever, intrinsic evaluation on ability to recover the nec-
essary information is a standard first step on the way,
as a sanity check and as a benchmark for alternative ap-
proaches to prove themselves against. It is an evaluation
of this sort that we present here.

The full corpus can be accessed, and its coherence
and consistency be assessed, at http://jazzparser.
granroth-wilding.co.uk/. All musical examples
used in the paper can also be heard at that URL.

2 The Relationship of Music and Lan-
guage

The temptation to believe music and language to be
closely related cognitive systems seems irresistible
(Sundberg et al., 1991; Rebuschat et al., 2011). Gram-
marians have noticed strong parallels between language
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Figure 1: “Shave and a haircut, six bits”

and music at the level of the sound-systems of phonol-
ogy and prosody (Daniélou, 1968, cf. Lerdahl and Jack-
endoff, 1983:314-330, Fabb and Halle, 2012). At times,
this insight has led to the application of theoretical de-
vices from language to music (Meyer, 1956; Longuet-
Higgins, 1962a,b; Lindblom and Sundberg, 1969; Smo-
liar, 1976; Lerdahl and Jackendoff, 1983; Baroni et al.,
1983, 1984; Temperley, 2007). It has been much less
clear how to extend this apparently productive general-
ization to higher levels of structure and interpretation.

For example, what is the “meaning” of the melodic
passage in figure 1 (first used in this context by
Longuet-Higgins, 1976)? It is rhythmically and melod-
ically well-formed and, in its little way, entirely satis-
fying as a piece of Western tonal music, in a sense that
the first six notes alone would not be. In that sense,
we may be tempted to assign a rhythmic and harmonic
structure to it, say along the lines suggested by Lerdahl
and Jackendoff (1983). The interest of such structures
for present purposes lies in the extent to which we can
assign them an interpretation.

The notion of musical meaning has very frequently
been linked to the idea of the emotions (Cooke, 1959).
The most empirically testable claims of this kind have
defined emotion in terms of the satisfaction or frustra-
tion of musical expectations of various kinds (Meyer,
1956; Cooper and Meyer, 1963; Narmour, 1977; Mar-
gulis, 2005; Huron, 2006; Pearce and Wiggins, 2006;
Lehne et al., 2013).

Most listeners will intuitively divide the tune in fig-
ure 1 into two parts, corresponding to the two bars,
and sense that the first bar creates an expectation which
the second bar satisfies. More specifically, the first bar
moves from the tonic or key note C to the fifth or dom-
inant tonality of G, which creates an expectation of a
cadential return to the tonic.

The above description can be verified by making the
claimed tonal progressions explicit with some chords:
C major for the first half bar, establishing the tonic; G
major (with the “dominant” seventh note—G7) in the
second half-bar; then a further chord of G7 followed by
C major in the second bar. In the light of this observa-
tion, we can claim that an important part of the meaning

of the piece as a whole is a statement of the tonic, fol-
lowed by a “cadential” progression from its dominant
back to that tonic.

The notion of musical structure and meaning that we
deal with in this paper is confined to such relatively lo-
cal cadential relations between chords and sequences of
chords. We make no claim that these relations extend to
higher levels of structure, such as that of sonata form,
as sometimes claimed by Schenker (1906) and follow-
ers. We suspect that a quite different kind of of rule
may apply at these levels, such as the periodic patterns
of Simon and Sumner (1968). In this respect, our the-
ory is consistent with the observations of Tillmann and
Bigand (2004) concerning the psychological distinction
between “local” and “global” structure and interpreta-
tion in music.

3 Musical Syntax

The syntax of Western tonal harmony and that of natural
language can both be analysed using tree structures, and
both have been claimed to feature formally unbounded
embedding of structural elements (Winograd, 1968;
Keiler, 1981; Lerdahl and Jackendoff, 1983; Steedman,
1984; Rohrmeier, 2011). In harmony, these structures
arise as a result of relationships of harmonic expecta-
tion and resolution between chords (Huron, 2006). This
phenomenon is sometimes referred to as harmonic ten-
sion, but should not be confused with other notions of
tension in music. For example, Lerdahl (2001) appeals
to a quite different type of musical tension, which in-
cludes notions of harmonic expectation, but has more
to do with a perceived sensation of tension in a listener,
also due to metre, dissonance (see Johnson-Laird et al.,
2012) and other musical factors.

In terms of the formal expressive power of their syn-
tactic grammars, the works above contrast with ap-
proaches to harmonic analysis based on Rameau (1722)
and Riemann (1893), though in other respects they are
closely related. This paper describes a syntactic for-
malism based on that of Steedman (1996) for wide-
coverage analysis of Western tonal harmony, focusing
on the analysis of jazz standards, and the application
of statistical parsing techniques to the practical prob-
lem of automatic computational analysis. Other ap-
proaches to computational analysis have been explored
using related formalisms (Pachet, 2000; Chew, 2000;
Hamanaka et al., 2006; de Haas et al., 2009; Marsden,
2010; Choi, 2011).
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3.1 Cadences

The key component of harmonic structure is the ca-
dence of the kind implicit in our analysis of figure 1,
built from expectation-resolution patterns. Large struc-
tures can be analysed as extended cadences, made up of
successive expectation-resolution patterns chained to-
gether1. These patterns can be formalized in terms of
harmonic function (Riemann, 1893).

Cadences come in two varieties. The authentic ca-
dence consists of a chord rooted a perfect fifth above
its expected resolution. This type of tension chord is re-
ferred to as a dominant chord, and is the kind implicit in
figure 1. The plagal cadence consists of a tension chord
rooted a perfect fourth above its resolution. This type of
tension chord is referred to as a subdominant chord. In
both cases, the resolution chord is classified as a tonic
chord. This classification of a particular occurrence of
a chord identifies its function on that occasion of use,
and partly establishes its place in the harmonic structure
in relation to the surrounding chords. The same chord
type, such as a G major triad, on different occasions of
use in the same piece may function variously as a dom-
inant or subdominant tension chord or as a tonic reso-
lution (or both), or as a substitute for such dominants,
subdominants or tonics (for example, as a Neapolitan
sixth).

An extended cadence occurs when a tension chord re-
solves by the appropriate interval to a chord that is itself
cadential, creating a further tension and subsequently
resolving. An example is the D7 chord in figure 2, an
extended dominant. Such a definition is recursive, and
extended cadences can accordingly be indefinitely ex-
tended. This kind of extension is most common with the
authentic cadence. We include in our use of the terms
dominant and subdominant this recursive, or extended,
function. Keiler (1981) treats the cadential relation in a
similar recursive fashion.

A cadence Dm7 G7 C has two possible interpreta-
tions: it may contain a recursive dominant relation or
be an alternative transcription of the common classical
form of a perfect cadence F6 G7 C. However, when the
recursion reaches back further, preceded for example by
A7, only the former interpretation explains the relation
between the seemingly tonally distant tension chord and
its eventual resolution (here the cadence from A7 even-

1Throughout this paper, the term cadence will be used precisely
to refer to connected structures of expectation-resolution patterns and
not to refer to resolutions at points of particular significance in the
global structure of a piece.

t

C

d

A7

d

D7

d

G7

t

C

Figure 2: An extended authentic cadence, a typical ex-
ample of (tail) recursion in music. The A7 acts as a
dominant resolving to the D7, which in turn resolves by
the same relation to G7, which then resolves to the tonic
C.

tually resolving to C), even in the case where a Dm7

chord would otherwise lead to an ambiguous interpre-
tation.

A cadence might not reach its eventual resolution in
a tonic chord immediately. An unresolved dominant ca-
dence, such as D7 G7, creating an expectation of tonic
C, may be interrupted by a further cadence, say A7 D7

G7, creating the same expectation, whereupon both ca-
dential expectations will be resolved by the same tonic
C, as in example (1).

(1) C (D7 G7) (A7 D7 G7) C

We refer to this operation as coordination by virtue of
its similarity to right-node raising coordination in sen-
tences like Keats bought and will eat beets (see sec-
tion 5.1), in which beets satisfies the expectations of
both bought and eat.

Coordinated cadences may themselves be embedded
in a coordinated cadence, as in example (2) from Call
Me Irresponsible, by Jimmy Van Heusen, with coordi-
nation of constituents marked by &.

(2) ((D]◦7 Em7 Am7) & ((E7 & (Bφ 7 E7[9)) A7))

The longer cadence in which example (2) appears in-
cludes still further levels of embedding and is shown
as a tree structure in figure 3. This embedding process
is again mirrored in natural language coordination like
Keats ((may or may not) cook) but (certainly eats) beets
(see section 5.1).

Chords that function as dominants are often partially,
though ambiguously, distinguished by the addition of
notes other than those of the basic triad. In particular,
the “dominant seventh”, realized by the addition of the
note a (major) tone below the chord’s root, enhances
the cadential function of a dominant chord and height-
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&

C]◦7 Dm7

&

D]◦7 Em7 Am7

&

E7 Bφ 7 E7[9

A7

Dm7

G7

Figure 3: Tree representing the embedded structure of
unfinished cadences in Call Me Irresponsible. The ca-
dence shown here is in fact further embedded: the even-
tual resolution to the tonic C is not reached until after
another cadence structure, similar to this one.

ens the expectation of the corresponding tonic. How-
ever, this note may be omitted from a dominant chord,
and conversely the same keyboard note may be used in
chords that are not functioning as a dominant, such as a
Dm7 functioning as a substitute for the subdominant of
tonic C.

Although the theory of harmonic structure presented
here is concerned with modelling the cognitive struc-
tures underlying harmonic expectation, it is worth not-
ing that the same notion of recursive structure is re-
quired of any theory that accounts for the A7 chord of
example (1) by reference to a local tonality of D whilst
maintaining the key of the passage as C (that is, without
modulation).

3.2 The Jazz Sublanguage

The typical size and complexity of the cadence struc-
tures discussed above varies with musical period and
genre. Tonal jazz standards or themes are of particular
interest for this form of analysis for several reasons.

First, they tend to feature large extended cadences,
often with complex embedding. Second, they contain
many well-known contrafacts, harmonic variations of
a familiar piece, created using a well-established sys-
tem of harmonic substitutions, embellishments and sim-
plifications. Finally, jazz standards are rarely tran-
scribed as full scores, but are more analytically no-
tated as a melody with accompanying chord sequence.

Analysing the harmonic structures underlying chord se-
quences, rather than streams of notes, avoids some dif-
ficult practical issues such as voice leading and perfor-
mance styles, but still permits discovery of the kind of
higher-level structures we are concerned with.

Our study focuses on the analysis of harmonic struc-
ture in chord sequences of jazz standards. This is not
to say that the approach is not applicable beyond this
domain, nor that it is confined to analysing chord se-
quences. The lexicon of the grammar outlined below,
however, is somewhat specific to the genre. The gram-
mar of Rohrmeier (2011), although using a different
notation to that proposed here, captures a very similar
form of structural analysis (pers. comm.), but aims for
broader coverage and has been shown to be applicable
to the annotation of a wide range of genres.

To help with understanding many of the examples be-
low, it is worth noting that jazz chord progressions use a
rich vocabulary of chord types: sixth chords (C6), major
seventh chords (CM7), half-diminished chords (F]φ 7),
and so on, as well as simple major and minor chords.
In general, the harmonic function of a chord is not fully
determined by its type, but certain types strongly sug-
gest a function. For example, a C7 is likely, though
not certain, to have a dominant function, whilst a C6 is
likely to have a tonic function. The examples below use
such suggestive chord types to make more obvious the
functional interpretation that is intended. However, the
statistical modelling techniques we describe are fully
general, and cope with the full ambiguity of interpreta-
tion characteristic of real performance.

4 A Model of Tonality

In analysing the roles of pitch in music, it is impor-
tant to distinguish between consonance, the sweetness
or harshness of the sound that results from playing two
or more notes at the same time, and harmonic interpre-
tation, relevant to the phenomenon that we have already
alluded to as tension (or the creation of expectation) and
resolution (or its satisfaction). Both of these relations
over notes are determined by small whole-number ra-
tios, and are easily confounded. However, they arise in
quite different ways, the first from the perceptual appa-
ratus, the second from cognition.

As is common in music theory, we treat these as
two theoretically distinct musical dimensions. A com-
plete model of musical cognition would require a the-
ory of both and of their interaction (as discussed, for
example, by Krumhansl, 1990 and Johnson-Laird et al.,
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2012). The present work models the harmonic dimen-
sion alone.

4.1 Consonance

The modern understanding of consonance originates
with Helmholtz (1862), who explained the phenomenon
in terms of the coincidence and proximity of the sec-
ondary overtones and difference tones that arise when
simultaneously-sounded notes excite real non-linear
physical resonators, including the human ear itself.
These tones may include all integer multiples (and, in
some cases, dividends) and the fundamental.

4.2 Harmony

The tonal harmonic system also derives from combina-
tions of small integer pitch ratios. However, the har-
monic relation is based solely on the first three prime
ratios in the harmonic series: ratios of 2, 3 and 5 (com-
monly known as the octave, perfect fifth and major
third). The tuning based on these intervals is known
as just intonation.

4.2.1 Just Intonation In just intonation, an interval
can be represented as a frequency ratio defined as the
product 2x · 3y · 5z, where x,y,z are positive or nega-
tive integers. It has been observed since Euler (1739)
that the harmonic relation can therefore be visualized as
an infinitely extending discrete three-dimensional space
with these three prime factors as generators. Since notes
separated by octaves are essentially equivalent for tonal
purposes, it is convenient to project the space onto the
3,5 plane. We present this theory as formally developed
by Longuet-Higgins (1962a,b) in figure 4.

Longuet-Higgins and Steedman (1971) observed that
all musical scales are convex sets of positions, and de-
fined a Manhattan taxi-ride distance metric over this
space. According to this metric, it will be observed that
the major and minor triads, such as CEG (shown in fig-
ure 4) and CE[G, when plotted in this space are two of
the closest possible clusters of three notes. The triad
with added major seventh is the single tightest cluster
of four notes. The triads and the major seventh chord
are therefore stable, raising no strong expectations, of
the kind that typically end a piece. Chords like the aug-
mented and diminished chords and the dominant sev-
enth are more spread out. This difference is vital to the
induction of harmonic expectation, and its satisfaction.

The space of justly intoned intervals does not include
ratios involving higher prime factors. Whilst these ra-
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E[
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G[
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F]
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D[

F

A

C]
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A[

C

E

G]

B]

Figure 4: Part of the space of note-names (adapted from
Longuet-Higgins, 1962a,b). Notes are separated by ma-
jor thirds along the horizontal axis and perfect fifths
along the vertical. The space extends infinitely in both
dimensions. The circled points form a C major triad.

tios are important to the explanation of consonance,
they do not play a role in the description of the tonal
harmonic system.

4.2.2 Equal Temperament Over several centuries, it
was gradually realized that the tonal harmonic space
could be approximated, first by slightly mistuning the
fifths to equate all the positions that have the same
names in figure 4, and then by even further distorting
the major thirds, to equate C with B], D[[, etc. In the
system of equal temperament, this is done by spacing
the 12 tones of the diatonic octave evenly, so that all the
semitones are (mis)tuned to the same ratio of 12√2.

Since the eighteenth century most instruments have
been tuned according to equal temperament. It has the
advantage that all keys and modes can be played on
the same instrument without retuning and has permit-
ted the development of musical styles in which pieces
may modulate relatively freely between keys. In terms
of the tonal space, the result is a projection onto a fi-
nite toroidal space of just 12 points, looping in both di-
mensions. Each point is (potentially, infinitely) tonally
ambiguous as to which point in the full justly-intoned
space of figure 4 it denotes.

Equal temperament thus obscures the harmonic re-
lations between notes. However, human listeners can
resolve this tonal ambiguity in context, and invert the
projection onto the torus to recover the interpretation of
the intervals in the full harmonic space. This is possi-
ble because the harmonic intervals that are sufficiently
close in justly intoned frequency to be equated on the
equally tempered torus are sufficiently distant in the full
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space for the musical context to disambiguate them. For
example, if the context defines the tonality as G, then
an equally tempered note that could in isolation be in-
terpreted as any of C, B], D[[, etc. (or the identically
named points to the left or right) must be interpreted as
C, because that is the only harmonic interpretation that
is anywhere close to G.

It is important to realize that ambiguous equally
tempered music is unconsciously interpreted in terms
of the full tonal frequency space of harmonic distinc-
tions, just as a (theoretically, infinitely ambiguous)
two-dimensional photograph is interpreted as a three-
dimensional scene. It is for this reason that equally
tempered B[ is interpreted in tonal music as related
to C by either a dominant seventh (ratio 8

9 ) or a mi-
nor seventh (ratio 8

9 ), but never by an interval related
to the seventh harmonic (ratio 7

8 ). The equally tem-
pered minor/dominant seventh should therefore never
be claimed to approximate a suboctave of the seventh
harmonic, as is often alleged (Jeans, 1937; Bernstein,
1976; Tymoczko, 2006). This is not to deny that vari-
eties of music other than the tonal might take the sev-
enth harmonic as a primitive ratio, although it is doubt-
ful that such a music could support equal temperament
or even a very extensive form of harmony. Experience
of the Bohlen-Pierce scale (Mathews and Pierce, 1989)
appears to prove the point.

It should be noted that the tonal space used here rep-
resents the tonal relations between notes in the tonal
harmonic system and is thus unsuited to a model of con-
sonance and dissonance. As noted above, we maintain
the distinction on theoretical grounds between these two
musical structures and do not modify the space to better
accommodate a notion of proximity due to consonance
or voice leading (cf. Euler, 1739; Riemann, 1914; Ler-
dahl, 2001; Tymoczko, 2011) or perceptual responses,
which may be the result of a combination of these and
other structures (cf. Krumhansl, 1990).

4.3 Domain for Analysis

In our grammar for jazz chord sequences, we take the
full tonal space as the semantic domain of harmonic
analysis. The harmonic interpretation of a piece is the
path through the tonal space traced by the roots of the
chords.

If we establish that there is a dominant-tonic
expectation-resolution relationship between two
chords, we know that the underlying interval between
the roots is a perfect fifth, a single step to the left in
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Figure 5: A tonal space path for the extended cadence:
C A7 D7 G7 C.

the space. On the other hand, establishing that a pair
of chords stand in a subdominant-tonic relationship
dictates a perfect fourth between them, a rightward
step. Where no expectation-resolution relationship
exists, as between a tonic and the first chord of a
cadence that follows it, we assume a movement to the
most closely tonally related instance of the chord root.

Figure 5 shows an example of a tonal space path for
an extended cadence. The perfect fifth relationship be-
tween the dominants and their resolutions is reflected in
the path. The first step on the path is not an expectation-
resolution relationship, so proceeds to the closest in-
stance of the A (according to the Manhattan distance
metric of Longuet-Higgins and Steedman, 1971). By
identifying the syntactic structure of the harmony, that
is the recursive structure of expectation-resolution rela-
tionships between pairs of chords, we produce the path
through the space that this dictates for the chord roots
of the progression, including those that have been sub-
stituted for.

5 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) is a grammar
formalism used for parsing natural language sentences
to produce logical representations of their semantics. A
short introduction to CCG is given in the next section.
For a full introduction to its application to natural lan-
guage, see Steedman (2000).

5.1 CCG for Language

A CCG grammar includes a lexicon, which associates
words with one or more syntactic categories determin-
ing structures they may appear in. During parsing, cate-
gories assigned to consecutive chords are projected onto

7



Keats eats beets

NP (S\NP)/NP NP
>

S\NP
<

S

Figure 6: A derivation showing the function application
rule in use.

Keats eats beets

NP : keats′ (S\NP)/NP : eats′ NP : beets′
>

S\NP : eats′(beets′)
<

S : eats′(keats′,beets′)

Figure 7: An example of a derivation with a logical
form associated with each category.

constructions and sentence interpretations using a small
set of combinatory rules, constrained by the form, or
“type”, of the categories.

The lexical categories are defined in terms of a small
set of atomic syntactic types, including, for instance, S
(sentence) and NP (noun phrase). A category’s combi-
natory potential is defined in terms of the atomic types
using the / and \ operators. Thus, a category X/Y de-
notes a function category that can combine with an ar-
gument category Y to its right to produce a result of cat-
egory X . Likewise X\Y indicates that a Y is expected to
the left.

Categories can combine by grammatical rules of
function application, defined as follows. The symbols
> and < are used to identify the rules in derivations,
such as figure 6.

a. X/Y Y ⇒ X (>)
b. Y X\Y ⇒ X (<)

Figure 6 shows the use of the function application
rule in a simple syntactic derivation. (Note that the term
function is not related to the concept of harmonic func-
tion.)

In order to produce an interpretation for the full sen-
tence from the syntactic derivation, each lexical item
also has a semantics, or logical form, and each rule de-
fines how the logical forms of its arguments are com-
bined. The function application rules in their full form
are:

a. X/Y : f Y : x ⇒ X : f (x) (>)
b. Y : x X\Y : f ⇒ X : f (x) (<)

Keats will eat beets

NP (S\NP)/VP VP/NP NP
: keats′ : will′ : eat′ : beets′

>B
(S\NP)/NP

: λx.will′(eat′(x))
>

S\NP
: will′(eat′(beets))

<
S : will′(eat′(beets))(keats′)

Figure 8: A derivation demonstrating the use of the
function composition rule

Keats bought and will eat beets

NP (S\NP)/NP CNJ (S\NP)/VP VP/NP NP
>B

(S\NP)/NP
&

(S\NP)/NP
>

S\NP
<

S

Figure 9: A derivation using a coordination rule to com-
bine two constituents of the same syntactic type, sepa-
rated by a conjunction (and).

Figure 7 shows an example of a derivation with
semantics. We use an apostrophe to distinguish the
language-independent meaning of a word from its writ-
ten surface form. Thus, beets’ refers in logical expres-
sions to the objects denoted, depending on the language,
by the words beets, betteraves, betor, etc.

Several other rules allow grammars to capture lin-
guistic phenomena such as coordination and relativiza-
tion. The only one relevant to the present discussion is
function composition.

Function composition rules permit complex cate-
gories to be combined before their argument is avail-
able. The result may then be applied (using function ap-
plication) to the argument when it is eventually encoun-
tered. The final outcome is the same as if only function
application had been used, but composition allows this
outcome to be produced by a different order of combi-
nations. This is important for, among other things, in-
cremental analysis of a sentence. Figure 8 demonstrates
the use of the function composition rule.
Function Composition:
a. X/Y : f Y/Z : g ⇒ X/Z : λx. f (g(x)) (> B)
b. X\Y : f Z\X : g ⇒ Z/Y : λx.g( f (x)) (< B)

It should be noted that, although in this particu-
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lar derivation the analysis of the tensed verb phrase is
left-branching, the logical form that it builds is right
branching and identical to that in the alternative func-
tion application-only derivation, as its semantics re-
quires. (The latter is suggested as an exercise.)

The full range of reasons for treating natural lan-
guage grammar in this way need not detain us here,
but one is to do with the fact that constructions like co-
ordination involving long-range semantic dependencies
treat incomplete fragments like will eat as typable con-
stituents that can be combined with others of the same
type in derivations. Figure 9 shows the use of the co-
ordination rule to combine bought and will eat into a
single constituent that can combine with beets (the se-
mantics is omitted, but can be inferred from figure 8).

The rest of the paper shows that musical analysis in-
volves similar long-range dependencies, and calls for
the same approach.

5.2 CCG for Harmony

For parsing the syntax of harmony, we use a formal-
ism similar to the standard CCG for English. Following
Steedman (1996), we use harmonic syntactic categories
that define cadential expectation, like GD/CT , identify-
ing chords like G7 as combining with a C chord acting
as a tonic to its right. In both cases, categories X/Y can
be seen as defining “expectation” of Y.

Lexical categories are assigned to chords. Pairs of
adjacent categories are then combined using a small set
of rules to build up an interpretation of the whole pas-
sage. We use some of the standard combinatory rules
given in section 5.1 and some rules specific to harmonic
syntax. Each category, lexical or derived, is paired with
a semantics, or logical form, representing an interpre-
tation of the chord roots in the tonal space—the har-
monic analysis itself. We describe this in detail in the
appendix.

In the examples here, we shall omit the logical forms
of categories, but it is crucial to bear in mind that each
intermediate category produced during a derivation cor-
responds to a partial harmonic interpretation of the
chords and that this is available as the category’s log-
ical form. This distinction between the analysis struc-
ture and the constituent structures required to build it
compositionally from the surface form has been made
for natural language semantics (Steedman, 2000) and
was first proposed in the present form for harmonic
analysis by Steedman (1996). Closely related for-
malisms for grammatical harmonic analysis have been

C G7 C6

CT GD/CT CT

>
GD–CT

Figure 10: Partial CCG derivation of a simple cadence:
a dominant-tonic resolution. The derivation uses the
dominant and tonic lexical categories, combined using
the function application rule (see section 6.2). The sym-
bol > identifies the rule used.

C A7 D7 G7 C6

CT AD/DD|T DD/GD|T GD/CD|T CT

>B

AD/GD|T
>B

AD/CD|T
>

AD–CT

dev
CT

Figure 11: CCG derivation of an extended cadence, us-
ing the tonic category and the (extended) dominant cate-
gory, combined by using the rules of section 6.2. Dom-
inant categories are combined first to interpret the in-
complete cadence, which is then combined with its res-
olution. The symbols >, >B and dev identify the rules
used.

proposed without making this distinction formally ex-
plicit (Keiler, 1981; Rohrmeier, 2011).

An atomic category’s syntactic type carries informa-
tion about the tonality at the start and end of the passage
it spans. This is the only harmonic information relevant
to constraining how it can combine with adjacent cat-
egories. Each end has a harmonic root, in the form of
an equally tempered pitch class, and a chord function,
one of T (tonic), D (dominant) and S (subdominant).
For brevity, where the start and end parts of an atomic
category are the same, we write just one: a category
CT –CT is abbreviated to CT . Such a category is used
to represent a tonic chord.

A passage beginning on a G chord functioning as
dominant, followed by a tonic C receives the syntactic
type GD–CT . The two-step cadence D7 G7 C would
receive the type DD–CT . In the latter example, the
type has been derived from interpretations of the C as
a tonic chord, the D7 a secondary dominant and the
G7 a dominant, combining these partial interpretations
and their associated harmonic analyses. Typically a se-
quence of chords specified by equally tempered notes
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C D7 G7 A7 D7 G7 C6

CT CT

DD/CD|T AD/CD|T
&

DD/CD|T
>

DD–CT

dev
CT

Figure 12: CCG derivation using the coordination rule
to combine interpretations of unresolved cadences.

will support many such interpretations, varying in plau-
sibility.

A forward-facing slash category X/Y gives the start-
ing tonality Y expected for the category to its right (its
argument) and the starting tonality X that will be used
for the result of applying it to such an argument. Such a
category is used to reflect the interpretation of a domi-
nant chord, like those in figure 10. A forward slash cat-
egory can be combined with its immediately following
resolution to a tonic chord using the function applica-
tion combinatorial rule, as shown in figure 10.

Extended cadences, using a recursive, or extended,
dominant function, such as the one in figure 11, are
handled by allowing the dominant category to combine
with another dominant, using the function composition
rule (identified by >B), just as in the linguistic exam-
ples in section 5.1. The result is another forward slash
category, which is subsequently combined with the res-
olution. The lexical category used to interpret a domi-
nant chord, the GD/CT of figure 10, is now replaced by
GD/CD|T , permitting it to combine either with a tonic
resolution (as in figure 10) or with another dominant
chord (as in figure 11). It should be noticed that this par-
ticular derivation of the extended cadence is now left-
branching, like the example in section 5.1, even though
the analysis it produces (omitted in figure 11) is formal-
ized as a right-branching (“tail-recursive”) structure.

Backward slash categories are precisely the reverse
of forward slash categories. They specify the end tonal-
ity required of the argument (after the slash) and the
end tonality that the result will have. They are much
less used than / and usually simpler2.

A combinatory rule resembling the one used for nat-

2This is a result of the fact that the analysis, which represents har-
monic expectation, is inevitably forward-looking. The few backward
slash categories used handle tonic elaborations and do not contribute
any relations to the analysis structure.

ural language coordination (see section 5.1) allows in-
terpretation of interrupted, or coordinated, cadences. A
chain of dominant seventh chords, without their final
resolution, can be treated as a constituent, thanks to
function composition. The coordination rule (identified
by &) combines two such constituents which expect the
same resolution into a single slash category, which also
expects this resolution3. We demonstrate this in fig-
ure 12 (derivations of the constituents are omitted for
brevity).

As is typically the case with lexicalized grammar for-
malisms, much of the work of interpretation is done in
the choice of lexical categories for each chord. Chord
substitution is handled in this way. For example, jazz
musicians may replace a dominant seventh chord by
another dominant seventh chord whose root is an aug-
mented fourth lower. This is the tritone substitution.
Each substitution is handled by adding a new line to the
lexical schemata in figure 14, discussed in the next sec-
tion. An example derivation using a tritone substitution
is shown in figure 13.

6 A Grammar for Jazz
6.1 The Lexicon

We are now able to define a jazz chord lexicon in full,
shown in figure 14. Each entry is a lexical schema
which has a mnemonic label to serve as an identifier, a
surface chord class, a syntactic type and a logical form
(see the appendix for full details of the notation for log-
ical forms). The surface chord class generalizes over
chord roots X. During parsing, a lexical schema may be
used to assign a category to a chord, provided the chord
falls into the general class of chords represented to the
left of the :=. Thus, whilst the harmonic analysis takes
the form of a path traced by the chords’ roots through
the tonal space, the chords’ types restrict the categories
that may be used to interpret them4. The pitch classes
within the category itself (right of the :=) are expressed,
using roman numerals, relative to the played root of the
chord to which the category is assigned (X). An exam-
ple use of each schema is given in the key of C.

All surface chords are assumed to be in equal tem-
perament. The input therefore does not distinguish be-
tween enharmonically equivalent roots, like G] and A[.

3This approach to interrupted cadences differs from that most
commonly seen in music theory (Piston, 1949) and is advocated by,
among others, Keiler (1978) and Rohrmeier (2011).

4Chord types have further influence on the interpretation through
the statistical models introduced below.
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Gm7 Cm7 B7 B[7 E[6

GD/CD|T CD/FD|T FD/B[D|T B[D/E[D|T E[T

>B

GD/FD|T
>B

GD/B[D|T
>B

GD/E[D|T
>

GD–ET

Figure 13: A cadence from Can’t Help Lovin’ Dat Man (in the key of E[). The B7 replaces an F7, an example of
the tritone substitution, and receives the same syntactic type that F7 would have received.

Indeed, this disambiguation is part of the analysis per-
formed during parsing, and may be inferred from the
logical form of a full parse. The constraints expressed
by the syntactic categories operate prior to this analy-
sis, so cannot make these distinctions. We arbitrarily
choose to use flats throughout the lexicon.

The mnemonic label Ton is used to identify a sim-
ple tonic chord function. The corresponding syntactic
category takes on the chord’s pitch class. The logical
form represents a point in the tonal space which is con-
strained to be one of those points that are mapped by
equal temperament to the root of the surface chord. At
this stage, it is meaningless to distinguish between the
points in this infinite set: what will be of importance
is the root’s relation to other points in the path. The
logical form is a coordinate in a 4×3 space identifying
this set, written 〈x,y〉. Like the syntactic types, the co-
ordinate in the lexicon implicitly generalizes over the
possible roots of the surface chord. For example, if the
surface chord has root C, the logical form will become
〈0,0〉, whilst if the root is B the logical form is 〈1,1〉
(see figure 4).

The mnemonic Dom identifies a rule that says a sur-
face chord C7 can be interpreted with the syntactic type
CD/FD|T and a logical form denoting a leftward move-
ment in the space to its resolution. It can be applied,
for example, to a surface chord G7, giving the syntac-
tic type GD/CD|T . As in the natural language semantics
in section 5.1, we use the lambda calculus to express a
predicate whose argument is not yet filled. When one
of these categories is combined with its resolution, the
predicate (leftonto/rightonto) will be applied to the res-
olution’s logical form. Figure 15 shows this in action to
interpret a short extended cadence.

The mnemonic Dom-tritone in figure 14 identifies
the tritone substitution of a dominant function chord.
The syntactic type is identical to that that would have

been assigned as a simple dominant interpretation of the
substituted chord (that rooted on the tritone). In other
words, this entry allows us to interpret a chord D[7 ex-
actly as if it had been a G7 chord. Most of the entries in
the lexicon represent other substitutions and work along
similar lines. Those included in the lexicon here consti-
tute a set suitable to interpret a large range of jazz stan-
dards, but more could be added to cover a wider range
of substitutions or to adapt the grammar to a different
domain.

6.2 Combinatory Rules

Most of the work of interpretation is done in the se-
lection of lexical categories. Only four rules are used
to build derivations. Function application and func-
tion composition are merely adaptations of their con-
ventional forms to the musical formalism and behave
as described in section 5.2. The rules are applied to si-
multaneously combine the syntactic categories and the
logical forms. Each rule has a symbol used to identify
its use in derivations.

Function application:

Forward (>)
X/Y : f Y –Z : x ⇒ X–Z : f (x)

Backward (<)
X–Y : x Z\Y : f ⇒ X–Z : f (x)

Function composition:

Forward (>B)
X/Y : f Y/Z : g ⇒ X/Z : λx. f (g(x))

Backward (<B)
X\Y : g Z\X : f ⇒ Z\Y : λx. f (g(x))

The coordination rule combines unresolved ca-
dences to behave as a single unresolved cadence. The
two cadences are required to be of the same harmonic
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Mnemonic
label

Category schema Example

chord
syntactic

type

Ton. X(m) := IT : [〈0,0〉] CM7 CT

Ton-III. Xm := [V IT : [〈0,2〉] Em CT

Ton-bVI. X := IIIT : [〈0,1〉] A[M7 CT

Dom. X(m)7 := ID/IV D|T : λx.leftonto(x) G7 GD/CD|T

Dom-backdoor. X(m)7 := V ID/IID|T : λx.leftonto(x) B[7 GD/CD|T

Dom-tritone. X(m)7 := [V D/V IID|T : λx.leftonto(x) D[7 GD/CD|T

Dom-bartok. X(m)7 := [IIID/[V ID|T : λx.leftonto(x) E7 GD/CD|T

Subdom. X(m) := IS/V S|T : λx.rightonto(x) F FS/CS|T

Subdom-bIII. X := V IS/IIIS|T : λx.rightonto(x) A[ FS/CS|T

Dim-bVII. X◦ := IV D/[V IID|T : λx.leftonto(x) Ddim7 GD/CD|T

Dim-V. X◦ := IID/V D|T : λx.leftonto(x) Fdim7 GD/CD|T

Dim-III. X◦ := V IID/IIID|T : λx.leftonto(x) A[dim7 GD/CD|T

Dim-bII. X◦ := [V ID/[IID|T : λx.leftonto(x) Bdim7 GD/CD|T

Pass-I. X◦ := IT/IT : λx.x Cdim7 CT/CT

X◦ := ID/ID : λx.x Gdim7 GD/GD

Pass-VI. X◦ := V IT/V IT : λx.x Adim7 CT/CT

X◦ := V ID/V ID : λx.x Edim7 GD/GD

Pass-bV. X◦ := [V T/[V T : λx.x G[dim7 CT/CT

X◦ := [V D/[V D : λx.x D[dim7 GD/GD

Pass-bIII. X◦ := [IIIT/[IIIT : λx.x E[dim7 CT/CT

X◦ := [IIID/[IIID : λx.x B[dim7 GD/GD

Aug-bII. X7 := [V ID/[IID|T : λx.leftonto(x) Baug GD/CD|T

Aug-VI. X7 := IIID/V ID|T : λx.leftonto(x) E[aug GD/CD|T

Colour-IVf. X(m) := V T/V T : λx.x F CT/CT

Colour-IVb. X(m) := V T\V T : λx.x F CT\CT

Colour-IIf. X(m) := [V IIT/[V IIT : λx.x Dm CT/CT

Colour-IIb. X(m) := [V IIT\[V IIT : λx.x Dm CT\CT

Dom-IVm. Xm := IID/V T : λx.leftonto(x) Fm6 GD/CT

Figure 14: The lexicon of the jazz grammar. Each line represents a lexical schema which may be used to interpret
a chord. Each schema consists of a class of chord types it may interpret, a syntactic type and a logical form. For
each schema, a typical example is given of a chord in the key of C that might receive this interpretation, and the
syntactic type of the category it would be assigned.
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D7 G7 C

DD/GD|T : λx.leftonto(x) GD/CD|T : λx.leftonto(x) CT : [〈0,0〉]
>B

DD/CD|T : λx.leftonto(leftonto(x))
>

DD–CT : [leftonto(leftonto(〈0,0〉))]

Figure 15: CCG derivation, including a representation of the harmonic ‘semantics’—the structure of harmonic
expectations and resolutions.

functional type—either authentic (dominant function)
or plagal (subdominant function). The logical form of
the result (not shown in the rule here) is a function that
will be applied to the resolution and represents both ca-
dences resolving to the same point. See the appendix
for a formal definition.

Coordination (&):

XF/Y ZF/Y ⇒ XF/Y F ∈ {D,S}

The trivial development rule joins together fully re-
solved passages, building an interpretation of a whole
piece out of its constituent cadences. Its semantics (also
found in the appendix) is simply the concatenation of
the two constituents. Thus, a piece of music is analysed
as a sequence of expectation-resolution structures and
no structure is analysed between these fragments (cf.
Rohrmeier, 2011).

Development (dev):

V –W X–Y ⇒ V –Y

This is a permissive rule: it permits any two consec-
utive passages interpreted individually as harmonically
stable to be conjoined, regardless of key. Such passages
include resolved cadences and individual tonic chords.
Since different modulations are treated identically in the
semantics and there is no reason to suppose that any re-
mote modulation, however rare, is impermissible, we
do not use the syntactic component of the grammar to
put any restrictions on modulation. Statistical prefer-
ences are captured by statistical parsing models such as
the one discussed below.

An example derivation using all four rules is shown
in figure 16. It is shown with its semantics in the ap-
pendix.

7 Statistical Parsing Models

Just as with natural language parsing, the lexical am-
biguity of interpretation of chord sequences, due here
largely to the range of substitutions covered by the

grammar, prohibits exhaustive parsing to deliver every
syntactically well-formed interpretation. Moreover, we
need a way to distinguish the most plausible among a
huge number of possible interpretations. It is usual in
NLP to use statistical models based on a corpus of hand-
annotated sentences to rank possible interpretations (su-
pervised models). Such techniques can be used to speed
up parsing by eliminating apparently improbable inter-
pretations early in the process. Bod (2002), Honingh
and Bod (2005), Temperley (2007) and Marsden (2010)
have shown that statistical techniques used in NLP can
be applied to chord sequence parsing and other tasks
for other genres (such as folk songs). This paper shows
that such methods can be extended to the present more
harmonically demanding musical domain.

7.1 Jazz Corpus

To train our statistical models, we have constructed a
small corpus of jazz chord sequences. The sequences
are taken from lead sheets standardly used by jazz per-
formers. In the interests of consistent annotation, we
excluded certain sequences whose analysis we were un-
certain of, either because they included rare ambigu-
ous modal substitutions, or because they seemed to lie
outside the rather mainstream jazz idiom we sought to
capture (one regretted example was Thelonious Monk’s
Epistrophy). The focus of the present approach is on
the rather uncontentious harmonic structures described
above. We believe that similar syntactic grammars
could be defined for genres incorporating a wider range
of harmonic expectations, a belief which is encouraged
by the work of Rohrmeier (2011), which applies a very
similar grammar to ours to a range of genres.

Every chord has been annotated by a single annota-
tor with a mnemonic code representing a category from
the lexicon of the jazz grammar shown in figure 14.
Due to the small number of rules used by the grammar,
the addition of parentheses surrounding coordinated se-
quences is sufficient to implicitly define a unique tonal
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space analysis of every sequence. We do not claim
that these are the only possible analyses in every detail,
only that they are musically coherent and consistent.
The corpus consists of 76 annotated sequences, totalling
roughly 3,000 chords. It is available to download from
http://jazzparser.granroth-wilding.co.uk/.

7.2 Parsing Models

Hockenmaier and Steedman (2002) adapted the gen-
erative probabilistic parsing models of probabilistic
context-free grammars (PCFG) to CCG. Using a cor-
pus of parsed sentences, generative probability distribu-
tions are estimated for expansions at internal nodes in
the derivation tree—steps of the derivation where cat-
egories are combined to interpret a larger span. The
distributions are used to estimate a probability for any
full derivation tree and hence of the corresponding har-
monic analysis. If multiple full parses are found, they
can be ranked according to the probabilities assigned
by the model. In evaluating the parser, we will always
choose the single most probable interpretation.

In our experiments, we use a direct adaptation of the
model of Hockenmaier and Steedman (2002) to parse
chord sequences. We refer to this model as PCCG.
During parsing, a probability is assigned composition-
ally to every derived category using the parsing model.
(See Hockenmaier and Steedman, 2002 for details of
the model.) A beam is applied to every internal node
at which multiple possible interpretations are found: all
but the most probable derivations are removed, reducing
the time the parser needs to spend exploring unpromis-
ing partial derivations.

7.3 Adaptive Supertagging

This beam search parsing strategy permits practical
parsing of chord sequence inputs despite the high level
of lexical ambiguity in the grammar. However, parsing
speed can be further increased using another statistical
technique from natural language parsing.

Supertagging is a technique, related to part-of-speech
tagging, used for parsing with lexicalized grammars
like CCG (Srinivas and Joshi, 1994). Probabilistic
sequence models, using only statistics about short-
distance dependencies, are employed to choose full
CCG categories (rather than parts of speech) from the
lexicon for each word. In general, the choice of cate-
gory, representing for us most of the interpretation of
a chord, depends on analysis of more distant parts of

the sequence, that is on long-distance dependencies. In
practice, short distance statistics can usually quite reli-
ably rule out at least the least probable interpretations.

A bad choice of categories could make it impossi-
ble to parse the sequence. The adaptive supertagging
algorithm (Clark and Curran, 2007) allows categories
considered less probable by the supertagger to be used
if necessary. First, the supertagger assigns a small set
of most probable categories to each word and the parser
attempts to find a full parse with these categories. If it
fails, the supertagger supplies some more, slightly less
probable, categories and the parser tries again. This is
repeated until the parser succeeds or gives up (for ex-
ample, after a set number of iterations).

Many types of probabilistic sequence model can be
used as a supertagging model. We use a hidden Markov
model (HMM) in which states represent categories, de-
composed into a choice of lexical schema Sch, from the
lexicon of table 14, and pitch SR. To avoid problems of
data sparsity, the transition distribution of the HMM is
modelled as a choice of schema, conditioned on the pre-
vious schema, and a choice of root pitch, conditioned on
the schema and the previous root pitch:

Ptr(Schi,SRi|Schi−1,SRi−1) =

P(Schi|Schi−1)×P(δ (SRi,SRi−1)|Schi) (1)

The function δ (x,y) ∈ {0, . . . ,11} represents the dif-
ference between two pitch classes x and y. This has the
effect of making the model generalize over keys.

The input given to the supertagger is a sequence of
chord labels, of the sort used on jazz lead sheets, such
as CM7 and B[7. These are decomposed into a pitch
class CR (C, B[) and a chord type CT (M7, 7). The
emission distribution of the HMM is defined to be 0
for all schema roots that do not match the chord root,
conditioning the chord type just on the lexical schema
of the state.

Pem(CTi,CRi|Schi,SRi) ={
P(CTi|Schi) if CRi = SRi
0 otherwise (2)

The supertagging model is trained using maximum
likelihood estimation on the annotated categories from
the corpus described above. The limited size of the cor-
pus means that it does not contain enough data to train
models much more complex than this. Some initial ex-
periments with higher-order Markov models (n-gram
models) suggest that they do not perform any better than
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Figure 17: Tonal space analysis for the coordinated ca-
dence G7 E7 A7 Dm7 G7 C. The initial G7 (square) is
followed not by the closest point that equal tempera-
ment maps to E (dashed), but a more distant one, as
required for the two G7s resolve to share their resolu-
tion.

the HMM we use here when trained on this small cor-
pus.

We compare a system using the PCCG parsing
model to a second using the supertagger with the adap-
tive supertagging algorithm to narrow down the choice
of lexical categories available to the parser. The parser
applies a beam just as in PCCG. We call this model
ST+PCCG.

Using both models, we allow the parser a fixed
amount of time to parse a particular sequence before
giving up. We set this time to five hours and with
both systems almost all parses finished well within that
time.5

7.4 Baseline Model

In an attempt to quantify the contribution made by re-
stricting interpretations to those that are both syntac-
tically well-formed under the jazz grammar and likely
under the jazz parsing model, we have constructed an
alternative baseline model which assigns tonal space in-
terpretations without using the grammar. This baseline
uses an HMM very similar to that described above as a
supertagger model, which directly assigns a tonal space
point to each chord, instead of assigning categories to
chords and parsing to derive a tonal space path.

A reasonable first approximation to an analysis can
be derived by assuming that no chord substitutions are
used and that the tonal space path proceeds by the
smallest possible steps, according to the Manhattan dis-

5Mean CPU time was 9:22 min (s.d. 33:32) with the supertagger,
and 34:17 (s.d. 75:23) without, running on a 2.6GHz AMD Opteron
6212 CPU.

tance metric. There are two reasons why deviations
from the naive path occur. First, the correct disam-
biguation of the equal temperament note may not be
the point closest to the previous, as happens at points
of coordination, where the resolutions of two cadences
are constrained to be the same. An example is shown in
figure 17. Second, there may be a substitution (like the
tritone substitution), meaning that the surface chord’s
root is not the root of the chord in the analysis.

The HMM’s state labels consist of three values. The
first, the substitution coordinate, Sub, denotes the pitch
class of the chord root after accounting for substitution,
but before projecting from the toroidal space of equal
temperament onto the full tonal space. For example,
a state with Sub = G could be associated with a D[
chord to interpret it as a tritone substitution.6 The sec-
ond value, the block coordinate, Blk, is a coordinate that
denotes the relationship in the tonal space between the
actual point in the analysis and the point nearest to the
previous point on the path after accounting for substitu-
tion. That is, it accounts for disambiguation of enhar-
monically equivalent points (e.g. C] and D[). Although
an infinite number of block coordinates is possible, in
practice only a few are commonly seen and the HMM
only includes those states that it observes in the training
data. The third value is the harmonic function F of the
chord—T, D or S.

The HMM’s transition distribution is decomposed as
follows. The harmonic function is chosen first, condi-
tioned on the previous harmonic function. Then a value
is chosen for the vector from the previous tonal space
coordinate, conditioned on the choice of harmonic func-
tion. It is possible to compute the transition probabil-
ity between any two states on the basis of this vector
since between them the substitution coordinate of the
first state and the substitution and block coordinates of
the second are sufficient to compute the vector travelled
between the two points. This way of constructing the
transition distribution makes it insensitive to transposi-
tion.

Ptr(Subi,Blki,Fi|Subi−1,Blki−1,Fi−1) =

P(Fi|Fi−1)×
P(vector(Subi,Subi−1,Blki)|Fi) (3)

The emission distribution is decomposed as follows.
The distribution is once again made insensitive to abso-
lute pitch by modelling the difference between the pitch

6Strictly speaking, this would only be a tritone substitution if it
also had a dominant function.
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class after accounting for substitution and the observed
chord root, once again using the δ (x,y) function. The
substitution is chosen conditioned on the function of the
state. Then the chord type is chosen, conditioned on
both the substitution and the function.

Pem(CTi,CRi|Subi,Blki,Fi) =

P(δ (CRi,Subi)|Fi)×
P(CTi|δ (CRi,Subi),Fi) (4)

The baseline model is trained in the same way as the
supertagger, only this time the training data is chord se-
quences paired with their annotated tonal space paths.
We refer to the baseline model as HMMPATH. PCCG
and ST+PCCG will completely fail to assign a path in
cases where a full parse cannot be found. This may
be because the beam removes all derivations that per-
mit a grammatical interpretation of the full sequence,
or, in the case of ST+PCCG, because the supertagger
fails to suggest a set of lexical categories from which a
full interpretation can be derived. HMMPATH will as-
sign some path to any sequence, since it is not limited
to returning grammatical interpretations.

8 Experiments
8.1 Evaluation

We evaluate all models on the basis of the “one-best”
tonal space path to which they assign highest probabil-
ity. Paths are first transformed from a list of tonal space
coordinates to a list of vectors between adjacent points.
This means that a path which makes an incorrect jump
(for example, to an enharmonic equivalent of the cor-
rect point) is only penalized for that mistake and not for
all subsequent points. Each point also has an associated
harmonic function, which is included in the evaluation.

We align this path optimally with the gold-standard
tonal space path from the annotated corpus (pre-
processed in the same way) using the Levenshtein algo-
rithm (Wagner and Fischer, 1974) for efficiently finding
the optimal alignment between the elements of two se-
quences. We report precision, recall and f-score of the
aligned paths. Precision is defined as the proportion of
points returned by the model that correctly align with
the gold standard. Recall is the proportion of points
in the gold standard that are correctly retrieved by the
model. F-score is the harmonic mean of these two mea-
sures.

P = Aligned/(Aligned+ Inserted)

R = Aligned/(Aligned+Deleted)

F = 2×PR/(P+R)

Since the points of the path carry two pieces of informa-
tion, the coordinate (now the step vector) and a chord
function, we allow a score of 0.5 to be assigned to a
correct alignment of only one of these and use a cost
function in the Levenshtein algorithm that reflects this.
Without this modification, a model that was, for exam-
ple, very good at recognizing substitutions, but poor at
identifying which chords were tonics would score very
badly on precision and recall, since no alignment would
be counted where only the coordinate was correct.

We shall refer to this metric as tonal space edit dis-
tance (TSED).

8.2 Model Comparison

All models were trained on the jazz corpus described
above, containing 76 fully annotated sequences. It is
common to divide a corpus into a training set, used to
train models, and a test set, for experimental evalua-
tion. Often a further division of a development set is
used to obtain intermediate experimental results or de-
termine model hyperparameters. Since the small size of
the corpus prohibits holding out a test set, we use 10-
fold cross-validation here. Each experiment is run 10
times, with 9

10 of the data used to train the model and
the remaining 1

10 used to evaluate the trained model.
This means that all data is used for evaluation, but no
model is tested on data that it was trained on. We report
the results combined from all partitions. Since the same
dataset has been used, for example, in preliminary tri-
als of higher-order HMMs (see section 7.3), this experi-
ment should be thought of as equivalent to an evaluation
on a development set, rather than on completely unseen
data. There is therefore some danger of overfitting.

9 Results

The results of the three experiments are reported in ta-
ble 1. Differences between systems are tested for statis-
tical significance using Bikel’s stratified shuffling test7,
with 100,000 random shuffles of the results from indi-
vidual chord sequences. Results are reported as statisti-
cally significant for p < 0.05.

Table 1 shows that ST+PCCG and PCCG produce
high-precision results. This is because, unlike the base-

7http://www.cis.upenn.edu/~dbikel/software.html,
accessed Oct 2012.
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Model P (%) R (%) F (%) Cov. (%)

HMMPATH 77.44 84.87 80.98 100
PCCG 92.29* 88.78 90.50* 97.37
ST+PCCG 90.18* 92.79* 91.46* 100

Table 1: Evaluation of each model’s prediction using 10-fold cross-validation on the jazz corpus. Each model is
scored using TSED (see section 8.1), reporting precision (P), recall (R), f-score (F) and coverage (Cov.), all per-
centages. The best results are bold and * marks significant improvements over the baseline (p < 0.05), measured
by 100,000 iterations of stratified shuffling.

line HMMPATH, they can only produce results that are
permitted by the grammar and fail when they can find
no such result. The corpus used here for training and
evaluation includes only sequences to which it was pos-
sible to assign a harmonic interpretation using the gram-
mar. The results reported for the models that use the
grammar are, therefore, higher than would be expected
on real-life chord sequences. HMMPATH suffers from
relatively low precision, but nevertheless succeeds in re-
covering a high proportion of the annotated harmonic
relations, as measured by the overall f-score. If the
parser were applied to a larger test set covering a less
constrained musical domain, it would suffer from lack
of coverage. In such a case, HMMPATH could be used in
a simple form of backoff, providing an analysis were the
parser fails. We could expect this to reduce the model’s
precision slightly, but improve its recall. The result-
ing ST+PCCG+HMMPATH model is robust in that it
is guaranteed always to produce some tonal space in-
terpretation, but in many cases benefits from the high
precision of the parser.

The three key conclusions to draw from these results
are as follows. First, they show that HMMPATH is a
reasonable model to use as a baseline for the task and
to back off to when no grammatical result can be found.
Experiments on a larger data set would without doubt
suffer more severely from a lack of coverage and HMM-
PATH could be used as suggested here or in another,
less aggressive form of backoff. Second, the results
show that the use of a grammar to constrain the inter-
pretations predicted by an HMM improves substantially
over the purely short-distance information captured by
the baseline HMMPATH model. Third, they show that
the use of the AST algorithm with a simple Markovian
supertagging model succeeds in speeding up the parser
by a large factor (roughly a factor of 4), with no re-
duction in accuracy. This can be thought of as using
a Markovian model to suggest some interpretations of

the chords, but building the final analysis by enforc-
ing the structural constraints encoded in the grammar.
Although this strategy is not essential for the present
task, it is likely to be important for tasks requiring larger
models or relying on accurate parsing under time con-
straints, when the gain in speed offered by supertagging
will be critical.

10 Conclusion

The parser described above uses a formal grammar of a
kind that is widely used for NLP, and a statistical pars-
ing model of a kind typically used in wide-coverage
natural language parsers, to map chord sequences onto
their underlying harmonic analysis in the tonal space
of Longuet-Higgins (1962a). The jazz harmony corpus
we used is small, but experience with wide-cvoverage
CCG parsing for NLP suggests that these techniques
will scale to larger datasets and other musical domains
(Clark and Curran, 2007; Auli and Lopez, 2011).

The parsing model is built using supervised learn-
ing over a small corpus of jazz chord sequences, hand-
annotated with harmonic analyses. The fact that a
grammar-based musical parser using a simple statisti-
cal parsing model trained on a small amount of labeled
data is more accurate than a baseline Markovian model
may be taken as further evidence suggesting that mu-
sic and language have a common origin in distinctively
human cognition.

The baseline model we have described is based only
on statistics over a short window of context (bigrams).
In most cases where the parser fails to find a full inter-
pretation of a chord sequence, it does successfully iden-
tify large cadences, but cannot find an interpretation of
certain difficult chords. One possible way of construct-
ing a coherent analysis in difficult cases would be to
identify high-confidence partial analyses produced by
the parser and back off to a less constrained model, such
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as HMMPATH, only for those passages that proved diffi-
cult for the grammar-based model. This appears to be a
reasonable emulation of what a human listener does on
encountering a confusing passage of music, picking up
the thread as soon as an easily identifiable tonal centre
or cadence is heard.

We have described models to analyse sequences of
chords expressed in the form of chord symbols. Such
sequences assume a certain amount of preprocessing,
including division into segments of constant harmony,
selection of prominent notes and some analysis of chord
root. A natural extension would be to construct a model
incorporating these tasks into the analysis process, ac-
cepting note-level input (in MIDI encoding, for exam-
ple) and suggesting possible interpretations in the way
the supertagger component of our parsing model does.
Recent work, not reported here, suggests that the ap-
proach presented here will generalize to this more diffi-
cult task.
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Appendix: Tonal Space Semantics

We introduce in the present paper an adaptation of CCG
for grammars of tonal harmony. The formalism acts as
a mechanism to map a surface – chords, in our case –
onto a semantic interpretation – a tonal harmonic anal-
ysis. Each syntactic category is coupled with a logical
form and, as syntactic categories are combined during
parsing, a logical form representing the full harmonic
analysis is built up.

We mentioned above that a logical form is con-
structed to represent a harmonic analysis in terms of
movements about Longuet-Higgins’ tonal space, but
omitted the details of the representation we use. Here
we set out the details of a representation suitable for our
tonal semantics.

Tonic Semantics

The semantics of a tonic is a point in the tonal space.
It is underspecified – it only specifies a point within an
enharmonic block (see figure 18). It is therefore a co-
ordinate between 〈0,0〉 and 〈3,2〉 and each coordinate
denotes a different infinite set of positions in the space.
Crucially, however, in the context of a full harmonic
analysis, the coordinate represents a single point in the
space, as we will see later in this appendix.

A single tonic chord receives as its logical form a
single-element list containing such a coordinate. A log-
ical form of this sort is associated with atomic lexical
categories, such as both the occurences of CT in fig-
ure 11.

Cadence Semantics

The semantics of a cadence step is a predicate repre-
senting a movement in the tonic space. An extended ca-
dence is interpreted as the recursive application of each
movement to its resolution.

Authentic cadences – left steps – use the leftonto
predicate and plagal cadences – right steps – the
rightonto predicate. For example, a single dominant
chord resolving to a tonic 〈0,0〉 would receive the log-
ical form leftonto(〈0,0〉), whilst a secondary dominant,
resolving to a dominant, resolving to the tonic would
receive leftonto(leftonto(〈0,0〉)).

We define leftonto (and likewise rightonto) as being
subject to a reduction when applied to a list, as in the
case of a tonic resolution, as follows:

leftonto([X0,X1, ...])⇒ [leftonto(X0),X1, ...]
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]I
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[[II

[IV

[VI

I

III
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]VII

[[VI
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[III

V
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]II

]]IV

[[III

[V
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II

]IV

]VI

]]I

[[VII+

[II+

IV+

VI+

]I+

]III+

]]V+

[IV+

[VI+

I+

III+

]V+

]VII+

]]II+(0,1)(0,1)

(0,0)(0,0)

(0,−1)(0,−1)

(−1,0)(−1,0)

(−1,−1)(−1,−1)

(−1,−2)(−1,−2)

(1,1)(1,1)

(1,0)(1,0)

(−1,−1)(−1,−1)

Figure 18: Enharmonic blocks at the centre of the
space. Each position within these 4x3 blocks is equated
by equal temperament with the same position within ev-
ery other block.

IIm7 V7 I

λx.leftonto(x) λx.leftonto(x) [〈0,0〉]
>

[lefonto(〈0,0〉)]
>

[leftonto(leftonto(〈0,0〉))]

Figure 19: Recursive interpretation of an extended au-
thentic cadence, showing logical forms, but omitting
syntactic types.

The example in figure 19 shows a two-step cadence –
the familiar IIm7 V7 I. The derivation shows the combi-
nation of the semantics of each chord into the semantics
for the sequence.

Throughout this chapter, derivations like this are
written with the syntactic part of each syntactic
type/logical form pair omitted. Naturally, these are
all derivations that would be permitted by the syntac-
tic types associated with these logical forms under the
combinatory rules described in section 6.2 in the main
article.

The recursive application of multiple cadence steps
can be combined ahead of time, before their applica-
tion to their resolution, using the composition operator,
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IIm7 V7 I

λx.leftonto(x) λx.leftonto(x) [〈0,0〉]
>B

λx.leftonto(leftonto(x))
>

[leftonto(leftonto(〈0,0〉))]

Figure 20: Recursive interpretation of an extended ca-
dence, derived using the function composition combi-
nator to combine the unresolved cadence before its res-
olution is encountered.

I IV I

λx.x λx.x [〈0,0〉]
>

[〈0,0〉]
>

[〈0,0〉]

Figure 21: I IV I colouration of a tonic chord, inter-
preted as contributing nothing to the logical form.

associated with the composition combinator.

f ◦g≡ λx. f (g(x))

Figure 20 shows again the interpretation seen in fig-
ure 19, now produced by a derivation that uses the com-
position combinator.

Colouration Semantics

The lexicon includes some categories for interpreting
colouration chords, which contribute nothing much to
the functional structure of the harmony, but spice up
the realisation. Accordingly, these are given an empty
semantics (that is, the identity function), which simply
ignores them.

A typical example of this is the sequence I IV I, often
played during long passages of a I chord. This is really a
form of plagal cadence and a fine grained analysis might
treat it as such. However, for most analysis purposes we
wish to ignore this very brief excursion from the tonic.
Figure 21 shows an example derivation using this empty
semantics.

In many cases, we do not even return to the tonic
after our excursion, continuing with a cadence straight
after the IV. This is the purpose of the backward-facing
colouration lexical category (Colour-IVb in figure 14)
and the semantics ignores the IV in the same way.

I IIm7 V7 I

[〈0,0〉] λx.leftonto(x) λx.leftonto(x) [〈0,0〉]
>

[lefonto(〈0,0〉)]
>

[leftonto(leftonto(〈0,0〉))]
dev

[〈0,0〉, leftonto(leftonto(〈0,0〉))]

Figure 23: A single tonic chord combined with a subse-
quent resolved recursive cadence using the development
rule.

Development Semantics

The development combinatory rule combines se-
quences of tonic passages and resolved cadences into
larger units, ultimately into a whole piece of music. Ev-
ery logical form introduced so far has been a single-
item list. The behaviour of the development rule’s se-
mantics is rather trivial. It simply concatenates its two
arguments: the syntax ensures these are lists. The ex-
ample in figure 22 shows a pair of resolved cadences
being combined in this way. Figure 23 shows a deriva-
tion in which a single tonic combines with a subsequent
resolved cadence.

Coordination Semantics

Logical forms representing unresolved cadences can be
coordinated to share their eventual resolution. This is
carried out by the special musical coordination combi-
nator. The semantics of this combinator simply con-
joins the cadence logical forms using the ∧ operator.
Note that, unlike in the logical semantics of natural lan-
guage, this conjunction operator must preserve the or-
der of its arguments.

A∧B 6≡ B∧A

We can also reduce brackets to reflect the associativity
of the conjunction operator.

A∧B∧C ≡ (A∧B)∧C
≡ A∧ (B∧C)

A∧ (B∧C)⇒ A∧B∧C

(A∧B)∧C⇒ A∧B∧C

The functions that denote cadences are simply con-
joined by ∧, as shown in figure 24.

The result is treated as a function that can be applied
to its resolution. It reduces under application to a list in

23



IIm7 V7 IIm7 V7

λx.leftonto(leftonto(x)) λx.leftonto(leftonto(x))
&

λx.leftonto(leftonto(x))∧λx.leftonto(leftonto(x))

Figure 24: Two unresolved cadences combined using
the coordination combinator.

IIm7 V7 IIm7 V7 IIm7 V7 I

λx.L(L(x)) λx.L(L(x)) λx.L(L(x)) [〈0,0〉]
&

λx.L(L(x))∧λx.L(L(x))
&

λx.L(L(x))∧λx.L(L(x))∧λx.L(L(x))
>

[(λx.L(L(x))∧λx.L(L(x))∧λx.L(L(x)))(〈0,0〉)]

Figure 26: More than two unresolved cadences can be
combined using the coordination combinator.

the same way as leftonto and rightonto. An example is
shown in figure 25. Note that the individual cadences
are not actually applied to the resolution. More than
two cadences can be coordinated to share the same res-
olution, as shown in figure 26. (The predicate leftonto is
henceforth abbreviated to L to save space.)

The result of a coordination (once applied to its res-
olution) can become the recursive resolution of a prior
cadence step (as in figure 27). However, this logical
form will result in the same tonal space path as that
which would have been produced by composing the VI7

with the following IIm7 V7 before coordinating, shown
in figure 28.

We therefore define the following equivalence in the
logical forms and by convention reduce the left-hand
side form to the right-hand side wherever possible.

A((B∧ ...)(C))⇒ (A◦B∧ ...)(C)

Extracting the Tonal Space Path

The logical forms that come out of the above seman-
tics represent certain constraints on paths through the
tonal space. Although the tonic points are ambiguous
in the representation, every point of a path can be in-
ferred from a full logical form.

Let us first examine the constraints encoded in the
various types of predicate. The most obvious constraint
is on the point created by a left (or right) movement, de-
noted in the semantics by leftonto (or rightonto) predi-
cates. In leftonto(p), the point at which the movement

VI7 IIm7 V7 IIm7 V7 I

λx.L(x) λx.L(L(x)) λx.L(L(x)) [〈0,0〉]
&

λx.L(L(x))∧λx.L(L(x))
>

[(λx.L(L(x))∧λx.L(L(x)))(〈0,0〉)]
>

[L((λx.L(L(x))∧λx.L(L(x)))(〈0,0〉))]

Figure 27: A recursive dominant chord may be applied
to the result of using the coordination combinator. (C.f.
figure 28.)

VI7 IIm7 V7 IIm7 V7 I

λx.L(x) λx.L(L(x)) λx.L(L(x)) [〈0,0〉]
>B

λx.L(L(L(x)))
&

λx.L(L(L(x)))∧λx.L(L(x))
>

[(λx.L(L(L(x)))∧λx.L(L(x)))(〈0,0〉)]

Figure 28: An alternative derivation of the cadence in
figure 27, resulting in an interpretation identical in the
tonal space, leading to the definition equivalence of the
two logical forms.

begins must be one step in the grid to the right of the
first point of the path p. If the point (x,y) is fully spec-
ified, the whole path leftonto(leftonto((x,y))) is there-
fore also unambiguous.

Two cadences that share a resolution through coordi-
nation are constrained to end at the same point, since
their points are constrained relative to their shared res-
olution.

There is no obvious constraint between items in the
top-level list of tonics and resolved cadences. We as-
sume that a step is made to the nearest (most closely
tonally related) point that satisfies all other constraints.
For example, take the following two logical forms:

1. [〈0,0〉, leftonto(leftonto(〈0,0〉))]

2. [〈0,0〉, leftonto(leftonto(leftonto(〈0,0〉)))]

The tonal space paths for these logical forms are
shown in figure 29. The start of the second item in path
1 is dependent, ultimately, on the cadence resolution
〈0,0〉. But this point is underspecified: we can choose
for it any of the infinite points that lie at 〈0,0〉 within
their enharmonic block. Given an arbitrary choice of
the first item’s point at the central (0,0), we will choose
the same point for the end of the second item, since it
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puts the start of the second item (now (2,0)) as close as
possible to (0,0). A choice of (−4,1) for the end point
would also have been permitted by other constraints,
but would have resulted in a larger jump between the
two path fragments.

In path 2, however, the second item begins at a point
further from its ending. In this case we will choose
(−1,1) as the start point for the second item by setting
the 〈0,0〉 at its end to be at (−4,1).

Note that the choice of the first point on the path is
unimportant: two paths identical in form, but occurring
at different positions in the space can be considered
equivalent, since the only difference between them is
their absolute pitch and we (uncontraversially) consider
precise absolute pitch not to be pertinent to musical se-
mantics. In both the above examples, we could have
chosen (4,−1), for instance, as the coordinate 〈0,0〉 at
the start and the resulting paths would be considered
identical to those we derived.

A simple algorithm can be constructed by means of
a recursive transformation of the logical predicates to
produce the flat tonal space path represented by a logi-
cal form produced by parsing. As well as demonstrat-
ing that any logical form is interpretable as an analysis
in the tonal space, there are circumstances in which this
transformation is of use. In section 8.1 in the main arti-
cle we use path similarity between an output interpreta-
tion and the gold standard as an evaluation metric. The
paths we compare are those produced by this algorithm.

The Extended Example: Full Analysis

As a full, real life example, the derivation in figure 30
shows the long extended cadence from Alice in Wonder-
land of which a purely syntactic derivation was shown
in figure 16, now including logical forms.
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IIm7 V7 I V7 I

λx.leftonto(x) λx.leftonto(x) [〈0,0〉] λx.leftonto(x) [〈0,0〉)]
> >

[lefonto(〈0,0〉)] [lefonto(〈0,0〉)]
>

[leftonto(leftonto(〈0,0〉))]
dev

[leftonto(leftonto(〈0,0〉)), lefonto(〈0,0〉)]

Figure 22: A pair of fully resolved cadences combined using the trivial development rule.

IIm7 V7 IIm7 V7 I

λx.leftonto(leftonto(x)) λx.leftonto(leftonto(x)) [〈0,0〉]
&

λx.leftonto(leftonto(x))∧λx.leftonto(leftonto(x))
>

[(λx.leftonto(leftonto(x))∧λx.leftonto(leftonto(x)))(〈0,0〉)]

Figure 25: The two unresolved cadences that were combined in figure 24 are combined with the resolution ex-
pected by both using the function application combinator.

[[VII−

[II−

IV−

VI−

[IV−

[VI−

I−

III−

[I−

[III−

V−

VII−

[V−

[VII−

II−

]IV−

[II

IV

VI

]I

[VI

I

III

]V

[III

V

VII

]II

[VII

II

]IV

]VI

IV+

VI+

]I+

]III+

Figure 29: The tonal space paths corresponding to two logical forms. [〈0,0〉, leftonto(leftonto(〈0,0〉))] (circles)
begins at I, (0,0), jumps to II, (2,0), and left-steps back to I. [〈0,0〉, leftonto(leftonto(leftonto(〈0,0〉)))] (squares)
also begins at I, but jumps to V I, (−1,1), and left-steps to I−, (−4,1).
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