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Spectral and Energy Efficiency Analysis for
Cognitive Radio Networks

Fourat Haider, Cheng-Xiang Wang, Senior Member, IEEE, Harald Haas, Member, IEEE, Erol Hepsaydir,
Xiaohu Ge, Senior Member, IEEE, and Dongfeng Yuan, Senior Member, IEEE

Abstract—Cognitive radio (CR) is considered one of the promi-
nent techniques for improving the utilization of the radio spec-
trum. A CR network (i.e., secondary network) opportunistically
shares the radio resources with a licensed network (i.e., primary
network). In this work, the spectral-energy efficiency trade-off for
CR networks is analyzed at both link and system levels against
varying signal-to-noise ratio (SNR) values. At the link level, we
analyze the required energy to achieve a specific spectral efficiency
for a CR channel under two different types of power constraint in
different fading environments. In this aspect, besides the transmit
power constraint, interference constraint at the primary receiver
(PR) is also considered to protect the PR from a harmful inter-
ference. Whereas at the system level, we study the spectral and
energy efficiency for a CR network that shares the spectrum with
an indoor network. Adopting the extreme-value theory, we are
able to derive the average spectral and energy efficiency of the
CR network. It is shown that the spectral efficiency depends upon
the number of the PRs, the interference threshold, and how far
the secondary receivers (SRs) are located. We characterize the
impact of the multi-user diversity gain of both kinds of users
on the spectral and energy efficiency of the CR network. Our
analysis also proves that the interference channels (i.e., channels
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between the secondary transmitter and PRs) have no impact on
the minimum energy efficiency.

Index Terms—Cognitive radio networks, spectral efficiency, en-
ergy efficiency, extreme-value theory, multi-user diversity gain.

I. INTRODUCTION

THE continuous evolution of wireless communication with
more sophisticated technologies has had a massive impact

on changing how people on the globe can communicate with
each other in all aspects of life including business operations,
individuals, and society. There is an increasing number of smart
phones and laptops every year. All of them are demanding
advanced multimedia and high data rate services. More and
more people crave better Internet access on the move resulting
in a boundary-less global information world. One way to meet
the continuously increasing demand for high-speed data is
to secure new spectrum bands. However, achieving this is a
very difficult task as the spectrum is a rare resource. Hence,
the radio spectrums are congested and there are limited new
spectrum bands available for wireless uses. Despite this fact, the
federal communications commission (FCC) has reported that a
significant amount of the radio spectrum is underutilized during
the day [1]. This ignited the research activities to improve the
usage of the highly sought-after radio spectrum and as a result,
the cognitive radio (CR) concept has been proposed [2], [3].

CR is an innovative radio technique that aims to utilize
the radio spectrum more efficiently by intelligently exploiting
the licensed spectrum. Hence, a CR network, i.e., secondary
network, shares radio spectrum owned by a licensed network,
i.e., primary network. The secondary network is authorized
of dynamically and autonomously adapting its radio operating
parameters to coexist with the primary network, providing that
the performance primary network is protected or above a certain
level of quality. CR networks can be classified under two cat-
egories, namely interference-free and interference-tolerant CR
networks [4]. In the former CR networks, secondary transmit-
ters (STs) can only use those spectrums which are not occupied
by primary receivers (PRs) [5], [6]. Whereas in the latter CR
networks, the STs can share the spectrum as long as they do
not cause any outage to the primary network operation and the
interference to PRs is kept below a threshold [7]. Therefore,
it is essential that interference-tolerant CR systems acquire the
interference level, in real-time feedback, from the PRs. To this
end, some modification on the primary system is unavoidable.
In this paper, we focus on the spectral and energy efficiency for
the interference-tolerant CR networks. The spectral efficiency
is defined as the number of bits per second transmitted over

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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a given bandwidth (in bps/Hz) while the energy efficiency is
defined as the required energy per bit (in joules/bit) for reliable
communication, normalized to the background noise level.

There are various studies that analyzed the spectral efficiency
of CR networks at the link level [8]–[11] as well as at the system
level [12]–[14]. For link-level CR networks, the spectral effi-
ciency for additive white Gaussian noise (AWGN) channels was
derived in [8] under an assumption of average power constraint.
In [9], the spectral efficiency of a CR channel was analyzed
against various fading channel distributions. The authors of [10]
analyzed the spectral efficiency of a CR channel under different
power allocation policies. In [11], ergodic and outage capacities
of CR channels were evaluated under both peak and average
interference power constraints. The spectral efficiency for both
the link level and system level cooperative CR networks was
studied in [12]. However, the power control of STs did not
consider the interference threshold that the PRs can tolerate.
In [13], the authors derived the average throughput of a system
level CR network and studied its asymptotic behavior. However,
the analysis was limited to a single PR. The spectral efficiency
for hybrid CR networks was studied in [14] under average
interference power constraint. Hybrid CR allows a network to
be simultaneously both primary and secondary networks, thus
gaining the advantages of both networks. Hybrid CR networks
can be adopted in cellular networks to explore additional bands
and enhance the spectral efficiency. It is noticeable that all
the aforementioned studies focused on analyzing the spectral
efficiency but neglected to study the spectral-energy efficiency
trade-off which is an increasingly important area nowadays.

Energy-efficient communication, or as it is globally well-
known as Green Radio [15], has been attracting more and
more attention in various societies. Studying the energy con-
sumption is crucial to find efficient strategies that minimize
the carbon footprint from wireless networks and its impact
on the environment [16]–[18]. Jointly attaining both enhanced
energy efficiency and spectral efficiency is unfortunately a
challenging problem to solve. Often, achieving enhancement
of one of them means sacrificing the other. Therefore, it is
important to study different trade-offs between the two perfor-
mance indicators to decide the minimum energy consumption
that is required to achieve the target spectral efficiency, or
vice versa [20]–[22]. Two analytical tools used to analyze
the spectral-energy efficiency trade-off for any given wireless
networks were proposed in [19] and [23] in low and high signal-
to-noise ratio (SNR) regimes, respectively. These tools were
used to analyze the energy consumption in different network
scenarios [24]–[30]. Using the low-SNR tool, the interplay of
the spectral and energy efficiency was studied for single-user
multiple-input multiple-output (MIMO) channels [24], single-
user relay channels [25], [26], and multi-user relay channels
[27]. The authors of [28], [29] used the high-SNR tool to
analyze the energy efficiency of MIMO channels. The works
of [24]–[28], [30] can only be applied to primary networks
where the transmit power and spectral efficiency depend on
the characteristics of the PRs’ channels only. In CR networks,
however, the network performance is characterized by both the
primary and secondary receivers’ channels. In [30], we investi-
gated the spectral-energy efficiency trade-off in an interference-

tolerant link-level CR network under an assumption of average
transmit power constraint. To extend this work further, we will
compare the outcomes of [30] with a different CR power policy.
Furthermore, to the best of our knowledge, no other research
has considered similar analysis in a system-level CR network
with multiple primary and secondary receivers. Therefore, our
novel contributions are summarized as follows:

1) We extend the work of [30] to compare the spectral-
energy efficiency trade-off in the low and high SNR
regimes when transmitting a signal under average power
constraint with transmitting a signal under peak power
constraint while keeping the interference on primary re-
ceiver below an acceptance level for both.

2) We propose a CR-based cellular network where a sec-
ondary network shares a spectrum that belongs to an
indoor system. The spectral efficiency for the proposed
network with multiple primary and secondary users is
analyzed using extreme value theory. The analysis will
highlight the impact of the multi-user diversity gain of
both the primary and secondary users on the achievable
spectral efficiency.

3) A general analytical framework to evaluate the energy-
spectral efficiency trade-off of CR-based cellular network
is established for all SNR values using peak-power in-
terference constraint. The framework takes into account
the numbers of primary and secondary receivers, transmit
power, and interference threshold.

The remainder of this paper is organized as follows.
Section II introduces two analytical tools to study the spectral-
energy efficiency trade-off in low and high SNR regimes.
Section III describes the link-level model of the proposed study
and analyzes the resulting link-level spectral-energy efficiency
trade-off, along with numerical results and discussions. The
system-level spectral efficiency and energy efficiency of mul-
tiple cognitive links are subsequently derived in Section IV.
Finally, conclusions are drawn in Section V.

II. SPECTRAL-ENERGY EFFICIENCY TRADE-OFF

UNDER LOW AND HIGH SNR REGIMES

In this section, we summarize two tools that analyze the con-
sumed energy per transmitted bit for a given spectral efficiency
in low and high SNR regimes [23]. The spectral efficiency, C,
here refers to the number of bits per second transmitted over
a given bandwidth (in bps/Hz). The energy efficiency, Eb

N0
, is

defined as the required energy per bit (in joules/bit) normalized
to the background noise power N0 for reliable communications.

A. Low SNR Regime

In the low SNR regime,
(

Eb

N0

)
can be approximated as an

affine function with respect to the spectral efficiency and can be
expressed by [19](

Eb

N0

)∣∣∣∣
dB

=

(
Eb

N0

)
min

+
3

S0
C (1)
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where
(

Eb

N0

)
min

is the minimum energy efficiency required

for transmitting information reliably over a channel and it is
given by (

Eb

N0

)
min

= lim
SNR→0

SNR
C̄(SNR)

. (2)

Here, C̄(SNR) is the spectral efficiency as a function of SNR. In
(1), S0 is the wideband slope of the spectral efficiency, defined
as the increase of bits per second per hertz per 3 dB (bps/Hz/
(3 dB)), and can be expressed by [19]

S0 =
2 ˙̄C(0)

− ¨̄C(0)
(3)

where ˙̄C(0) and ¨̄C(0) are the first and second derivative,
respectively, when SNR = 0.

B. High SNR Regime

In the high SNR regime, the required energy efficiency to
obtain a specific spectral efficiency can be expressed by [23](

Eb

N0

)∣∣∣∣
dB

≈ C

S∞
10 log10 2− 10 log(C)

+

(
Eb

N0

)
penalty

10 log10 2 (4)

where S∞ is the slope of the spectral efficiency in the high SNR
regime in bps/Hz/(3 dB) and is given by [23]

S∞ = lim
SNR→∞

SNR ˙̄C(SNR). (5)

In (4),
(

Eb

N0

)
penalty

is the horizontal penalty which represents

the power offset in dB with respect to a reference channel
having the same high SNR regime slope but with an unfaded
channel (i.e., AWGN) and it is calculated by [23](

Eb

N0

)
penalty

= lim
SNR→∞

(
log2(SNR)− C̄(SNR)

S∞

)
. (6)

III. LINK-LEVEL SPECTRAL-ENERGY

EFFICIENCY TRADE-OFF

In this section, we consider a link-level CR channel. It con-
sists of an interference-tolerant secondary transmitter-receiver
pair that shares a spectrum with a primary transmitter-receiver
pair [9]–[11]. We assume a point-to-point flat fading channel
that is corrupted by AWGN. All nodes in this model are
assumed to be equipped with a single antenna. The channel
between the ST and secondary receiver (SR) is defined as
the cognitive channel, while the channel between the ST and
the PR is defined as the interference channel. The cognitive
and interference channel gains are denoted by gc and gi, re-
spectively. They are random variables drawn from an arbitrary
continuous distribution with an expected value of unity and they
are mutually independent. The ST is assumed to have perfect

knowledge of the instantaneous channel status information
(CSI) for the cognitive and interference channels. It is further
assumed that the interference from the primary transmitter (PT)
to the SR is considered as background noise [9], [10]. There
are two constraints that the ST has to take into the account
before transmitting a signal to the SR. The first constraint
is the allowable received peak interference power at the PR.
This constraint is essential in CR networks to avoid harmful
interference at the PR. The second constraint is the available
transmit power that the ST has. In this paper, we consider
two types of power constraint which are the average and peak
transmit power constraints.

A. Fading Channels With Average Transmit Power Constraint

If we consider a CR channel under the average transmit
power and peak interference power constraints, the spectral
efficiency in this case can be calculated by [10]

C = max
γs(gc,gi)≥0

E

[
log2

(
1 +

gcγs(gc, gi)

N0

)]
(7)

s.t. E [γs(gc, gi)] ≤ γavg (8)

giγs(gc, gi) (9)

where γs(gc, gi), γavg, and Q are the instantaneous transmit
power, allowed average transmit power, and peak received
interference power that the PR can tolerate, respectively, and
E[.] denotes the statistical expectation. The optimum power
allocation can then be expressed by

γ∗
s(gc, gi) = min

{(
1

γ0
− N0

gc

)+

,
Q

gi

}
(10)

where γ0 is the water-filling cutoff value that can be calculated
from the constraint in (8) and (x)+ = max{0, x}. Numerical
optimization is required to get the optimum value of γ0 [30].
Unlike in the primary network, where only the CSI of the PR is
required at the PT, the CSIs of both the PR and SR are needed at
the ST as inputs for the power allocation algorithm. Depending
upon the gains of the two types of channel, the CR transmission
resides in different modes. No communication is allowed as
long as the CR channel gain is below the cutoff value, i.e.,
gc ≤ γ0. The classical water filling algorithm can be adopted

if
(

1
γ0

− N0

gc

)
≤ Q

gi
. If

(
1
γ0

− N0

gc

)
> Q

gi
, the transmit power is

equal to Q
gi

.
Theorem 1: Under average transmit and peak interference

power constraints, the minimum energy efficiency required for
reliable information over the cognitive channel is given by(

Eb

N0

)
min

=
ln 2

gc(max)
(11)

Proof: See Appendix A. �
where gc(max) is the supremum of a random variable gc.
Unsurprisingly, the minimum energy is only affected by the

cognitive channel while the interference channel has no influ-
ence on it. If the cognitive channel, for instance, is an AWGN
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Fig. 1. (a) Per-link spectral-energy efficiency trade-off with different fading
distributions of the interference channel in the low SNR regime (Q = −5,
Rician factor K = 5). (b) Per-link spectral-energy efficiency trade-off for
different interference threshold values in the high SNR regime (gc and gi ≡
exponential distribution).

channel,
(

Eb

N0

)
min

will be equal to −1.59 dB. For the Rayleigh

fading channel,
(

Eb

N0

)
min

= 0 (−∞ dB) as the fading channel

gain is unbounded, i.e., gc(max) = ∞. Fig. 1(a) presents the
spectral-energy efficiency trade-off when the cognitive chan-
nel is under Rayleigh and AWGN channels against different
interference channel fading distributions. Here, Q is assumed

to be −5 dB. We can see that
(

Eb

N0

)
min

depends only on the

fading statistics of the cognitive channel regardless of the dis-
tribution of the interference channel, which verifies Theorem 1.
Better energy efficiency can be obtained when the cognitive
channel follows a Rayleigh distribution due to additional gain
in the fading distribution.

In the high SNR regime, Fig. 1(b) shows the spectral-energy
efficiency trade-off when gc and gi are both changing according
to Rayleigh fading distributions. It is worth noting that the
SNR regime in which the cognitive channel resides is not only
decided by the transmit power but also by the interference
threshold Q. Regardless Q and the fading distribution of the
cognitive and interference channels, the slope of the spectral

efficiency goes to 0 as
(

Eb

N0

)
grows. The reason is that for CR

channel the spectral efficiency is limited by interference thresh-
old of the primary channel, i.e., even without Gaussian noise
it achieves a bounded spectral efficiency Cmax. If the cognitive
and interference channels follow Rayleigh distributions, then
Cmax is equal to

Cmax =
log2

(
Q
N0

)
(
1− N0

Q

) . (12)

The detailed derivation for (12) is given in Appendix B. Hence,
Cmax is characterized by Q and it is independent of the fading
distribution of the cognitive and interference channels. How-
ever, we can notice that If Q is high enough, the spectral-energy
efficiency trade-off can be approximated by(
Eb

N0

)
dB

≈C×10 log10 2−10 log(C)+2.5067, ∀ C<Cmax.

(13)

Expression (13) is similar to spectral-energy efficiency trade-off
approximation that can be applied to the single primary channel

Fig. 2. Per-link spectral-energy efficiency trade-off for CR channel with
average and peak power constraints (Rician factor K = 5).

[23]. The only difference is that Cmax has no limited value for
the primary channel while it is limited for the cognitive channel.

B. Fading Channels With Peak Transmit Power Constraint

The optimum power allocation in this case is equal to

γ∗
s(gc, gi) = min

{
γpk,

Q

gi

}
(14)

where γpk is the peak transmit power of the ST. Unlike (10),
only gi is required as input for power policy. That makes it more
straight forward as it only requires the CSI of the interference
channel as an input. The minimum energy efficiency can be
calculated by(

Eb

N0

)
min

= lim
γpk→0

E [γ∗
s(gc, gi)]

N0E
[
log2

(
1 + γ∗

s (gc,gi)gc
N0

)] . (15)

In the low SNR regime, E[γ∗
s(gc, gi)] = γpk and when we take

this into consideration,
(

Eb

N0

)
min

is always equal −1.59 dB for

all types of cognitive channel fading distribution.
Fig. 2 compares spectral-energy efficiency trade-off when

the ST transmits a signal under the average and peak power
constraints. In the low SNR regime, transmitting a signal with
average power constraint provides better energy efficiency than
transmitting a signal with peak power constraint. Moreover,

reliable communication is no possible for
(

Eb

N0

)
< −1.59 dB

when transmitting a signal under peak power constraint. This is
due to that fact that the power policy with peak power constraint
does not benefit from the available energy at those moment
in which the cognitive channel fading is exceedingly high. In
the high SNR regime, both power policies behave similarly and
approach the same maximum spectral efficiency Cmax since the
transmit power for both policies is controlled by Q

gi
. Therefore,

(13) can yet be applied in the high SNR regime if Q is high
enough.

IV. SYSTEM-LEVEL SPECTRAL-ENERGY

EFFICIENCY TRADE-OFF

In this section, we will study the spectral and energy effi-
ciency for a CR-based cellular network. The intention here is
not to build a complete cellular network using the concept of
CR, but rather to enhance the spectral efficiency of the cellular
networks for a short period of time by sharing a spectrum that
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Fig. 3. System model of CR-based cellular network with secondary BS,
multiple PRs, and multiple SRs.

belongs to another licensed network. We assume that a CR
network consists of a single ST, i.e., macro BS, which transmits
signals to multiple SRs. The CR network shares a spectrum
owned by an indoor primary network. The primary network
also consists of multiple PRs, i.e., primary indoor access points
(APs). The SRs and PRs are indexed by n ∈ N = {1, . . . , N}
and k ∈ K = {1, . . . ,K}, respectively. The SRs and PRs are
uniformly distributed in a cell of radius d and a cell of radius
D(d ≤ D), respectively, as shown in Fig. 3. The downlink
transmissions of the CR network are considered and assumed
to occur in the uplink transmission of the primary network.
There are many advantages for sharing the spectrum of the
uplink transmissions of an indoor network. First, since the
primary network is assumed to be an indoor one, the mutual
interference between the primary and secondary networks will
be scaled down because of the penetration losses. Secondly, as
the PRs, are all fixed in position, this offers an opportunity
to easily detect them by the ST. Hence, the STs can detect
the pilot channel broadcast from indoor PRs and decide how
many PRs with which they are surrounded [31]. The ST can
then rely on channel reciprocity and estimate the channel
coefficient of the interference channel using injected pilots in
the uplink channel of the PRs. Finally, it is also possible that
the interference channel status information (ICSI) is sent from
all PRs along with their identities and collected by a certain
central unit. In fact, using a separate wireline control channel
that broadcasts the interference measured over a broadband
connection is a very practical solution. Before the secondary
network can utilize the spectrum, it must register itself with the
central unit first to be updated regarding the ICSI. However,
the PRs do not necessarily need to identify each registered ST.
The ICSI can inform the STs regarding the status of the worst
aggregate interference that a PR suffers. The STs can also use
ICSI as an alternative way to estimate the channel status to that
PR and regulate their transmit power accordantly. In this work,
we assume that there is only one registered CR network with a
single secondary cell.

A. The Distribution of the Channel Gain

The cognitive channel power gain between the ST and the
nth SR is denoted by gc(n), while the interference channel
gain between the ST and the kth PR is denoted by gi(k).

The cognitive and interference channels experience pathloss,
shadowing, and multi-path fading. The focus in this section will
be on the cognitive channel. However, the same analysis can be
applied to the interference channel. The pathloss is a function
of the distance r between the ST and the nth SR, and can be
expressed by

gp(n) = Arβ(n) (16)

with β representing the pathloss exponent. The propagation
coefficient A includes parameters related to antenna height,
antenna gain, path-loss frequency dependence, and, in the case
of the interference channel, the indoor loss. The combined
channel gain gc(n) is given by

gc(n) =
gm(n)gs(n)

gp(n)
(17)

where gs(n) and gm(n) represent the power gain of the shad-
owing and multi-path fading of the nth SR, respectively. We
use the composite channel model for both shadowing and fast
fading [32]. This model is the result of the multiplication of the
log-normal distribution with the Nakagami distribution. Thus,
the composite channel gain can be approximated by log-normal
distribution [32, pp. 132], i.e.,

fh(x) =
ξ√
2πσx

exp

{
− (10 log10(x)− μ)2

2σ2

}
(18)

where ξ = 10
log(10) . The mean μ and variance σ2 can be given by

μ =

(
m−1∑
k=1

1

k
− ln(m)

)
+ μΩ (19)

σ2 =

∞∑
k=0

1

(m+ k)2
+ σ2

Ω (20)

respectively, where μΩ and σ2
Ω are the mean and variance of

the shadowing, respectively, while m represents the Nakagami
fading factor. If we recall (17) and (18), the distribution of gc(n)
can be expressed by

fgc(g)=
Be(

2
a (μ−ξ log g))

g
erfc

(
a(Lmax+ξ log g−μ)− 2σ2

a
√
2σ2

)

−Be(
2
a (μ−ξ log g))

g
erfc

(
a(Lmin+ξ log g − μ)−2σ2

a
√
2σ2

)
(21)

where Lmax and Lmin are the maximum and minimum path-
loss values in dB, respectively, and they depend on the cell
radius d and minimum distance to the ST, i.e., dmin. In (21),
a = ξβ and B is a constant given by

B =
ξe

(
2σ2

a2

)
aA2(d2 − d2min)

. (22)

The detailed derivation of (21) is given in Appendix C.
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B. Interference Constraint and CR Power Control

To keep a certain level of performance for the primary
network, the aggregate interference Ik at any PR must always
be below a predefined threshold, i.e., Q. The interference Ik
that a PR experiences consists of the aggregate interference Ip
from all transmit nodes in the primary network as well as the
interference Ic = γsgi(k) from the CR network, where γs is the
ST transmit power. In other words, the aggregate interference at
a PR can be calculated by

Ik = Ip + Ic ≤ Q. (23)

It is assumed that the adjacent indoor APs are using orthogo-
nal radio recourses to avoid strong interference among them.
Moreover, the interference between non-adjacent indoor APs,
i.e., Ip, can be negligible or considered as background noise.
This is because signals that come from a primary user should
travel through at least two walls to reach the other primary
APs [33]. However, Ic = γsgi(k) is dominate compared with Ip
because typically macro BS transmits a signal with high power
and then its signal could be high enough to propagate through
the walls of the building where the PR is deployed and generate
interference. Given there are many PRs, it is important to ensure
that ST transmit power γs should always be tightly controlled
to avoid harmful interference on a PR which has the maximum
channel gain toward ST. This will inevitably protect the other
PRs and (23) remains true for all PRs. Therefore, the transmit
power of ST is controlled according to

γs =

⎧⎨
⎩

Q
max
k∈K

gi(k)
, max

k∈K
gi(k) >

Q
γpk

γpk, max
k∈K

gi(k) ≤ Q
γpk

(24)

where γpk is the peak transmit power. The above power control
is similar to (14) which demonstrates the power control under
peak power constraint. It is more suitable for the proposed
system to use the power policy with peak power constraint
rather than power policy with average power constraint for
many reasons. Firstly, in typical cellular networks, the BS
has a limited maximum power that it can transmit with. The
power control with average power constraint does not take into
account this limitation. Secondly, to get as much benefit as
possible of CR network, the SRs would usually be close to the
ST, and so they would be within high SNR regime. This means
that any gain of power control under average power constraint
is minor. Finally, the power control with peak power constraint
is more straight forward as it requires gi only as an input rather
than gi and gc. To this end, the ST can request the worst ICSI,
which belong to the surrounding PRs, from the central unit.
The ST then uses this ICSI to estimate the channel status and
regulate the transmit power. Alternatively, or concurrently, the
ST can use injected uplink pilots to estimate the channel status
assuming that the channel is reciprocal.

C. Spectral Efficiency Analysis

The ST schedules SRs in orthogonal mode to avoid the intra-
cell interference. In this work, time division multiple access

(TDMA) is assumed by which the ST chooses an SR whose
CSI implies the largest channel gain among all other SRs. In
this case, the received signal to interference plus noise ratio, γ́,
for the scheduled SR is equal to

γ́ =
γsgc(n

∗)

I
=

{
Q
I

X
Y , Y > Q

γpk
γpk

I X, Y ≤ Q
γpk

(25)

where X and Y are random variables that represent
max
n∈N

{gc(n)} and max
k∈K

{gi(k)}, respectively, and n∗ is the index

for an SR who has the maximum value of the channel gain. In
(25), I is interference plus noise power. The spectral efficiency
can then be evaluated by

Csys =

∫
log2(1 + γ́)f(γ́)dγ́ (26)

where f(γ́) is the probability density function (PDF) of γ́. By
adopting the extreme value theory [34], f(γ́) converges to

f(γ́) → K1γ́
−1.5

2
exp(−K1γ́

−0.5 −K2)

− K1Kγ́−1

2(Kγ́0.5 + 1)
exp(−K1γ́

−0.5 − KK1)

+
K

2(K + γ́−0.5)2γ́
3
2

(
1− exp(−K1γ́

−0.5 −KK1)
)
.

(27)

See Appendix D for the detailed derivation. In (27),

K =

(
Iδp
Qδc

)0.5

(28)

K1 =

(
γpkδc
I

)0.5

(29)

K2 =

(
γpkδp
Q

)0.5

(30)

where δc and δp are the scale parameters for the cognitive and
interference channels, respectively. A numerical integration of
(26) provides convenient spectral efficiency evaluation.

D. Spectral-Energy Efficiency Trade-Off

The average energy efficiency is given by
(

Eb

N0

)
sys

=

γ̄avg

N0Csys
, where γ̄avg is the average transmit power. From (24),

we have

γ̄avg =E[γs] =

∫
γs(y)fY (y)dy

=

∫ ∞

Q
γpk

Q

2
δ0.5p y−2.5 exp−

(
δp
y

)0.5

dy

+ γpk exp

[
−
(
δpγpk
Q

)0.5
]
= P1 + P2 (31)

where fY (y) is the PDF of Fréchet distribution (refer to (55)
in Appendix D). The transmit power can be modeled as a
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Fig. 4. The average transmit power as a function of
γpk

Q
(N = 20, Q = 0 dB,

D = 1000 m, I
N0

= 1, AdB = 128 dB).

summation of two power components, i.e., P1 and P2. Fig. 4
shows how P1, P2, and γ̄avg change as a function of γpk

Q . We
can notice that P1 is a monotonously increasing function while
P2 is a waterfall curve with respect to γpk

Q . Hence, γ̄avg is
dominated by P2 until a point, after which γ̄avg is relatively
constant and dominated by P1. This gives the conclusion that
γ̄avg can be approximated by

γ̄avg ≈ max(P1, P2). (32)

If we allow the ST to transmit to the best user who has the
maximum channel gain, then the average energy efficiency is
given by

(
Eb

N0

)
sys

=

⎧⎪⎪⎨
⎪⎪⎩

γpk exp

[
−
(

δpγpk
Q

)0.5]
N0Csys

, Csys < Cmax(
Eb

N0

)
max

, otherwise

(33)

where Cmax and
(

Eb

N0

)
max

are the maximum spectral efficiency

and energy efficiency that the CR network can reach, respec-
tively. They are given by

Cmax =

∫
log(1 + γ́)

K

2(K + γ́−0.5)2γ́
3
2

dγ́ (34)

(
Eb

N0

)
max

=
P1

N0Cmax
=

∫∞
Q

γpk

Q
2 δ

0.5
p x−2.5 exp−

(
δp
x

)0.5

dx

N0Cmax
.

(35)

See Appendix E for the detailed derivation of (34). We can

notice that Cmax and
(

Eb

N0

)
max

can be considered as new

parameters that characterize the CR network. In (33), γpk can
be numerically calculated as a function of Csys from (26)
and (27).

So far, the theoretical framework, which numerically evalu-
ates the spectral-energy efficiency trade-off, is established for
system-level CR networks. In the following two sub-sections,
we will focus on low and high SNR regimes for the proposed
network.

1) Low SNR Regime: If we recall (2),
(

Eb

N0

)
min

is giving by(
Eb

N0

)
min

= lim
γ̄avg→0

γ̄avg

N0E
[
log2

(
1 +

γ̄avgX
I

)] (36)

Fig. 5. The average network spectral efficiency of the CR network as a
function of the number of the secondary users (γpk = 43 dB, K = 20, D =

1000 m, I
N0

= 1, AdB = 128 dB).

where the expectation is with respect to the random variable

X . Applying L’Hopital’s Rule into (36),
(

Eb

N0

)
min

can then be

calculated by(
Eb

N0

)
min

=
I ln 2

N0E

[
max
n∈N

{gc(n)}
] . (37)

We can conclude that in a very noisy region, the minimum
energy efficiency in the CR network is characterized by the
cognitive channels of the best SR. Hence, the interference

channels have no impact on
(

Eb

N0

)
min

. The slope of the spectral

efficiency versus Eb

N0
is given by

S0 =

2E2

[
max
n∈N

{gc(n)
]

E

[
max
n∈N

{gc(n)}2
] =

2

k(X)
(38)

with k(X) is the kurtosis of X .
2) High SNR Regime: In the high SNR regime, the avail-

able transmit power and Q are important. If Q is set to be
high, the spectral and energy efficiency converges to Cmax

and
(

Eb

N0

)
max

, respectively. Using (5), the slope of spectral

efficiency for the cognitive network in this case is equal to 1.
The horizontal penalty with respect to the AWGN channel,(

Eb

N0

)
penalty

, is given by(
Eb

N0

)
penalty

= E

[
log2

(
1

X

)]
. (39)

See Appendix F for the detailed derivation.

E. Numerical Results and Discussions

This section presents the simulation results of the spectral
and energy efficiency for a multi-user CR network. The sim-
ulation is based on the Monte Carlo method, which consists
of 106 channel realizations. The analysis is carried out with
the following parameters: I

N0
= 1, β = 3.7, the indoor loss is

8 dB, and A = 120 dB (128 dB in the case of the interference
channel).

Fig. 5 shows the spectral efficiency of the CR network as
a function of the number of SRs. We assume a reasonable
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Fig. 6. The average network spectral efficiency of the secondary network
as a function of the primary receivers (a) with different values of Q

(b) with different values of d
D

, (γpk = 43 dB, N = 20, D = 1000 m, I
N0

=

1, AdB = 128 dB).

Fig. 7. Per-network spectral-energy efficiency trade-off for CR network with
different values of Q (N = 30, K = 20, D = 1000 m, I

N0
= 1, AdB =

128 dB).

transmit power that can be used in a typical cellular network.
The number of PRs is assumed to be 20. We can notice from this
figure that the maximum spectral efficiency is still achievable
even with a reasonable transmit power and does not need to be
unlimited. The spectral efficiency of the CR network improves
with the increase of the number of the SRs due to the additional
gain that comes from the multi-user diversity. The theoretical
results obtained from the numerical integration of (34) agree
with the simulation results.

The increase in the spectral efficiency is, however, sensi-
tive to the interference threshold and the number of the PRs.
Fig. 6(a) shows the impact of the number of the PRs on the
spectral efficiency of the CR network. The number of the SRs
is assumed to be 20 in this example. As shown, the spectral
efficiency decreases quickly with the increase of the number
of PRs. It indicates that adopting the spectrum sharing with
another licensed network is unsuitable if the density of the PRs
is relatively very high. However, the spectral efficiency can be
improved by relaxing the interference threshold of the primary
network, as it is shown in Fig. 6(a). The spectral efficiency can
also be improved if the CR network considers only the SRs
that are within a short distance to the ST. Hence, Fig. 6(b)
shows the spectral efficiency of the CR network as a function
of the number of the PRs with different values of d for a
given D, assuming Q = 0 dB. Clearly, for the given number
of the PRs, the spectral efficiency increases dramatically with
the decreasing of d.

Fig. 8. Per-network spectral-energy efficiency trade-off as a function of (a) the
number of secondary receivers (K = 50, D = 1000 m, I

N0
= 1, AdB =

128 dB) and (b) the number of primary receivers (N = 50, D = 1000 m,
I
N0

= 1, AdB = 128 dB).

Fig. 7 shows the spectral-energy efficiency trade-off for the
CR network. The numbers of SRs and the PRs are assumed
to be 30 and 20, respectively. As we can see, for a given Q,
the spectral-energy efficiency trade-off curve tends to a point
that corresponds to the maximum spectral efficiency, i.e., Cmax.
It also indicates that the high SNR asymptotic tool is valid
only if the CR network is working below its maximum spectral
efficiency. The minimum energy efficiency, defined in (37), is
the same for all curves.

The impact of the multiuser diversity gain on the spectral-
energy trade-off is pointed out in Fig. 8(a) and (b). Thus,
Fig. 8(a) illustrates the spectral-energy efficiency trade-off as
a function of the number of the SRs. We can notice that, for
a given spectral efficiency, increasing the SRs improves the
energy efficiency. This improvement is because the horizontal

penalty spectral-energy efficiency trade-off and
(

Eb

N0

)
min

are

characterized by the cognitive channels only. The impact of
the number of the PRs on the spectral-energy efficiency trade-
off, however, has a different aspect. Thus, from Fig. 8(b), the
number of PRs has impact only on the maximum spectral

efficiency but not on the horizontal penalty nor
(

Eb

N0

)
min

.

V. CONCLUSION

This paper has investigated the spectral and energy efficiency
in interference-tolerant CR networks. The initial analysis has
studied the spectral-energy efficiency trade-off for a link-level
CR network under transmit power and interference constraints.
In the low SNR regime, transmitting a signal with average
power constraint provides better energy efficiency than trans-
mitting a signal with peak power constraint. In addition to that,

the interference channel has no impact on
(

Eb

N0

)
min

required

for reliable communications. In the high SNR regime, however,
transmitting signals with either power constraint gives the same
energy efficiency.

We have also proposed a CR-based cellular network in
which a secondary network shares a spectrum belonging to
an indoor system. This paper has also demonstrated that with
CR technology, cellular operators can share their spectrum
opportunistically with each other to increase the performance
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of their network. One way to do so is to share a spectrum
in the uplink phase of an indoor system. This is indeed an
opportunity to make the implementation of the CR-based cel-
lular network more feasible in the near future without the
necessity of modification at the end user’s handset. An example
of a practical application of CR and its integration with existing
technology, is the use of carrier aggregation applied with CR to
allow greater spectrum accessibility whilst remaining efficient
by using the underutilized spectrum. The challenge is how
to practically estimate the interference channels by the STs.
Relying on channel reciprocity or broadcasting ICSIs can give
some insight to solving this issue.

The spectral and energy efficiency of the proposed network
have been analyzed. By adopting the extreme value theory,
we have derived the spectral efficiency of the system-level
CR network under optimal power allocation. We have studied
the impact of multi-user diversity gain in both the primary
and secondary receivers on the spectral and energy efficiency.
The spectral efficiency of the CR network is relatively large
when the number of primary receivers is small. The spectral
efficiency, however, diminishes rapidly with the increase in the
number of primary receivers. This degradation can be compen-
sated by relaxing the interference threshold or by increasing the
number of SRs that are within a short distance from the ST.

APPENDIX A
PROOF OF THEOREM 1

The minimum energy efficiency
(

Eb

No

)
min

occurs when γavg

approaches zero, i.e.,(
Eb

N0

)
min

= lim
γavg→0

E [γ∗
s(gc, gi)]

N0E
[
log2

(
1 + γ∗

s (gc,gi)gc
N0

)] (40)

where the expectation in the dominator and nominator is with
respect to two random variables, i.e. gi and gc. We can notice
from (10) that γavg vanishes when γ0 approaches gc(max).
Then, (40) can be re-written as (41), shown at the bottom of
the page. Applying L’Hôpital’s Rule into (41) and following

Leibniz integral rule,
(

Eb

No

)
min

is then calculated by

(
Eb

No

)
min

= lim
γ0→gc(max)

×

(
1
γ2
0

) ∫ gc(max)

γ0

∫ Q

1
γ0

−N0
gc

0 f(gc)f(gi)dgcdgi

1
γ0 ln 2

∫ gc(max)

γ0

∫ Q

1
γ0

−N0
gc

0 f(gc)f(gi)dgcdgi

.

(42)

Expression (11) can then be obtained after applying γ0 →
gc(max).

APPENDIX B
DERIVATION OF (12)

Let us first rewrite (7) as

C =

∫ ∞

0

∫ ∞

0

log2

(
1 +

gcγ
∗
s(gc, gi)

N0

)
f(gc)f(gi)dgcdgi.

(43)
In the high SNR regime, for sufficiently large transmit power,
γs(gc, gi))

∗ will be equal to Q
gi

. Let x = gc
gi

and y = gi. In this
case,

f(x) =

∫ ∞

0

yfgc(xy)fgi(y)dy. (44)

If both the cognitive and interference channels follow Rayleigh
distribution (i.e., both gc and gi would be exponentially dis-
tributed with unit-mean), then

f(x) =
1

(1 + x)2
. (45)

Therefore,

C =

∫ ∞

0

log2

(
1 +

xQ

No

)
1

(1 + x)2
dx. (46)

By applying integration by parts method to (46), (12) can be
obtained.

APPENDIX C
DERIVATION OF (21)

The distance from the ST to a given SR is an independent
and identical random variable following a uniform distribution.
Thus, the probability that R ≤ r holds is given by

Fd(r) =

{
2r

d2−d2
min

dmin ≤ r ≤ d

0 otherwise
(47)

where dmin(0 ≤ dmin ≤ d) is the minimum distance between
the ST and a SR. The cumulative distribution function (CDF)
of pathloss in the dB scale can be calculated by

FL(y) = Pr {a log(Ar) ≤ y} =

∫ e
( y

a )
A

dmin

2r

d2 − d2min

dr. (48)

The PDF, i.e., dFL(r)
dr , is then given by

fL(y) =
2e(

2y
a )

aA2 (d2 − d2min)
(49)

(
Eb

N0

)
min

= lim
γ0→gc(max)

∫ gc(max)

γ0

⎛
⎝∫ Q

1
γ0

−N0
gc

0

(
1
γ0

− N0

gc

)
+
∫∞

Q

1
γ0

−N0
gc

Q
gi

⎞
⎠ f(gc)f(gi)dgcdgi

N0

∫ gc(max)

0

⎛
⎝∫ Q

1
γ0

−N0
gc

0 log2

(
gc

γ0N0

)
+
∫∞

Q

1
γ0

−N0
gc

log2

(
1 + gcQ

giN0

)⎞⎠ f(gc)f(gi)dgcdgi

(41)
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where a = ξβ. The channel gain gc(n) =
S(n)
gp(n)

, where S(n) =

gm(n)gs(n) is a random variable derived from (18) to represent
the combined shadowing and fading channel status. The CDF
of gc(n) can be expressed by (50), shown at the bottom of
the page. By differentiating (50) with respect to the random
variable g and by applying Leibniz’s rule, the PDF of gc(n) can
be calculated by (51), shown at the bottom of the page, where
we have used d

dxerfc(x) = 2√
π
e−x2

and w = (ξ log(g) + y −
μ). By some manipulations, (21) can be obtained.

APPENDIX D
DERIVATION OF (27)

To derive an explicit expression for the PDF of the γ́, we
have to first find the distribution of X = max

n=1,...,N
{gc(N)}

and Y = max
k=1,...,K

{gi(K)}. Since gc(1), gc(2), . . . , gc(n) and

gi(1), gi(2), . . . , gi(k) are independent random variables that
are drawn from a common distribution, i.e., (21), then the
CDF of the maximum for any size of the samples is equal
to [Fgc(g)]

N and [Fgi(g)]
K , respectively [35]. Using these

two new distributions may not provide understandable results.
However, the distribution of the maximum function can be
tracked using the extreme-value theory, as we will see in the
following Lemma.

Lemma 1: Let z1, z2, . . . , zn be independent and identically
distributed (i.i.d.) random variables drawn from a common
CDF FZ(z). By setting Z = max

n=1,...,N
{zn}, there exist a se-

quence of constants λ̄, λ̄, δ̄ and some non-degenerate distri-
bution function H̄Z(λ̄, δ̄, ζ̄) such that f(z) converges to the
distribution H̄Z(λ̄, δ̄, ζ̄). The distribution H̄Z(λ̄, δ̄, ζ̄) is called
generalized extreme value distribution (GEVD) [35] and it is
equal to

H̄Z(λ̄, δ̄, ζ̄) = exp−
[
1 + ζ̄

(
z − λ̄

δ̄

)]−1
ζ

(52)

where λ̄, δ̄, and ζ̄ are the location, scale, and shape parameters,
respectively. The GEVD inherently contains the three well-
known extreme value distributions, i.e., Gumbel, Weilbull, and
Fréchet distributions. If ζ̄ > 0, then the distribution converges

to Weilbull. If ζ̄ < 0, it converges to Fréchet distribution. If
ζ̄ = 0, then it converges to Gumbel distribution. It has been
found that the following condition is sufficient to determine
if FX(x) and FY (y) belong to type II or Fréchet distribution
domain of attraction [34, Theorem 1.6.1]

lim
t→∞

tf(t)

1− F (t)
= α > 0. (53)

Therefore,
FX(x) → exp−

(
x− λc

δc

)β

(54)

FY (y) → exp−
(
y − λp

δp

)β

(55)

where λc = λ̄c − δ̄c
ζ̄c

, δc =
δ̄c
ζ̄c

, λp = λ̄p − δ̄p
ζ̄p

, β = − 1
ζ̄

, and

δp =
δ̄p
ζ̄p

. By applying Theorem 9.5 of [35], δc and δp can

be calculated by δc = F−1
gc

(
1− 1

N

)
and δp = F−1

gi

(
1− 1

K

)
,

respectively. Here, λc and λp both approach 0, and β always
equals −0.5 for all cases. Due to the complicated distribution
of channel gain, finding closed from expressions for δc and
δp is difficult. In this paper, however, we adopt the maxi-
mum likelihood method to estimate the parameters of (52),
and consequently δc and δp [35]. Other methods to estimate
these parameters can be found in [36]. Now, the conditional
distribution of γ́, i.e., Pr{γ́ ≤ γ́0}, can be expressed by (56),
shown at the top of the next page. Expression (27) is obtained
by differentiating (56) with respect to γ́.

APPENDIX E
DERIVATION OF (34)

In (56), if we assume γ̄ → ∞, then the term
exp{−(K1γ́

−β)} vanishes. Therefore, the PDF of the random
variable γ́ is given by

f(γ́) ≈ K

2(K + γ́−0.5)2γ́
3
2

(57)

which is then used to calculate the Cmax, as expressed by (34).

Fgc(g) =

∫ Lmax

Lmin

2e(
2y
a )

aA2 (d2 − d2min)

{
1

2
+

1

2
erfc

(
ξ log(geξ

−1y)− μ√
2σ2

)}
dy (50)

fgc(g) =
2ξ

g
√
πaA2 (d2 − d2min)

√
2σ2

e(
2
a (μ−ξ log g))

∫ Lmax+ξ log g−μ

Lmin+ξ log g−μ

e(
2w
a )e

−
(

w2

2σ2

)
dw

=B
e(

2
a (μ−ξ log g))

g

[
erfc

(
aw − 2σ2

a
√
2σ2

)]Lmax+ξ log g−μ

Lmin+ξ log g−μ

(51)
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F (γ́) = exp

{
−
(
γpkδc
Iγ́

)β

−
(
δpγpk
Q

)β
}

+ βδβp

∫ ∞

Q
γpk

y−(β+1) exp

{
−
(
Qδc
Iγ́y

)β

−
(
δp
y

)β
}
dy

= exp
{
−(K1γ́

−β)−K2

}
+

Kγ́β

(Kγ́β + 1)

(
1− exp

[
−
(
K1γ́

−β + KK1

)])
(56)

APPENDIX F
DERIVATION OF (39)

From (6), we have(
Eb

N0

)
penalty

= lim
SNR→∞

(
log2(SNR)−E[log2(1+SNRX)]

S∞

)
(58)

where the expectation is with respect to the random variable X .
Knowing that

∫∞
0 f(X)dX = 1, (58) can be re-written as(

Eb

N0

)
penalty

=

∫ ∞

0

log2

[
lim

SNR→∞

SNR
(1 + SNRX)

]
f(X)dX.

(59)

Applying L’Hôpital’s rule into (59) leads to(
Eb

N0

)
penalty

=

∫ ∞

0

log2

(
1

X

)
f(X)dX (60)

which is the expected value of log2
(

1
X

)
and (39) is then

obtained.
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