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Abstract 

Energy deficiency can suppress reproductive functions in vertebrates. As the orchestrator of 

reproductive function, endocrine activity of the hypothalamo-pituitary-gonadal (HPG) axis is 

potentially an important mechanism mediating such effects. Previous experiments in wild-

caught birds found inconsistent relationships between energy deficiency and seasonal 

reproductive function, but these experiments focused on baseline HPG axis activity and none 

has investigated the responsiveness of this axis to endocrine stimulation. Here, we present 

data from an experiment in Abert’s Towhees, Melozone aberti, using gonadotropin-releasing 

hormone (GnRH) and luteinizing hormone (LH) challenges to investigate whether energy 

deficiency modulates the plasma testosterone (T) responsiveness of the HPG axis. Wild-

caught birds were either ad libitum-fed or energetically constrained via chronic food 

restriction during photoinduced reproductive development. Energy deficiency did not 

significantly affect the development of reproductive morphology, the baseline endocrine 

activity of the HPG axis, or the plasma T response to GnRH challenge. Energy deficiency 

did, however, decrease the plasma T responsiveness to LH challenge. Collectively, these 

observations suggest that energy deficiency has direct gonadal effects consisting in decreased 

responsiveness to LH stimulation. Our study, therefore, reveals a mechanism by which 

energy deficiency modulates reproductive function in wild birds in the absence of detectable 

effects on baseline HPG axis activity. 

 

Summary statement 

Energy deficiency in an adult male songbird had no detectable affect on the development of 

reproductive morphology, but constrained the endocrine responsiveness of the testes. 

 

Keywords 

Food restriction; Luteinizing hormone; Passerine; Photoperiod; Reproductive development; 

Testosterone.
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Introduction 

During prolonged periods of energy deficiency (i.e., when energy expenditure 

exceeds energy intake), animals prioritize investment of energy in the requirements for 

survival over investment in reproductive processes (Lack, 1954; Gittleman and Thompson, 

1988; Hill et al., 2008). For example, negative energy balance can suppress reproductive 

cyclicity in mammals (Parfitt et al., 1991; De Souza et al., 1998; Klentrou and Plyley, 2003; 

Hill et al., 2008), and can also suppress reproductive function in fish (Roff, 1983), reptiles 

(Ford and Seigel, 1989), and birds (Hahn et al., 2005). However, the mechanisms responsible 

for suppression of reproductive function during times of energy deficiency in non-

mammalian vertebrates are poorly understood. 

Reproduction is regulated by the activity of the hypothalamo-pituitary-gonadal (HPG) 

axis, beginning with the release of gonadotropin-releasing hormone (GnRH) from the 

hypothalamus (Sharp, 2005; Zohar et al., 2010; Clarke, 2011). This neuropeptide stimulates 

the secretion of luteinizing hormone (LH) from the anterior pituitary gland (Kuenzel, 2000; 

Zohar et al., 2010; Clarke, 2011). In males, LH stimulates gonadal growth, gametogenesis, 

and the synthesis and secretion of testosterone (T; Murton and Westwood, 1977). 

Testosterone regulates a variety of male reproductive characteristics, such as the development 

of primary (Kempenaers et al., 2008) and secondary sexual characteristics (Buchanan et al., 

2003), courtship, and aggression towards conspecific males (Hegner and Wingfield, 1987; 

Landys et al., 2010). 

Food restriction of captive animals has often been used to investigate the effects of 

negative energetic balance (Hahn et al., 2005; Davies and Deviche, 2014). In birds, studies 

using this manipulation have provided evidence for a multitude of effects on the HPG axis, 

including the synthesis and/or secretion of GnRH (Ciccone et al., 2007), LH (Hahn, 1995; 

Kobayashi et al., 2002), and T (Richard-Yris et al., 1987; Pérez-Rodríguez et al., 2006), and 

testis growth (O’Brien and Hau, 2005; Perfito et al., 2008). However, data remain sparse and 

are primarily drawn from domesticated species, and it is, therefore, unclear whether results 

can be extended to wild birds. 

In many animals, the activity of the HPG axis changes seasonally such that the gonads 

recrudesce at the beginning of each breeding period and regress at the end (Murton and 

Westwood, 1977; Silverin, 1984; Silverin et al., 1997; Dawson, 2008). Because photoperiod 

(day length) often forecasts environmental conditions at a given location, many seasonal 

breeders use the vernal increase in photoperiod as the primary cue to stimulate GnRH 

secretion and initiate gonadal development (Farner and Wingfield, 1980; Dawson et al., 
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2001; Wingfield, 2008). As changes in day length at a given latitude are constant from year to 

year, the activity of the HPG axis can still be modulated by non-photoperiodic cues, such as 

ambient temperature (Dawson, 2005; Schaper et al., 2012b) and food availability (Wingfield 

and Kenagy, 1986; Hahn et al., 2005; Davies and Deviche, 2014). The use of these cues is 

thought to improve the synchronization of reproductive development and behaviours with 

optimal environmental conditions in a given year (Baker, 1938; Lack, 1968; Bronson and 

Heideman, 1994). However, the physiological mechanisms by which non-photoperiodic cues 

fine-tune seasonal activity of the HPG axis remain elusive. 

The measurement of baseline (pre-challenge) plasma levels of reproductive hormones 

can provide information about the effects of energetic balance on HPG axis activity, but these 

effects can be masked by high intra-individual variation in baseline hormone levels (Jawor et 

al., 2006; McGlothlin et al., 2010). A complementary approach to determine the functionality 

of the HPG axis is to measure changes in plasma T in response to an endocrine challenge 

such as a standardized LH or GnRH injection (Deviche et al., 2012a). This approach may 

elucidate how negative energetic balance suppresses activity of the HPG axis for several 

reasons. First, unlike pre-challenge plasma T, post-challenge plasma T levels are individually 

repeatable (Jawor et al., 2006), potentially revealing effects of energetic status that would 

otherwise be masked by high intra-individual variation. Second, the plasma T response to 

GnRH challenge parallels the seasonal change in baseline plasma T (Hirschenhauser et al., 

2003; Jawor et al., 2006; DeVries et al., 2011), and a range of supplementary environmental 

cues, such as the availability of preferred food types (Hau et al., 2000; Watts and Hahn, 

2012), precipitation (Small et al., 2008a), and song (Wingfield and Wada, 1989; Small et al., 

2008b), can rapidly elicit an increase in endocrine activity of the HPG axis. Therefore, the 

responsiveness to endocrine challenges is biologically meaningful. To our knowledge, only 

one other study has used this approach to examine the regulation of HPG axis activity in 

response to negative energetic balance in a wild-caught bird. In this study on House Finches, 

Haemorhous mexicanus, food restriction constrained testicular growth and the photoinduced 

rise in plasma T, but did not detectably influence the plasma T response to GnRH or LH 

challenge (Valle et al., unpublished). In Abert’s Towhees, Melozone aberti (Baird), negative 

energetic status likewise constrained the photoinduced rise in plasma T, but, unlike in the 

House Finch, this treatment had no effect on testicular growth (Davies et al., 2015a). 

Collectively, the findings of these two studies suggest species-specific responses of the HPG 

axis to energy deficiency. 
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Here, we used GnRH and LH challenges to investigate the effect of negative energetic 

balance on reproductive function in the Abert’s Towhee. This species is a sedentary sparrow 

found in riparian habitat throughout the Sonoran desert. The timing of breeding in towhees 

depends on precipitation and other non-photoperiodic environmental cues (Tweit and Finch, 

1994).The Abert’s Towhee, therefore, is particularly appropriate for studies aimed at 

examining how non-photic factors, such as food availability, modulate activity of the HPG 

axis. Wild-caught male towhees held in captivity were energetically constrained via chronic 

food restriction. To verify that experimental birds were in negative energetic balance, we 

measured body mass, energy stores (as estimated by fat stores and pectoral muscle size), and 

the motivation of birds to forage during giving-up density (GUD) trials, which determine how 

depleted a patch of food must become before an animal ceases foraging (Lerman et al., 2012). 

The HPG axis activity of food-restricted and ad libitum-fed (control) birds was assessed by 

determining their baseline plasma LH and T, as well as plasma T following separate GnRH 

and LH challenges. We predicted that negative energetic balance would attenuate pre-

challenge as well as post-challenge plasma T. Finally, we tested the hypothesis that the later, 

but not the early, stages of reproductive development are sensitive to energetic status by 

measuring pre-challenge plasma LH and T and challenge-induced plasma T in birds exposed 

to short or long day lengths. 

 

Results 

Body mass 

 Body mass was affected by food availability (F1,16 = 15.33, P = 0.001), time (F2,32 = 

127.22, P < 0.001), and the interaction between these factors (F2,32 = 121.50, P < 0.001; Fig. 

1). Body mass of ad libitum-fed birds was similar throughout the experiment (Tukey HSD, P 

> 0.05), whereas the body mass of food-restricted birds decreased after two weeks (Tukey 

HSD, P < 0.05), and remained at the reduced mass for the duration of the study. 

Fat score 

Furcular fat score was affected by food availability (F1,16 = 10.06, P = 0.006), time 

(F2,32 = 61.65, P < 0.001) and the interaction between these two factors (F2,32 = 6.62, P = 

0.004; Fig. 1). Fat scores of birds in both treatment groups decreased over the first two weeks 

of the study, but the magnitude of decrease was greater in food-restricted than in ad libitum-

fed birds (Tukey HSD, P < 0.05). For the remainder of the study, fat scores did not change 

further in birds in either group (Tukey HSD, P > 0.05). 
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Pectoral muscle score 

Pectoral muscle score was affected by food availability (F1,16 = 138.87, P < 0.001), 

time (F2,32 = 51.53, P < 0.001) and the interaction between these two factors (F2,32 = 51.53, P 

< 0.001; Fig. 1). Muscle score of ad libitum-fed birds was similar throughout the experiment 

(Tukey HSD, P < 0.05). Muscle score of food-restricted birds decreased after two weeks and 

remained at the reduced level for the duration of the study (Tukey HSD, P > 0.05). 

Cloacal protuberance width 

 Cloacal protuberance width increased over the duration of the study (F2,32 = 19.03, P 

<0.001), but was not significantly affected by food availability (F1,16 = 1.02, P = 0.33) or the 

interaction between this factor and time (F2,32 = 1.13, P = 0.34; Fig. 1). Post hoc analysis 

showed that cloacal protuberance width increased between pre-restriction and exposure to 

short days (SD), and again between when birds were exposed to SD and long days (LD; 

Tukey HSD, P < 0.05). 

Giving-up density (GUD) 

Food-restricted birds consumed more food (i.e., had lower GUDs) than ad libitum-fed 

birds (ad libitum: 0.59 ± 0.17 g; food-restricted: 1.52 ± 0.13 g; t16 = -4.34, P = 0.0005). 

Effects of Photoperiod and Food Availability on baseline plasma LH and T 

Transfer from SD to LD increased pre-challenge plasma LH and T in both ad libitum-

fed and food-restricted birds (LH: F1,16 = 7.23, P = 0.016; T: F1,16 = 13.94, P = 0.002; Fig. 2). 

However, there was neither a significant effect of food availability on pre-challenge plasma 

levels of these hormones (LH: F1,16 = 3.13, P = 0.096; T: F1,16 = 0.09, P = 0.77; Fig. 2) nor a 

significant interaction between photoperiod and food availability (LH: F1,16 = 1.28, P = 0.28; 

T: F1,16 = 2.25, P = 0.15; Fig. 2). 

Effects of GnRH challenge on plasma T 

Plasma T was affected by the two-way interactions between GnRH challenge and 

food availability (F1,16 =10.34, P = 0.005), and GnRH challenge and photoperiod (F1,16 

=11.86, P = 0.003; Fig. 3). Under SD, GnRH challenge significantly increased plasma T in 

ad libitum-fed birds, but not in food-restricted birds. Under LD, GnRH challenge increased 

plasma T by a similar degree in both ad libitum-fed and food-restricted birds. GnRH 

challenge increased plasma T in ad libitum-fed and food-restricted LD-exposed birds to a 

higher level compared to ad libitum-fed and food-restricted SD-exposed birds. 
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Effects of LH challenge on plasma T 

There was an effect of the three-way interaction between photoperiod, food 

availability, and LH challenge on plasma T (F1,16 = 7.35, P = 0.015; Fig. 3). Under SD, LH 

challenge elicited a significant increase in plasma T in ad libitum-fed birds, but not food-

restricted birds. By contrast, LH challenge during LD increased plasma T in both ad libitum-

fed and food-restricted birds. However, the magnitude of the increase was significantly 

higher in ad libitum-fed than food-restricted birds. 

Correlations between LH- and GnRH challenge-induced change in plasma T in long day 

birds 

The increase in plasma T induced by GnRH challenge was correlated with the increase in 

plasma T induced by LH challenge in LD-exposed ad libitum-fed birds (R2 = 0.94, P < 

0.0001; Fig. 4), but not in LD-exposed food-restricted birds (R2 = 0.12, P = 0.36; Fig. 4). 

 

Discussion 

In mammals, the HPG axis is pivotal to adjust the timing of seasonal reproductive 

development and suppresses reproductive function during periods of energetic hardship 

(Bronson and Heideman, 1994; Hill et al., 2008). The mechanisms responsible for 

suppression of reproductive function during negative energy balance in non-mammalian 

vertebrates, including birds, are poorly understood (Hahn et al., 2005; Davies and Deviche, 

2014). To that end, we used chronic food restriction of captive adult male Abert’s Towhees to 

test the hypothesis that energetic status modulates plasma levels of reproductive hormones 

and development of reproductive morphology. Furthermore, since endocrine challenges 

potentially expose inter-individual differences in HPG axis function that are otherwise 

obscured by intra-individual variation in plasma hormone levels (Jawor et al., 2006; 

McGlothlin et al., 2010), we also examined whether the plasma T response to GnRH or LH 

challenge was constrained by negative energy balance. We verified that food restriction 

treatment was effective in reducing body mass and energy stores (as estimated by furcular fat 

stores and pectoral muscle size), which indicated that food-restricted birds were in negative 

energetic status. We also used a behavioural assay (GUD) to test if food restriction increased 

the motivation of towhees to forage from an artificial food patch. Consistent with this 

conclusion, food restriction decreased GUD, indicating that food-restricted birds were more 

motivated to forage than ad libitum-fed birds. 
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Reproductive development and baseline endocrine activity 

As day lengths increase during the late winter and early spring, the HPG axis of 

photoperiodic birds is activated, resulting in gonad development, T secretion, and 

development of T-dependent secondary sexual characteristics (Dawson et al., 2001; Deviche 

et al., 2010). When transferred from SD to LD, towhees in the present study increased their 

pre-challenge plasma LH and T, and developed their cloacal protuberance, the size of which 

in this species positively correlates with testis size (Davies et al., 2015b). These data are 

consistent with the hypothesis that, similar to most species studied to date, Abert’s Towhees 

are photoperiodic. 

It is generally thought that the early stages of reproductive development in birds are 

chiefly regulated by photoperiod and are relatively insensitive to energetic status (Hahn et al., 

2005), whereas the later stages of development are more sensitive to energetic status. 

Accordingly, most avian studies examine the effects of energetic status on the HPG axis 

during LD, and there are few experimental tests of whether the early stages of development 

are sensitive to energetic status. We, therefore, tested whether energetic status modulates 

HPG axis activity and development of reproductive morphology during SD as well as LD 

exposure. Contrary to our predictions, we found no evidence that negative energy balance 

caused by food restriction constrained baseline endocrine activity of the anterior pituitary 

gland or the testes. Likewise, we found no evidence that growth of the testes, as indicated by 

cloacal protuberance, was affected by energetic status. 

Our finding that reproductive development was not significantly influenced by food 

restriction contrasts with findings from studies of domesticated avian species, in which food 

restriction or deprivation reduced plasma LH and follicle-stimulating hormone (FSH; Tanabe 

et al., 1981; Hoshino et al., 1988; Lal et al., 1990; Kobayashi and Ishii, 2002), and plasma 

oestradiol and progesterone (Tanabe et al., 1981; Hoshino et al., 1988). Furthermore, this 

treatment reduced ovary and testis mass (Tanabe et al., 1981; Kobayashi et al., 2002; Ciccone 

et al., 2007). Our findings are, however, more consistent with studies of wild-caught birds 

exposed to food restriction in captivity, which have revealed conflicting relationships 

between effects of this manipulation on body mass and condition, and testicular development. 

For example, the findings from studies in which food restriction reduced body mass are 

inconsistent. In both the European Starling, Sturnus vulgaris, and the House Finch, food 

restriction reduced photoinduced testicular growth (Dawson, 1986; Meijer, 1991; Valle et al., 

unpublished), whereas testicular growth of Abert’s Towhees was unaffected by this treatment 
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(Davies et al., 2015a). Interestingly, testicular growth in starlings was decreased only when 

body mass was concurrently decreased, indicating that a decrease in body mass may be 

necessary for food restriction to negatively affect gonadal development (Dawson, 1986; 

Meijer, 1991). In contrast, some studies have found effects of food limitation even when 

body mass and fat stores were unaffected. For example, in the Garden Warbler, Sylvia borin, 

and the Zebra Finch, Taeniopygia guttata, food restriction constrained testicular growth, 

without affecting body mass (Bauchinger et al., 2008; Perfito et al., 2008). The body mass, 

fat score, and testicular growth of Red Crossbills, Loxia curvirostra, were also resistant to 

food restriction, but this treatment delayed the photoinduced plasma LH surge (Hahn, 1995). 

Taken together, these observations do not indicate a consistent causal relationship between 

body mass, energy reserves, and gonad development, and our results are consistent with this 

conclusion. In Abert’s Towhees, chronic food restriction reduced body mass and energy 

reserves, as estimated by fat stores and pectoral muscle mass. However, this treatment did not 

attenuate the stimulatory effect of LD exposure on pre-challenge plasma LH and T, or cloacal 

protuberance width. Thus, the photoinduced reproductive development of male Abert’s 

Towhees was not detectably affected by a reduction of food availability and associated 

decrease in energy reserves. If the same applies to free-ranging birds, it is predicted that 

vernal activation of the reproductive system in male Abert’s Towhees is relatively 

independent of food supply (mostly terrestrial arthropods; Tweit and Finch, 1994) that these 

birds preferentially consume. Recent work comparing free-ranging urban and rural Abert’s 

Towhees belonging to the same population as studied here support this prediction (S. Davies 

et al., unpublished). In this previous study, urban and rural habitats did not differ with respect 

to their terrestrial arthropod abundance, and urban and rural birds had similar body masses 

and fat reserves. Yet urban males developed their reproductive system earlier in the spring 

than non-urban males, suggesting in these birds that factors other than food availability and 

body condition determine population differences in the onset of vernal gonadal development. 

Given the results of studies on other species described above, further research examining the 

relationships between food availability, body condition, and photoinduced reproductive 

development in species with diverse life history characteristics are warranted to elucidate the 

bases of interspecific differences in the effects of food limitation on the vernal development 

of the reproductive system. 
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Testicular endocrine responsiveness to hormone challenges 

Besides using an increase in photoperiod to initiate gonadal development, most free-

ranging birds rely on multiple non-photic factors, including food resources, to fine-tune the 

activity of their reproductive system and better synchronize this activity with environmental 

conditions (Lynn et al., 2010; Fokidis et al., 2013; Davies and Deviche, 2014). The 

neuroendocrine mechanisms that mediate the reproductive effects of non-photic factors 

remain poorly known, especially in wild birds, and may involve actions at the hypothalamus 

(e.g., GnRH synthesis or secretion), pituitary gland (e.g., LH production or secretion), and/or 

gonad (e.g., T production or secretion) levels. To investigate this question, we compared the 

plasma T response of SD- and LD-exposed ad libitum-fed and food-restricted birds to GnRH 

or LH challenge. 

A GnRH challenge stimulated T secretion and this effect, while more pronounced in 

LD- than SD-exposed birds, did not depend on whether birds were fed ad libitum or food-

restricted. Hormone challenges have been more commonly used to assess the activity of the 

HPG axis in birds that are in breeding condition (Jawor et al., 2006; Jawor et al., 2007; 

McGlothlin et al., 2010) than in non-breeding condition. However, a GnRH challenge also 

increased plasma T in non-breeding Northern Cardinals, Cardinalis cardinalis (DeVries et 

al., 2011) and in photorefractory White-crowned Sparrows, Zonotrichia leucophrys gambelii 

(Wingfield et al., 1979). These results suggest that the anterior pituitary gland and gonads 

retain GnRH and LH receptors, respectively, outside of the breeding season, but the affinity 

and/or binding capacity of these receptors may increase as the breeding season approaches 

(DeVries et al., 2011). A LH challenge likewise increased plasma T, but, unlike a GnRH 

challenge, stimulated plasma T more in ad libitum than food-restricted birds. This difference 

was observed whether males were photostimulated or not, but the effect of food availability 

on the plasma T response to LH challenge was particularly pronounced in LD-exposed 

towhees. Indeed, ad libitum-fed and food-restricted LD-exposed towhees had similar plasma 

T before LH challenge, but after this treatment plasma T was more than twice as high in ad 

libitum-fed than in food-restricted birds. These results suggest that food restriction of towhees 

in breeding condition (i.e., photostimulated) constrains, but does not completely inhibit, the 

gonadal responsiveness to LH. Furthermore, we expected that the different levels of the HPG 

axis within a LD-exposed towhee would be synchronized such that the plasma T response to 

a GnRH challenge and a LH challenge would be correlated. This was the case in ad libitum-

fed towhees. However, such synchronization was abolished by food restriction. In contrast to 
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the findings of the current study, a similar experiment in male House Finches found no 

evidence that food restriction influences the responsiveness of the HPG axis to endocrine 

stimulation (Valle et al., unpublished). This disparity between findings of the two studies 

suggests species-specific modulation of the activity of the HPG axis during periods of energy 

deficieny. Alternatively or in addition, differences between the results obtained in House 

Finches and in the present study may result from differences in experimental design and 

statistical analysis. 

Collectively, these observations do not exclude the possibility that food restriction 

influenced the HPG axis at the pituitary gland level, but do demonstrate that negative 

energetic status caused by food restriction has direct gonadal effects consisting in decreased 

testicular sensitivity to the stimulatory action of LH. These findings suggest that, in male 

towhees, the basic pattern of photoinduced gonadal development and elevated T secretion 

may be insensitive to food limitation and a reduction in energy reserves. However, food 

restriction, especially during photostimulation, may attenuate the stimulatory effects of non-

photic factors that are mediated by increased LH secretion, possibly via decreases in the 

number of gonadal LH receptors. An alternative, but not mutually exclusive, mechanism 

responsible for these effects is an increase in gonadally produced gonadotropin-inhibitory 

hormone (GnIH), the activity of which decreases gonadal T secretion and is responsive to 

metabolic signals (McGuire and Bentley, 2010; McGuire et al., 2013). We point out that our 

study was conducted on male birds, which are thought to commit less energy to reproduction 

than do females. We predict, therefore, that reproductive development and gonadal endocrine 

responsiveness of female birds are more likely to be contrained by negative energetic status. 

 Constraining the testicular endocrine responsiveness to stimulation in free-ranging 

birds may contribute to fine-tuning reproductive behaviors to the environmental conditions in 

a given year. Indeed, a decreased plasma T response to normally stimulatory non-photic 

factors would presumably also decrease the probability of food-limited birds expressing 

energetically costly T-dependent behavior such as singing and territory defense (Lynn et al., 

2010) when energy supplies are limited and environmental conditions for successful breeding 

are not appropriate. In support of this proposition, spring snow storms, which likely made 

foraging more challenging, were associated with decreased plasma T and temporary 

abandonment of territories by free-ranging male Song Sparrows, Melospiza melodia 

(Wingfield, 1985). Conversely, a return to favorable food conditions may result in male birds 

increasing their testicular sensitivity to LH and, therefore, also becoming more responsive to 

non-photic stimulatory environmental cues other than food resources. In this situation, 
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increased T secretion may enhance the expression of reproductive behavior and the 

development of T-dependent secondary sexual characteristics (e.g., cloacal protuberance), 

altogether ultimately promoting earlier onset of breeding. These changes would also be 

adaptive because, within limits, early seasonal breeding in many species is associated with 

increased reproductive success (Davies and Deviche, 2014). 

In summary, using endocrine challenges, we reveal a mechanism by which energy 

deficiency constrains reproductive function in wild birds. This constraint was observed in the 

absence of similar detectable constraints on the development of reproductive morphology or 

the baseline endocrine activity of the HPG axis. We suggest that this constraint on endocrine 

responsiveness provides a potential mechanism by which wild birds use food availability to 

synchronize reproductive function with optimal environmental conditions. 

 

 

Materials and Methods 

Capture sites and captive conditions 

We collected eighteen adult male Abert’s Towhees from the Tonto National Forest, 

Maricopa County, Arizona, USA between January 9th – 14th, 2014 (417 m above sea level; 

latitude: 33°32’N; longitude: 111°37’W). Birds were captured using conspecific playback 

and mist-nets. The length of the wing chord distinguished adult males (≥ 92 mm) from adult 

females (Pyle, 1997). Upon capture, each bird received a numbered aluminium leg band and 

was transported to Arizona State University’s Animal Care Facility where it was individually 

housed under a SD (10L:14D) photoperiod in visually isolated cages (76 cm L x 46 cm W x 

46 cm H), received ad libitum water, and initially received ad libitum food (black oil 

sunflower seeds). 

Food restriction and experimental design 

After all birds were transferred over 7 days to a maintenance diet (Mazuri small bird 

maintenance diet, PMI Nutrition International, Richmond, IN, USA), the daily food 

consumption of each individual was monitored for one week (Fig. 1). This was done by 

providing each bird with a known amount of food and measuring the amount that remained 

24 hours later, both in the food bowl and on the cage floor. After this one week monitoring 

period, we randomly assigned birds to one of two treatment groups: (1) ad libitum food 

availability or (2) restricted food availability. Birds in the restricted group were given a food 

ration equal to 70% of their daily ad libitum food consumption. We selected this restriction 

regime based on previous studies on Abert’s Towhees that demonstrated that a diet of 70% of 
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daily ad libitum consumption reduces body mass by approximately 15% (Davies et al., 

2015a). In order to maintain a 15% reduction in body mass, we weighed birds daily to the 

nearest 0.5 g. If a bird’s mass dropped below its target mass, we immediately fed it the 

difference (in grams) between its current mass and its target mass. All food-restricted birds 

reached their target mass after approximately 7 – 10 days of food restriction. 

The experiment consisted of three phases (Fig. 1). In phase 1, we investigated the 

effects of GnRH and LH challenges (see below) on plasma T while birds were exposed to 

SD. In phase 2, we transferred birds to long days LD (16L:8D) and performed behavioural 

tests (GUD, see below). After three weeks of LD exposure, phase 3 entailed again 

investigating the effects of GnRH and LH challenges (see below). At the end of the 

experiment, all birds received ad libitum food for one week before being released at the 

capture site. 

Morphometrics 

Before food restriction and at the time of each challenge, the amount of furcular fat 

was visually estimated by assigning a score of 0 – 5 (a score of 0 representing no fat, 5 

representing bulging fat deposits; Helms and Drury, 1960) and cloacal protuberance width (± 

0.1 mm), an androgen-dependent secondary sexual characteristic, was measured using digital 

callipers. The pectoral muscles in birds are the largest store of protein, and muscle protein 

can be converted into energy via gluconeogenesis. The size of the pectoral muscles was 

estimated on a scale ranging from 0 – 3 (0 representing concave pectoral muscles and a 

prominent keel, 3 representing convex pectoral muscles that protruded above the keel; 

Salvante et al., 2007). 

Blood samples and hormone treatments 

We investigated the effects of GnRH and LH challenges on plasma T while birds 

were exposed to SD (10th February 2014; phase 1) and then again to LD (phase 3; see below). 

For this, we collected a blood sample (200 µl) from the right jugular vein into a heparinised 

microsyringe within 3 minutes of removing a bird from its home cage. Less than 3 minutes 

later, we gave one randomly assigned intrajugular injection of either synthetic GnRH-I 

(Sigma Chemical Co., MO, USA; 25 µg/kg body mass) or freshly prepared ovine LH solution 

(The National Peptide and Hormone Program, Torrance, CA; 1 mg/kg body mass) dissolved 

in 100 µl of sterile saline solution (0.9% NaCl). Birds were then placed into individual 

breathable cloth bags and bled again (200 µl) 20 minutes later. The injection volumes, 

hormone concentrations, and times between injection and blood sample are similar to those of 

previous studies on passerines, which have successfully used these treatments to assess HPG 
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functionality (Jawor et al., 2006; McGlothlin et al., 2010; Deviche et al., 2012a). Blood 

samples were placed on ice immediately after collection and centrifuged within one hour. 

Plasma was harvested and stored at -80 °C until assayed for LH and T. One week later (17th 

February 2014) these procedures were repeated, but each bird received the opposite hormone 

treatment to the first week. 

To determine the endocrine and morphological effects of LD exposure and to 

compare the effectiveness of GnRH and LH challenges in stimulating plasma T in SD- and 

LD-exposed birds, the above procedure was repeated one month later (10th and 17th March 

2014), after the birds had been exposed to LD for 3 weeks. 

Giving-up density (GUD) Trials 

Between phases 1 and 3 of the main experiment, we conducted a series of giving-up 

density (GUD) trials. Giving-up density examines how depleted a patch of food must become 

before an animal ceases foraging (Abu Baker and Brown, 2009; Lerman et al., 2012) and can 

be used to estimate hunger and the motivation to forage. We created a homogenous sand-food 

mixture using dry sand that was pre-strained of large grains using a wire mesh strainer. We 

thoroughly mixed the strained sand with the maintenance diet at a food:sand weight ratio 

equal to 1:150, which had previously been used to quantify GUD in free-ranging Abert’s 

Towhees (Lerman et al., 2012). 

We filled clear plastic trays (29 cm L x 18 cm W x 13 cm H) with approximately 4 

cm of the sand-food mixture. Other studies on Abert’s Towhees and other bird species used a 

similar depth of sand (Abu Baker and Brown, 2009; Lerman et al., 2012). Lerman et al. 

(2012) used 24 hour trials to quantify GUD of free-ranging Abert's Towhees, but these 

authors did not investigate captive, food-restricted birds. Out of concern that the food-

restricted birds might consume all the food provided in their tray, we first tested the effects of 

2, 4, 6 or 8 hour-long trials. Residual food was present in the trays at all time points, but little 

food was eaten after 2 or 4 hours. Therefore, for the GUD trials, we selected the intermediate 

time of 6 hours. 

In order to train the birds to feed from the plastic trays, during the first week of LD 

exposure all birds were provided sand-filled trays scattered with a small amount of food for at 

least 24 hours. During the two days of GUD trials, we placed the filled trays in the birds' 

cages at 10 AM each day. Birds also received their normal food ration as described above. 

We collected the food remaining in each tray six hours later by separating it from sand using 

a wire mesh strainer, and then weighed it to the nearest milligram. The weight (g) of 

remaining food was used to calculate GUD. 
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Hormone assays 

To quantify plasma LH, we used the radioimmunoassay described by Sharp et al. 

(1987) with slight modifications. This radioimmunoassay has been used to determine plasma 

LH in a many bird species (Lal et al., 1990; Lea et al., 1991; Malecki et al., 1998; Ciccone et 

al., 2007; Schaper et al., 2012a; Fraley et al., 2013), including multiple emberizid sparrows 

(Meddle et al., 2002; Deviche et al., 2008; Wingfield et al., 2012; Deviche et al., 2012a; 

Deviche et al., 2012b). Briefly, the reaction volume of 60 µl was comprised of 20 µl of 

plasma sample or standard, 20 µl of primary rabbit LH antibody, and 20 µl of I125-labelled 

purified chicken LH. The primary antibody was precipitated to separate free and bound I125 

label using 20 µl of donkey anti-rabbit precipitating serum and 20 µl of non-immune rabbit 

serum. All samples were assayed in duplicate and in a single assay, for which the intra-assay 

coefficient of variation was 3.6% and the minimum detectable concentration was 0.2 ng/ml. 

The post-GnRH challenge samples could not be assayed for LH. 

We measured plasma T using a validated (Davies and Deviche, 2015) commercial 

enzyme-linked immunoassay following the manufacturer’s recommendations (Enzo Life 

Sciences, Farmingdale, NY, USA). Plasma was diluted 10x in assay buffer containing 1 µl 

displacement reagent: 99 µl plasma. Each of the four assay plates included a complete 

standard curve. Samples were assayed in duplicate in one assay and randomly assigned to 

plates, except that all the samples from a given towhee were assayed on the same plate. The 

assay sensitivity was 18.1 pg/ml and the inter- and intra-assay coefficients of variation were 

3.2% (n = 3 samples assayed on each plate) and 6.7% (n = 154 samples), respectively. The 

primary antibody used in this assay has less than 5% crossreactivity with 17β-estradiol, 5α-

dihydrotestosterone, corticosterone, and progesterone (manufacturer’s specifications). 

Statistical analysis 

We statistically analyzed data using SPSS 21 (SPSS Inc., Chicago, Illinois, USA) and 

SigmaPlot 12.5 (Systat Software, Inc., San Jose, CA) with α = 0.05. We used repeated 

measures ANOVA (rmANOVA) to test whether food availability affected body mass, 

furcular fat score, pectoral muscle score, cloacal protuberance width, and pre-challenge 

plasma LH and T over the course of the study. For each of these variables, we used the 

average of the two measurements taken from a given bird during each phase of the 

experiment. To meet the assumptions of normality and equal variances, pectoral muscle score 

was ranked (Conover and Iman, 1981) and plasma LH and cloacal protuberance width were 

log-transformed before analysis. The effect of food availability on GUD was tested using a 

Student’s t-test. The effect of food availability on the plasma T response to GnRH and LH 
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challenges were analyzed with rmANOVAs with daylength (short days vs. long days) and 

challenge (pre- vs. post-challenge) as within-subject factors. To meet the assumptions of 

normality and equal variances, all plasma T data were first log-transformed. Where 

appropriate, we followed all ANOVAs with Tukey’s HSD tests for pairwise multiple 

comparisons. We used linear regression to test for an association between the change in 

plasma T in response to a challenge of GnRH vs. LH. Data are presented as untransformed 

means ± standard errors of the mean (SEM). 

We were unable to collect pre-challenge and post-challenge blood samples from two 

birds, resulting in 4 out of 72 samples missing from the data set. We estimated missing 

plasma LH and T values using multiple imputation (MI) and the NORM program 

(http://sites.stat.psu.edu/~jls/misoftwa.html; Schafer, 1999). As pointed out by other authors 

(Hill et al., 2003), MI is more appropriate than standard approaches (e.g., case deletion or 

replacement of missing values by group means) because it relies on a more plausible 

assumption (Little and Rubin, 2002), it properly accounts for uncertainty about missing 

values (leading to appropriate standard errors), and it retains original sample sizes. 

 

List of symbols and abbreviations 

FSH Follicle-stimulating hormone 

GnIH Gonadotropin-inhibitory hormone 

GnRH Gonadotropin-releasing hormone 

GUD  Giving-up density  

HPG Hypothalamo-pituitary-gonadal 

LD Long days 

LH Luteinizing hormone 

SD Short days 

T Testosterone 
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Figures 

 

 

 

Fig. 1. Food availability modulated body mass (A), furcular fat (B), and pectoral muscle 

(C), but had no significant effect on cloacal protuberance width (D), of adult male 

Abert’s Towhees, Melozone aberti. Towhees were either ad libitum-fed (n = 9; open circles) 

or food restricted (70% of ad libitum consumption; n = 8; filled circles). The pectoral muscle 

graph depicts medians and half interquartile range, whereas the remaining graphs show 

means ± SEM. Points with identical letters are not significantly different (P > 0.05; Tukey 

HSD test). 
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Fig. 2. The photostimulated increase in pre-challenge plasma luteinizing hormone and 

testosterone of adult male Abert’s Towhees, Melozone aberti, was not significantly 

affected by food availability. Towhees were either ad libitum-fed (n = 9; open circles) or 

food restricted (70% of ad libitum consumption; n = 8; filled circles) and initially exposed to 

short day lengths before being transferred to long days. Data points are means ± SEM. 
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Fig. 3. Food restriction suppressed the plasma testosterone response to a luteinizing 

hormone (LH) challenge, but there was no significant effect on a gonadotropin-releasing 

hormone (GnRH) challenge, in adult male Abert’s Towhees, Melozone aberti. Towhees 

were either ad libitum-fed (n = 9; open circles) or food restricted (70% of ad libitum 

consumption; n = 8; filled circles), and received both a GnRH challenge (top panel) and a LH 

challenge (bottom panel) while exposed to short days and again while exposed to long days. 

Data points are means ± SEM, and points with identical letters are not significantly different 

(P > 0.05; Tukey HSD test). 
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Fig. 4. The increase in plasma testosterone (T) in response to gonadotropin-releasing 

hormone (GnRH) challenge was correlated with this increase in response to luteinizing 

hormone (LH) challenge in long day ad libitum-fed adult male Abert’s Towhees, 

Melozone aberti. By contrast, no such correlation was found in long day food-restricted 

towhees. Each point represents one individual. Note that the scales of the axes differ between 

the two panels. 
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Fig. 5. Schematic representation of the experiment showing the change in photoperiod 

regime (solid line) and the timing of experimental challenges (arrows). We first measured 

daily ad libitum food consumption (‘Ad libitum intake’) of each bird, then food restricted half 

of the birds for the remainder of the experiment by giving them 70% of daily ad libitum 

consumption per day, resulting in a 15% body mass decrease (‘Body mass decrease’). The 

experimental challenges began at time 0. ‘SD hormone challenges’ consisted of measuring 

the plasma testosterone response to both GnRH and LH during short days, and ‘LD hormone 

challenges’ consisted of measuring this response during long days. Giving-up-density (‘GUD 

trials’) was measured as birds were transferred to long days. 
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