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Abstract—In this work we address the problem of semantic
segmentation of urban remote sensing images into land cover
maps. We propose to tackle this task by learning the geographic
context of classes and use it to favor or discourage certain spatial
configuration of label assignments. For this reason, we learn from
training data two spatial priors enforcing different key aspects of
the geographical space: local co-occurrence and relative location
of land cover classes. We propose to embed these geographic
context potentials into a pairwise conditional random field (CRF)
which models them jointly with unary potentials from a random
forest (RF) classifier. We train the RF on a large set of descrip-
tors which allow to properly account for the class appearance
variations induced by the high spatial resolution. We evaluate
our approach by an exhaustive experimental comparisons on a
set of 20 QuickBird pansharpened multi-spectral images.

I. INTRODUCTION

Segmenting satellite and airborne images into land cover
maps is a central challenge in remote sensing image analy-
sis. Tailored and up-to-date maps of urban areas are central
instruments for many applications, ranging from road network
analysis to urban sprawl modeling. Nevertheless, semantic
segmentation of urban scenes from very high spatial resolution
images (VHR) is a particularly complex task. These scenes
are usually characterized by metric to submetric geometric
resolution with a relatively poor spectral information, in the
range of 3 to 15 visible and near infrared channels. For this
reason, direct spectral discrimination techniques are prone to
fail. To partly alleviate this issue, recent literature examines the
inclusion of features able to convey spatial information into the
pixel classification process directly [1]. Although filtering the
input signal favors nearby pixel to have the same label, the
semantic context is not directly modeled.

Markov Random Field (MRF) and Conditional Random
Field (CRF) are structured prediction models that can naturally
account for the relationships between outputs. Most of the ap-
plications in remote sensing rely on the use of generative MRF
[2]. MRF allows to regularize the output of spectral classifiers
enforcing simple label smoothness. Although accounting for
the structured nature of the data, this prior assumption does not
capture complex spatial dependencies between labels. To cope
with this limitations, in this paper we exploit discriminative
CRF to jointly model local class likelihoods (unary potentials)
with samples’ semantic contextual interactions (geographic
context pairwise potentials).

The geographic context potentials play a central role in
our pairwise CRF model. These terms can encode different
priors about the spatial organization of classes directly learned
from training data [3], [4], [5]. For this purpose, we introduce

two geographic context potentials for semantic segmentation of
urban satellite data: local co-occurrence and relative location
of land cover classes.

Furthermore, we introduce a set of descriptors commonly
employed in computer vision tasks [6], [7] able to capture
the complex land cover class appearance variations induced
by VHR images. Similarly to these works we also make
use of superpixels, which allow us to reduce the number of
samples involved into the modeling process while keeping
an appropriate spatial support to extract complex features.
A random forest (RF) classifier [8], [9] is then trained on
this bank of descriptor to obtain class likelihoods for each
superpixel, based on its appearance.

We demonstrate the appropriateness of these models by
comparing them to a standard RF classification. We employ
a dataset we built from 20 multi-spectral QuickBird images
acquired in 2002 over the city of Zurich (Switzerland).

II. CONDITIONAL RANDOM FIELDS WITH GEOGRAPHIC
CONTEXT POTENTIALS

A CRF models the labeling of every superpixel in the image
as the conditional distribution p(y|x,λ), where y = {yi}Ni=1 is
the labeling of N observed signals x = {xi}Ni=1 and λ are the
model parameters. The posterior is modeled over an irregular
graph G = (V, E), where nodes i ∈ V represent superpixels
and undirected edges (i, j) ∈ E connect adjacent nodes i and
j. The set of neighbors of i is defined as Ni and includes
all the superpixels sharing some boundary with i. The CRF
models the posterior as p(y|x,λ) ∝ exp

(
−E(y|x,λ)

)
, with

energy:

E(y|x,λ) =
∑
i∈V

ϕi(xi, yi) + λ
∑
i∈V

∑
j∈Ni

φij(xi,xj , yi, yj).

(1)
The terms ϕi(xi, yi) and φij(xi,xj , yi, yj) are respectively the
unary and pairwise potentials, detailed in the next Sections.
The parameter λ trades-off unary and pairwise terms.

A. Unary potentials

The role of the unary potential is to link the local observa-
tions made by an appearance classifier to class likelihoods. It
brings into the CRF evidence about the most probable labeling
for each node when considered in isolation. This is usually
achieved by employing the probabilistic output of a discrimi-
native classifier. In this work, we use a random forest classifier
[8], [9]. In contrast to other classifiers outputting probabilities
(e.g. SVM with Platt’s sigmoid fitting), RF naturally handle
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Fig. 1. (a) Example of superpixels obtained using the method of [10],
(b) Local co-occurrence potential matrix and (c) relative location priors.
Clockwise from upper left: small buildings given small buildings, small
buildings given road, trees given trees, trees given roads.

multi-class problems, provide nonlinear class separations and
can deal with many heterogeneous descriptors.

The trees in the forest are composed by binary splits with
thresholds trained by minimizing the entropy of the labels.
We allow each tree to grow up to depth 15 or when a node
contains only a single class. Each split function test

√
D

randomly sampled features, where D is the dimensionality of
the descriptor set. Since a larger forest corresponds to less
overfitting but more computations, we fixed its size to 100
trees as the accuracy over the validation set saturated. Once
trained, the random forest provides for each test sample a label
distribution pAPP(yi|xi). We include this posterior in the CRF
as ϕi(xi, yi) = − log [pAPP(yi|xi)].

B. Geographic context pairwise potentials

The main contribution of this paper resides in proposing
different geographic context potentials for urban scene seman-
tic segmentation. Remote sensing data is intimately related to
the geographical space it represents. No matter the modality
of the sensor or its ground sampling distance, a univocal
relationship links each pixel to its the absolute geographical
coordinates. We can consequently exploit these notions to favor
or discourage particular labelings of the whole image.

In the following, we present two geographic context
pairwise potentials and the standard contrast sensitive
smoothing [11]:
Local co-occurrence (COOC). This potential favors local
arrangement of labels common in training images as
φs
ij(xi,xj , yi, yj) = − log [C(yi, yj)]. The co-occurrence

matrix C is estimated from training data as C(yi, yj) =
1
2

(
pCOOC

(
yi|yj , d(xs

i,x
s
j) < ρ

)
+ pCOOC

(
yj |yi, d(xs

j ,x
s
i) < ρ

))
.

The function d(xs
i,x

s
j) returns the Euclidean distance between

centers of superpixels i and j. For each node of a given
class we count the label occurrences of all the nodes inside a
circle of radius ρ. The optimal ρ (in meters, [m]) is selected
on validation images. In our experiments, optimal local
co-occurrence radius is 200[m]. We use conditionals instead
of joint probabilities to reduce the bias induced by large and
frequent classes. This potential avoids label associations rarely

observed in training images (e.g. a tree or a roof surrounded
by water) while favoring common associations (e.g. buildings
and roads) [3], [12]. This potential is shown in Fig. 1(a).
Relative location prior (RELOC). Compared to the
local co-occurrence potential, the relative location prior
encodes a finer spatial reasoning. Let emn = xs

m − xs
n

denote the spatial displacement vectors between training
nodes m and n. Then, the potential is formulated as
φr
ij(xi,xj , yi, yj) = − log[ 1

|mn|
∑

mn gy′|y(emn, eij)], where
the sum spans all the |mn| training displacement vectors
linking nodes labeled as y to the ones labeled as y′. The
function gy′|y(emn, eij) is a Gaussian kernel estimating
the similarity between emn observed in training images
and eij from the pairs of test superpixels in the given
neighborhood Ni. Instead of forcing some spatially unordered
co-occurrence of classes, the relative location prior is able
to favor or discourage particular label associations based on
the similarity to arrangement of nodes observed at training
[4], [5]. Since the superpixelization method we use produces
highly heterogeneous regions in both size and shape (see
example in Fig. 1(a)), training the RELOC from all the
configurations of classes observed in training images ensures
to some extent that relative displacements between neighbors
in Ni at test time have been observed, no matter size and
shape of superpixels. In contrast to natural images where the
absolute ordering is important (e.g. sky is above grass) in
remote sensing images this notion is less evident. However,
such data show often spatially isotropic class co-occurrences.
This pairwise energy is able to adaptively learn the range of
such concentric interactions. An example of relative location
prior are given in Fig. 1(c). Two nodes labeled as “small
building” appear often at 5 to 20[m] distance, while the
conditional density of “trees” given “road” occur at a much
larger spatial scale, in the range of 40-100[m].
Contrast-sensitive smoothing (SMTH). This energy is
formulated as: φc

ij(xi,xj , yi, yj) =
(
1− h(xc

i,x
c
j)
)
[yi 6= yj ]

[11]. The distance h(xc
i,x

c
j) corresponds to a Chi-Squared

distance between histograms computed over the binned
spectral channels (see Section II-D). This potential favors
neighboring nodes to share the same label if no spectral
gradient separates them. The function [yi 6= yj ] returns 1 if
yi 6= yj is true and 0 otherwise.

In our experiments, we combine geographic context and
contrast sensitive pairwise potentials into Eq. (1) to account for
image contrasts as well. Weights λ are learned to minimize the
error on training images. At test time, inference is performed
using the average of the optimal parameters of training images.

C. Inference

We obtain the optimal image labeling y∗ by MAP esti-
mation over the CRF by solving as y∗ = argminyE(y|x,λ)
[11]. Since we deal with a multi-class problem, the global
optimum of the energy minimization in Eq. (1) cannot be
found. However, a good approximation can be found using
α-expansion moves [11], [13]. The α-expansion algorithm
decomposes the multi-class problem into binary ones and
iteratively solves each sub-problem until no decrease in the
total energy is observed. Since our RELOC potential may be
not submodular, we solve the binary minimization using the
QPBO solver of [13].



TABLE I. DESCRIPTORS, DIMENSIONALITY AND TYPE. SP REFERS TO
SUPERPIXEL, BB TO BOUNDING BOX.

No. Descriptor Dimension Type
1 SP shape over its BB (resized to 8×8 pixels) 8 × 8 Shape
2 SP area relative to the image area 1 Shape
3 SP BB size relative to image size 2 Shape
4 BB average coordinate 2 Location
5 Color (NIR-R) SIFT BOW 300 Texture

Dilated color SIFT BOW 300 Texture
6 Local Binary Pattern (NIR-R-G-B) BOW 300 Texture

Dilated LBP BOW 300 Texture
7 Oriented gradients (NIR-R-G-B) BOW 300 Texture

Dilated OG BOW 300 Texture
8 Max. response (NIR-R-G-B) BOW 300 Texture

Dilated MR BOW 300 Texture
9 NIR-R-G-B SP Mean + Standard deviation 8 Spectral

10 NDVI SP Mean + standard deviation 2 Spectral
11 Color histogram (21 bins per band) 84 Spectral
12 SP Color Thumbnail (resized to 8×8) 8×8×4 Spectral

D. Superpixels and descriptors

The use of superpixels allows to trade-off the size of the
modeling problem with the resolution of the predictions, while
still providing good spatial support to extract powerful fea-
tures. The Zurich dataset used in the experiments is composed
by a total of 24M pixels. We reduce the total number of nodes
to 113k by generating superpixels with the method of [10], as
it is not limited to RGB data (see Fig. 1(a)). Before extracting
descriptors spectral signals were normalized to unit `2-norm.

Table I summarizes the descriptors used. Each set of
features has been designed to encode some peculiarity of the
superpixel, such as appearance, shape or location in the image
plane. The comprehensive set is similar to that in [6], [7]. In the
case of descriptor no. 12, value of the pixels in the bounding
box not belonging to the superpixel have been set to 0.
Regarding bag-of-words (BOW) features (descriptors no. 5–8)
filters responses are quantized in 300 visual words using the
fast integer k-means as implemented in the vl feat library [14].
Each BOW representation of these filters encodes a particular
aspect of the image, such as edge orientations, filter responses
at multiple scales and local texture. We then normalize the
resulting visual word histogram for each superpixel to unit
`1-norm. We also enriched the BOW representation by count-
ing visual words occurrences 15 pixels around each superpixel
(roughly 9[m]). This brings some basic spatial context into the
estimation of the unary potentials as well. The dimensionality
of the whole descriptor set is 2819.

III. EXPERIMENTS

We evaluate the geographic context CRF models on a
dataset we prepared consisting by 20 multi-spectral pan-
sharpened QuickBird images with a ground sample distance
of 0.61[m]. The size of the images ranges from a minimum
of 500×500 to a maximum of 1650 × 1650 pixels, with
an average image size of 1000 × 1150 pixels. We manually
annotated 9 different urban and peri-urban land cover classes:
Roads, Small buildings, Trees, Grass, Commercial / Large
buildings, Bare soil, Water, Railways and Swimming pools.
We show an example in Fig. 2.

To estimate the generalization ability of the system and
to avoid spatial autocorrelation between training and testing
instances, we adopted a leave-one-out strategy over images.
We trained the model on 19 images and predicted class labels

on the held-out image. Free model parameters were selected
over 3-fold cross validation over the 19 images. We compute
accuracy measures over the aggregated predictions for the 20
held-out images.

To evaluate the contribution of the increased modeling
power brought by the geographic context and the advanced
descriptors, we perform evaluations using spectral features
alone (descriptors 9 and 10 in Tab. I) and the whole set
separately. The CRF models are then compared by evaluat-
ing the different pairwise terms along with the two sets of
unary potentials. We test 5 different combinations of pairwise
potentials into the CRF: SMTH - contrast sensitive smoothing,
COOC - local co-occurrence, SMTH+COOC - contrast sensi-
tive + local co-occurrence, RELOC - relative location prior,
SMTH+RELOC - contrast sensitive + relative location prior
and and SMTH+COOC+RELOC - a weighted combination
of the three potentials. As a baseline we employ the random
forest classifier applied on superpixels independently, which
is representative of many architectures common in the remote
sensing literature [9]. This setting corresponds to use only
unary potentials (UNARY in Tab. II). To provide a term of
comparison with a modern computer vision technique, we
compared to the Semantic Texton Forests (STF) by Shotton
et al. [15]1. For STF, we report accuracies using unary terms
and a contrast sensitive pairwise CRF.

IV. RESULTS AND DISCUSSION

Table II reports accuracy measures of the tested urban
semantic segmentation task. We evaluate the different CRF
models in terms of per-class producer’s accuracy, its average
(PR, corresponding to the mean average class accuracy) and
user’s accuracy averaged over classes (US). These measures
are derived from the aggregated error matrix of the 20 held-
out images

The benefits of modeling the image context with a CRF are
clear. While employing only a contrast sensitive smoothing
(SMTH) may slightly improve the accuracy, the largest and
most significant gains over the RF model are observed when
adopting the geographic context pairwise potentials. On the
one hand, the local co-occurrence potentials improve the
pooled user’s accuracy by 6.10 and 6.11 US points (COOC
and SMTH+COOC) employing only the spectral descrip-
tors and by 2.68 US points when employing all descrip-
tors (SMTH+COOC). Using local co-occurrence potentials in-
creases the confidence of the model by reducing false positives,
but without necessarily improving the detection accuracy. An
example is given in Fig. 2 for SMTH+COOC, where the false
detections of water on shadowed areas are almost completely
removed by the geographic context potentials.

On the other hand, the relative location prior does im-
prove significantly the PR score, by 11.69 points when using
only spectral descriptors and by 6.85 points when using all
descriptors (SMTH+RELOC in both cases). In this case, the
detection accuracy is increased, but at the price of more
false positives. Figure 2 SMTH+RELOC shows the increased
detection accuracy in particular for rare classes. The inclusion
of the contrast sensitive terms further refines the accuracy

1We modified and adapted for our purpose a MATLAB implementation at
https://github.com/akanazawa/Semantic-texton-forests



TABLE II. RESULTS FOR THE URBAN SEMANTIC SEGMENTATION OF ZURICH. BOLD NUMBERS REFER TO HIGHEST SCORES (± 0.01), WHILE ITALIC TO
SECOND AND THIRD HIGHEST ONES. ENTRIES ARE COMPUTED OVER THE AGGREGATED ERROR MATRIX FROM THE 20 HELD-OUT IMAGE PREDICTIONS.

Spectral descriptors only Whole set of descriptors
Model US PR Roads Build. Trees Grass Comm. Soil Water Rails Pools US PR Roads Build. Trees Grass Comm. Soil Water Rails Pools

UNARY 69.43 65.00 79.39 74.09 91.16 74.87 24.13 55.02 92.70 5.64 88.02 75.86 71.11 87.08 84.74 94.04 83.49 34.08 68.24 92.95 16.77 78.60
SMTH 69.73 65.18 79.86 74.43 91.30 75.13 24.06 55.39 93.03 5.40 88.02 76.05 71.16 87.40 84.81 94.17 83.58 34.04 68.65 93.09 16.07 78.60
COOC 75.53 65.95 77.24 81.88 93.12 76.36 19.91 59.55 95.22 0.58 89.66 78.31 70.95 83.26 89.07 94.70 83.60 38.93 71.63 93.46 9.07 74.82

RELOC 71.35 75.57 69.59 78.99 92.35 80.04 49.13 77.55 97.13 43.10 92.27 71.39 77.25 76.96 85.41 94.14 85.85 47.65 78.24 95.80 45.72 85.44
SMTH+COOC 75.54 66.09 78.12 81.87 93.12 76.41 20.25 59.55 95.24 0.58 89.66 78.54 70.98 83.88 88.91 94.74 83.14 38.88 71.85 93.46 9.18 74.82

SMTH+RELOC 68.25 76.69 57.49 76.86 92.10 80.86 58.76 80.85 97.32 53.96 92.03 72.50 77.96 77.48 85.95 94.58 85.62 48.72 78.38 95.72 45.83 89.39
SMTH+COOC+RELOC 73.68 74.55 67.72 82.69 92.81 77.91 47.20 77.41 97.62 34.97 92.65 73.39 74.89 78.63 88.28 94.43 84.86 44.83 79.00 96.24 24.30 83.48

Semantic texton forest unary only Semantic texton forest CRF
STF 66.54 71.72 74.61 65.91 93.84 71.32 44.85 77.82 95.59 26.75 94.78 69.01 72.16 76.21 71.68 95.80 68.90 44.39 77.80 95.64 24.56 94.48

Image GT RF SPE SMTH+COOC SPE SMTH+RELOC SPE RF WS SMTH+COOC WS SMTH+RELOC WS

Roads Small buildings Trees Grass Comm. building Bare soil Water Railways Swimming pools

Fig. 2. Original false color NIR-R-G image and associated ground truth annotations (GT) along land cover maps for spectral descriptors only (SPE) and for
the whole set of descriptors (WS). Maps from random forests (RF) are compared to conditional random fields (CRF). Best viewed in color.

scores. The SMTH+COOC+RELOC models perform in a more
balanced way on both descriptor sets with respect to US and
PR scores. The CRF models relying on the geographic context
potentials outperform the STF [15] in both US and PR scores.

It appears clearly that structured output models improve
significantly the classification of independent superpixels
(UNARY). Simple contrast sensitive smoothing (SMTH) is
outperformed by considering explicitly the geographic context
of classes. In addition, exploiting complex descriptors globally
ameliorates the per-class accuracy measures, even if peak val-
ues for some classes may decrease. The segmentation examples
shown in Fig. 2 confirm these observations.

V. CONCLUSIONS

In this paper we proposed and assessed the suitability of
two geographic context potentials terms into a conditional
random field (CRF) for urban semantic segmentation. These
potentials allow to model the spatial dependency of classes in
a much more finer manner than by simple contrast sensitive
smoothing. Moreover, we introduced a set of descriptors
commonly employed in computer vision tasks which allow
to increase the accuracy of the obtained land cover maps. As
illustrated in the experiments their coupled use significantly
outperforms standard architectures. The proposed CRF models
are revealed to be very powerful for highly structured data such
as remote sensing images of urban areas.
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