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Abstract
This paper describes the University of Edinburgh (UEDIN)
ASR systems for the 2014 IWSLT Evaluation. Notable fea-
tures of the English system include deep neural network
acoustic models in both tandem and hybrid configuration
with the use of multi-level adaptive networks, LHUC adapta-
tion and Maxout units. The German system includes lightly
supervised training and a new method for dictionary gener-
ation. Our voice activity detection system now uses a semi-
Markov model to incorporate a prior on utterance lengths.
There are improvements of up to 30% relative WER on the
tst2013 English test set.

1. Introduction
This paper describes our system for automatic speech recog-
nition (ASR) of TED talks, used in the 2014 evaluation cam-
paign of the International Workshop on Spoken Language
Translation. We describe both our English and German sys-
tems, although the development of the two was carried out
separately.

This is the third year we have participated in the English
ASR task. Our 2012 system [1] used tandem-GMM acous-
tic models, using deep neural networks (DNNs) to derive
bottleneck features, incorporating out-of-domain data from
multiparty meetings using the multi-level adaptive networks
(MLAN) scheme [2]. In 2013 [3], we combined DNN sys-
tems in both tandem and hybrid configurations, again using
the MLAN scheme. We also made extensive improvements
to our language models, devoting substantial efforts to text
normalisation, and data selection using the cross-entropy dif-
ference score proposed by [4]. These improvements led to
a WER reduction from 12.4% to 10.2% on the tst2011
progress test set.

This year, our final system features a system combina-
tion of several complementary systems built using the HTK
and Kaldi toolkits. On the language modelling side, other
than using a larger 4-gram model for final rescoring, there
are very few changes from last year. This year’s system does
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not employ recurrent neural network language models, as we
were unable to obtain gains with the size of models used.
On the acoustic modelling side, there are a number of new
features: improved speaker adaptation for the DNNs with
our recently proposed Learning Hidden Unit Contributions
(LHUC) scheme [5]; the use of Maxout [6] and rectified lin-
ear units for the DNNs [7]; sequence training of some neural
networks [8]; and the use of mixed-band training data. These
features of the system are described in more detail in Sec-
tion 3.

The German system is described separately in Section 4.
For German, our major challenge is the lack of reliably-
transcribed in-domain acoustic training data, and a good
quality dictionary, neither of which we have access to. Like
last year, we rely in bootstrapping a system from the German
portion of the GlobalPhone corpus, using a biased language
model method. We also use a new technique for dictionary
expansion [9].

In the 2013 evaluation, ASR systems were required for
the first time to operate without manually-supplied segmen-
tation of the test data into utterances. We therefore used an
automatic voice activity detection (VAD) based segmenter on
the tst2013 set as input to the ASR. We have since iden-
tified a number of problems with the baseline VAD system
used in 2013, including a mismatch to the acoustic condi-
tions, and a tendency to segment too tightly, leading to word
deletions at sentence boundaries: we describe our work to
address these problems in Section 2.

2. Voice activity detection
There were substantial changes to this year’s VAD sys-
tem, used for both English and German systems. After
comparing the ASR performance with VAD-based segmen-
tation on manually-segmented development data, we ob-
served a reduction in performance compared to when the
manual segmentations were used directly, even when local
speech/silence decisions were generally correct. We hy-
pothesised that this is because the utterances are often se-
mantically segmented by human annotators, making them
better-suited to language models trained on complete sen-
tences. Additionally, in our system we observed an unfor-
tunate trade-off between an over-sensitive segmenter which



Figure 1: An example of a candidate break sequence
and associated state topology. The transitions highlighted
in red show an example optimal break sequence B∗ =
{b0, b2, b3, b4, b6}

results in lots of short utterances, and an under-sensitive one,
which can lead to excessively long segments or insertions
and deletions at utterances boundaries.

As a solution to both problems, in [10], we proposed a
novel technique based using a semi-Markov model with an
prior on the duration of an utterance designed to yield seg-
ments more closely matching the distribution found in train-
ing data. For the prior, we used a log-normal distribution
with parameters estimated on manually segmented training
data. We found that the log-normal distribution generally
provides a good fit to the distribution of utterance durations
in the training data.

As input to the the semi-Markov decoder, we use a highly
sensitive segmentation with small minimum duration con-
straint of 100ms. This produces many break points that
would normally be detrimental to ASR if used directly. We
decode this sequence of breaks using a semi-Markov de-
coder, to find the globally optimal sequence of breaks. The
method is illustrated in Figure 1. Further details may be
found in [10].

The initial segmentation is produced with an GMM-
HMM based model. Speech and non-speech are modelled
with diagonal covariance GMMs with 12 and 5 mixture com-
ponents respectively. Features are calculated every 10ms
from a 30ms analysis window and have a dimensionality of
14 (13 PLPs and energy). Models were trained on 70 hours
of scenario meetings data from the AMI corpus using the
provided manual segmentations as a reference.

3. English systems
3.1. Language modelling

Our language modelling setup is largely unchanged from last
year, but we summarise it here for completeness. We trained
standard Kneser-Ney smoothed n-gram language models on
a combination of TED talk transcriptions as in-domain data,
and out-of-domain data sources specified by the IWSLT
rules. Table 1 shows the text data available, to which we
applied substantial pre-processing and normalisation.

Following [4], we used all the available in-domain data,

Corpus Total Selected
TED 2.4M 2.4M
Europarl 53.1M 6.3M
News Commentary 4.4M 0.7M
News Crawl 693.5M 72.9M
Gigaword 2915.6M 232.9M
OOD total 3666.6M 312.8M

Table 1: Numbers of words in LM training sets.

Language model Perplexity
TED 3-gram 183.2
OOD (312MW / 751MW) 3-gram 133.5 / 138.3
TED+OOD (312MW / 751MW) 3-gram 125.1 / 124.9
TED 4-gram 179.9
OOD (312MW / 751MW) 4-gram 123.9 / 126.4
TED+OOD (312MW / 751MW) 4-gram 114.9 / 113.4

Table 2: Perplexities of N-gram language models on TED
development set.

and selected a subset of out-of-domain (OOD) data, Ds to
minimise the cross-entropy difference:

DS = {s|HI(s)−HO(s) < τ} (1)

where HI(s) is a cross-entropy of a sentence with a LM
trained on in-domain data,HO(s) is a cross-entropy of a sen-
tence with a LM trained on a random subset of the OOD data
of similar size to the TED corpus, and τ is a threshold to con-
trol the size of DS . Interpolation parameters were tuned on
the dev2010 and tst2010 sets.

Table 2 shows perplexities of the in-domain, OOD and
final interpolated LMs. In both Kaldi and HTK decoding
pipelines the smaller 3-gram model was used for the pri-
mary decoding passes; when Kaldi’s WFST-based decoder
was used, the 3-gram was pruned to reduce memory require-
ments. In both cases, lattices were finally rescored using an
unpruned 4-gram LM. Compared to 2013, when only mod-
els trained on 312MW set were used, this year we used the
substantially larger 4-gram model trained on 715M words for
the final pass. Due to the limitations of HDecode, we again
limited the vocabulary to below 64k words based on occur-
rence count. This limit was also applied in the Kaldi systems,
a restriction we plan to remove in future.

We also investigated the use of RNN models, which were
interpolated with the 4-gram model, and used to rescore the
3-gram lattices. However, we did not use these models in
the system, as we were unable to observe any performance
improvements over the large 4-gram model on its own. This
is probably due to the fact that the RNNs available at the
time of submission were trained on much smaller quantities
of text.



Corpus Quantity (hrs)
TED talks 143
Switchboard 285
AMI meetings (a) 127
AMI meetings (b) 78

Table 3: Training data quantities

3.2. Acoustic modelling

3.2.1. Training data

For in domain training data, as in previous years, we used
813 TED talks recorded prior to the end of 2010, which
were aligned to the transcriptions available online using an
efficient lightly-supervised technique [11]. We also used
two sources of out-of-domain data: the Switchboard 1 cor-
pus of conversational telephone speech, and the AMI corpus
of multi-party meetings1. The quantities of speech data are
summarised in Table 3.

As can be seen from the table, we use the AMI meetings
corpus in two configurations. Previously, we have assumed
that the AMI corpus is not well-matched to the TED domain,
and used it purely as a means of generating bottleneck fea-
tures for the MLAN scheme described in Section 3.2.2. In
this case, we use a setup (a) described in [12]. Following last
year’s evaluation, however, we observed that with the passing
of time, the changing format and expanding scope of TED
talks has led to the pre-2010 data no longer being the best
match for future test sets. This year, therefore, we decided to
train one set of acoustic models on a combination of the TED
and AMI data. In this case, we used a more recently-defined
training setup (b) that aims to be reproducible by other sites
and forms the basis of a Kaldi recipe. This is described in
detail in [13].

3.2.2. Tandem MLAN systems

The multi-level adaptive networks (MLAN) scheme [14]
aims to make optimal use of mismatched OOD data in train-
ing a system for which limited data is available for the target
domain. Taking advantage of the fact that features derived
from neural networks are known to be portable across do-
mains, OOD DNNs with a bottleneck layer [15] are used
to generate features for the in-domain data. In the MLAN
scheme, a second-level network is trained on these features,
augmented with the original acoustic features, to ensure
robustness when the input bottleneck features are poorly-
matched to the new domain, and – since each DNN incor-
porates several frames of acoustic context – allowing wider
acoustic context to be incorporated without additional pa-
rameters.

The MLAN scheme has a particular advantage when used
with the Switchboard telephone data, as it allows us to make
good use of narrowband data without the need for upsam-

1http://corpus.amiproject.org/
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Figure 2: Tandem MLAN feature generation

pling, which may cause performance degradation. To do this,
the first level nets are trained on the 8khz Switchboard data.
To generate features for the TED data, we can simply down-
sample this data in to match the telephone data. The bot-
tleneck features are then augmented with standard acoustic
features derived without the need for any change in sample
rate.

In this year’s system, we used MLAN purely in a tandem
configuration [16], whereby the final bottleneck features are
augmented with the original acoustic features and used to
train a GMM. The complete feature generation process is il-
lustrated in Figure 2. The advantage of this configuration
is that it allows us to take advantage of the large quantity
of training data available for each test speaker in the TED
task by estimating multiple CMLLR adaptation transforms
per speaker with a regression class tree.

All tandem networks use 6 wide layers with 2048 hid-
den units per layer; the bottleneck layers have 30 units. The
nets are trained with the standard cross-entropy criterion us-
ing approximately 6,000 context-dependent triphone targets
derived from a baseline GMM. Input acoustic features are
PLPs with first and second derivatives – 39 features in total.
Both first- and second-level networks use 9 frames of acous-
tic context. The final GMMs have MPE training applied. All
tandem systems use HTK, as we were unable to achieve com-
parable performance with Kaldi on these features.

3.2.3. Hybrid LHUC systems

We have previously used DNNs in a hybrid configuration,
whereby the nets are used to generate posterior probabili-



ties over tied-state triphones for direct use in the decoder.
We have noted that speaker adaptation, using a global fM-
LLR transform per speaker, is essential for competitive per-
formance on the TED task. This year, in addition, we ex-
perimented with the use of our recently-proposed technique
[5] for creating speaker-dependent DNNs by adapting each
hidden layer on a per-speaker basis, which we term Learning
Hidden Unit Contributions (LHUC). We briefly summarise it
here. Consider the l-th hidden layer of a DNN, given by

hl = φl
(
Wl>hl−l

)
. (2)

where Wl> are the weights and φl is the nonlinear trans-
fer function at the l-th hidden layer. We modify a stan-
dard speaker independent (SI) DNN by defining a set of
speaker-dependent (SD) parameters for speaker m, θm =
{r1

m, . . . , r
L
m}, where rl

m ∈ RM l

is the vector of SD pa-
rameters for the lth hidden layer. If a(rl

m) is element-wise
function that constrains the range of rl

m, then we can modify
(2) to define a hidden layer output that is specific to speaker
m:

hl
m = a(rl

m) ◦ φl
(
Wl>hl−l

m

)
, (3)

where ◦ is an element-wise multiplication. The SD term can
be viewed as applying different weights to the contributions
from each the hidden units on a per-speaker basis. We define
a(·) as a sigmoid with amplitude 2, a(c) = 2/(1+exp(−c)),
so that each speaker-dependent weighting is strictly positive
and centered at one. This re-parametrisation is for optimisa-
tion purposes only; at runtime a(·) can be evaluated once for
a given set of θm and directly used as a scaling factor. The
SD parameters are optimised with respect to the negative log
posterior probability F(θm) over Tm adaptation data-points
of the m-th speaker, similar to the SI case:

F(θm) = −
T m∑

t

logP (st|xm
t ; θm) . (4)

given speech samples xt and tied state labels st

We investigated the use of LHUC with three different
non-linearities φl: in addition to the standard sigmoid, we
use rectifying linear units [7] and Maxout units [17] which
we proposed for ASR in [6]. Rather than applying any ex-
plicit function, the maxout network groups linear activations,
and passes forward the maximum value in each group:

hl
i =

K−1
max
k=0

(zl
j+k), j = i.K (5)

where the zl
i are the linear outputs of the l-th layer.

Our hybrid DNNs again use 2048 hidden units per layer,
but with 12,000 tied-state outputs. The input features are
again PLPs with first and second derivatives, and 9 frames
of context in total. For the maxout non-linearity we set the
number of hidden maxout units to 1500, with a group size
of two. All models had fMLLR applied to the input feature
space. The LHUC nets were trained only on the 143 hours of

TED data. All adaptation on the test set was performed on a
per-talk basis using the output from a first-pass decode.

We also trained a single DNN system on a combination
of the TED data and the AMI corpus setup (b), with sequence
training following the recipe of [8]. As we will show in the
results section, the use of the AMI corpus appears to partic-
ularly benefit performance on tst2013, perhaps due to its
poorer match to the pre-2010 TED data.

3.3. Results

We present development results on tst2011 generated with
manual segmentations. Table 4 compares performance of
tandem MLAN systems with a baseline trained purely on in-
domain features. Consistent with previous results, it may be
seen that the use of OOD data gives significant performance
improvements: it is interesting to see that the use of entirely
mismatched narrowband telephone speech from Switchboard
still leads to a 13.5% relative WER reduction with the 3gram
LM. The results of the Hybrid LHUC systems are shown in
Table 5 (these results are not fully comparable with the re-
sults from the previous table as a weaker LM is used). The
LHUC technique leads to gains with all three types of non-
linearity investigated, and appears to be complementary to
the use of fMLLR transforms on the input space. Both the
ReLU and Maxout non-linearities appear to derive greater
benefit from LHUC.

Model 3gram 4gram
Baseline tandem 12.6 -
SWB MLAN 10.9 10.3
AMI MLAN 11.2 9.8
ROVER - 9.3

Table 4: Tandem MLAN DNN development results on
tst2011. All systems are trained with MPE.

Model WER (%)
DNN 15.2

+LHUC 13.7 (-9.9)
+fMLLR 13.9 (-8.5)

+LHUC 12.9 (-15.1)
ReLU 15.2

+LHUC 13.5 (-11.2)
+fMLLR 13.6 (-10.5)

+LHUC 12.7 (-16.4)
Maxout 14.3

+LHUC 12.8 (-10.4)
+fMLLR 12.5 (-12.6)

+LHUC 11.9 (-16.8)

Table 5: Hybrid DNN development results on tst2011 us-
ing weak 3gram LM. Relative improvements are given in
parentheses w.r.t. the corresponding SI model.



Model WER (%)
2013 systems

AMI MLAN 22.9
Final submission 21.5

HTK tandem systems
AMI MLAN 18.1
SWB MLAN 17.2

Kaldi hybrid systems
ReLU + LHUC 18.4
MaxOut + LHUC 18.7
TED+AMI Seq 15.3

ROVER combinations
Tandem MLAN 16.6
All Hybrid 15.3
All systems 14.4

Table 6: Final systems with automatic segmentation on
tst2013

Finally, we present results on tst2013 with automatic
segmentation in Table 6. All these results use lattice rescor-
ing with the 751MW 4gram model. The system comina-
tion weights for ROVER were tuned on the development
sets dev2010, tst2010 and tst2011. Note that our
scoring is not entirely consistent with that performed in the
2013 evaluation: we obtain hypothesis-to-reference align-
ments over the entire talk, rather than on a per utterance ba-
sis. We believe this approach is fairer as it makes the scoring
more robust to slight discrepancies in segment timings be-
tween the human reference and the automatic system, which
can lead to single words being counted as a deletion error in
one segment and an insertion error in the adjoining segment.
For comparison, our final 2013 scores 21.5% with full-talk
scoring, compared to 22.1% by the official method.

From the table, we see that the new VAD system gives
an absolute WER reduction of 3.8% on the AMI MLAN sys-
tem, which is otherwise unchanged from 2013. Again, the
two tandem MLAN systems are highly complementary when
used in combination; the sequence-trained DNN trained with
both TED and AMI data seems to perform particularly well
on the tst2013, perhaps reflecting the more diverse range
of accents in this test set. Finally, the tandem and hybrid sys-
tems are seen to be complementary, resulting in a further re-
duction in WER to 14.4%. On the tst2014 test set, this fi-
nal system has an official score of 12.7%. However, as noted
above, this result includes a number of erroneous insertions
and deletions at utterance boundaries. Scoring on a per-talk
basis against the same reference transcription yields a WER
of 10.7%.

4. German system
A major hurdle in achieving high-quality recognition lies in
the collection of appropriate training data, both for acoustic
modelling and language modelling. For acoustic modelling,

participants in this year’s ASR evaluation track were pro-
vided with German data from the Euronews corpus, a speech
corpus that contains news broadcasts in a multitude of lan-
guages [18, 19]. The permitted training data was not limited
to Euronews, however. Any speech recording made before a
certain cut-off date (17/07/2012 ) could be included. We have
chosen to include recordings of plenary sessions of the Euro-
pean parliament, made between January 2007 and December
2010. These recordings are publicly available online, along
with their approximate transcriptions [20, 21]. Both text and
audio are available in German making this data readily us-
able for acoustic model training. We will henceforth refer
to this set of data as Europarl. Lastly, we have included the
GlobalPhone corpus in the training data [22].

For LM training, we used the same method that was de-
scribed in [20] and used in the ASR track of IWSLT 2013.
Briefly, it consists of selecting 30% of the training data ac-
cording to maximum cross-entropy with the target domain
[23]. Then, a 3-gram language model is trained on this se-
lected data using Kneser-Ney smoothing and a vocabulary
is determined by selecting the top 1-grams in this model,
ranked according to decreasing smoothed 1-gram probabil-
ity. Finally, 4-gram LM training is performed on the same
data selection, in which the words are restricted to those in
the chosen vocabulary. RNN language model were trained
using the RNNLM toolkit [24]. During evaluation, these
RNN models were used to rescore 100-best lists, i.e. the
100 most likely utterance recognition hypotheses, that were
generated with the 4-gram LM.

4.1. Language Modelling

German Language models were trained on all the German
monolingual text corpora provided in the ACL statistical ma-
chine translation workshop 2014 [25], and the in-domain text
data provided by the organisers of IWSLT 2014. They are
listed in table 7. The text in each of these corpora was
tokenised as follows: first, all the punctuation is removed.
Then all numbers in the text are expanded, as are the most
common units, e.g. currency, distance, volume, weight, etc.
Any word that is completely capitalised, or in which the let-
ters are separated by full stops, is treated as an abbreviation,
and its letters are spelled out. For further details, see [20].

Full-sized 4-gram LMs are trained on each of these text
corpora, after which they are interpolated. The interpolation
weights are optimised, so as to reduce the perplexity of the
resulting LM on an in-domain text corpus, here the text of
dev2012. Since the list of words contained in this LM is
prohibitively large for ASR, it has to be limited to the top
words in the ranked list described above. Choosing the size
of the vocabulary is a trade-off between model perplexity and
OOV-rate, as is shown in Table 8. We have opted for a vocab-
ulary of size 300k. This list of words is turned into a lexicon
for ASR, as discussed below, in section 4.2. We will refer
to this lexicon as dict1. Since the final 4-gram LM is too
large to use in ASR directly, we prune it with a threshold of



corpus 106 words
Europarl-v7 47.4
News Commentary 4.5
News Crawl 2007 31.5
News Crawl 2008 107.9
News Crawl 2009 101.6
News Crawl 2010 45.9
News Crawl 2011 252.8
News Crawl 2012 319.7
News Crawl 2013 543.0
IWSLT 2.8
Total 1455.0

Table 7: The different training corpora used for German lan-
guage modelling, and their sizes

#words ppl oov-rate (%)
1 · 105 235.45 4.22
2 · 105 261.49 2.85
3 · 105 274.33 2.36
4 · 105 280.29 2.14

Table 8: Perplexities on dev2012, along with the OOV-rate
of the resulting 4-gram LMs, limited to different vocabulary
sizes.

10−7. The resulting reduced LM will be referred to below as
LM1. For RNN training, the vocabulary was further reduced
to 50k, for computational reasons. We train it on a random
selection of 10M lines from the corpora listed in table 8. The
hidden layer of the network contains 30 nodes.

4.2. Acoustic Modelling

As discussed above, data sources available for German
acoustic model training are Euronews, GlobalPhone, and Eu-
roparl. Since Europarl has only approximate transcriptions,
we have to apply some form of light supervision on it, in or-
der to obtain a subset in which the transcriptions are accurate.
We do this using the same method as in [26]. We use an ini-
tial acoustic model, GMM0, and a biased language model,
LM0, to perform recognition on the entire data, and define
a new training set which contains only the segments where
the recognition matches the approximate transcriptions. Al-
though a new model trained on this set can in principle be
used to repeat the procedure iteratively, there are no guar-
antees that models from such subsequent iterations will be
significantly superior. On the contrary, one even runs the risk
of degrading the model by applying this technique iteratively
[27]. We have therefore only run a single iteration of data se-
lection on Europarl. The biased Language model, LM0, was
obtained by interpolating the LM provided with GlobalPhone
with a language model trained on the annotations of the Eu-
roparl speech data. The initial acoustic model, GMM0, was
trained on a combination of Euronews and GlobalPhone. The

corpus GP EN EP total
#hours 14.85 57.35 79.90 152.10

Table 9: The size of all the different data sources for acoustic
model training.

data WER (%)
GP 49.64
+ EN 44.05
+ EP 41.38

Table 10: Word Error Rates on dev2012 using different
acoustic models

acoustic features were extracted in frames of 25 ms, with
a shift 10 ms. 13 MFCC coefficients in each frame were
stacked within context windows of 9 frames, and the result-
ing 117-dimensional representations were projected down to
40 dimensions using LDA/MLLT [28]. GMM0 has 3000
context dependent states, with a total of 48000 Gaussians.
No adaptation was performed. From an initial estimated to-
tal of 733 hours of Europarl data, this model allows us to
select about 80 hours. This number may seem small, but
the total data is likely an overestimate due to overlapping
speech segments. Moreover, the majority of the data consists
of non-German segments, the speech and transcriptions of
which are translated into German separately. The disagree-
ment between text and audio is therefore very large. The
amount of useful data from each corpus is listed in table 9,
where GP stands for GlobalPhone, EN for Euronews, and EP
for Europarl.

To demonstrate the benefits of adding each of these data
sets, we have trained simple acoustic models on Global-
Phone (GP), on a combination of GlobalPhone and Euronews
(GP+EN), and on all data combined (GP+EN+EP). The dic-
tionary used in this training, which we will call dict0 com-
prises the GlobalPhone dictionary, augmented with all the
OOV words from the three training sets, altogether about
140000 words. The transcription of new words is generated
with Sequitur G2P [29], trained on the 40000 words of Glob-
alPhone. The performance of the resulting models was eval-
uated on dev2012. The WERs are shown in table 10. We
can see that, even though the domains of the different train-
ing sets are quite far apart, and none close to that of the de-
velopment set, they all contribute to some extent in improv-
ing the results. We will therefore use a combination of these
three sets for all acoustic model training that follows. The
error rates shown in table 10 are rather high because little ef-
fort was taken to tune these evaluations to the target domain.
dict0 is a relatively small dictionary (for German), and the
language model LM0 is biased towards Europarl, not TED.

Using all available training data, i.e. GP+EP+EN, we
perform speaker-adaptive training in order to obtain speaker
dependent GMM-HMM models. The number of context
dependent states in this new model was set at 9000, and



the number of Gaussians to 100000. We call this model
GMM1. Repeating the evaluation above with this model
yields a WER of 37.65%, an absolute improvement of al-
most 4%. When we use the same acoustic model in con-
junction with the LM1, the pruned LM trained in section 4.1
and its associated dictionary, dict1, the WER decreases fur-
ther to 35.88%. This improvement is quite modest, consid-
ering the complexity of this LM and the fact that is specifi-
cally optimised for the TED domain. A likely reason is that
the dictionary only contains about 40000 pronunciations that
were manually transcribed. All the others have been gener-
ated using a grapheme-to-phoneme (G2P) conversion. All er-
rors made during this process are propagated further through
the ASR evaluation. To reduce this problem, we have per-
formed dictionary expansion as proposed in [9]. In practice,
we used G2P to generate the 10 most likely pronunciations
for every word in dictionary dict1, including the 40000 from
the original GlobalPhone lexicon. For the latter, if none of
the 10 generated pronunciations matched the original pho-
netic transcription, it was added as an 11th pronunciation.
Initially, all pronunciations of a word are assigned a uniform
probability. An alignment of the training data using model
GMM1 is then made, where the different pronunciations of
each word of the transcription are set in parallel. The re-
sulting alignments show the pronunciation of each word that
best fits its acoustic realisation. Counting the occurrences
of each pronunciation then allows an update of their prob-
ability in the dictionary, and a re-alignment. This is an it-
erative process in which the dictionary is refined in each it-
eration. Every few iterations, the acoustic model can be re-
trained as well. Here, we have chosen to do just 2 itera-
tions, in each of which the acoustic model is retrained. We
will refer to the resulting acoustic model as GMM2. The re-
sulting dictionary, dict2, is an improvement over dict1, not
only because it contains pronunciation probabilities, but also
because it lists pronunciations that make sense acoustically,
rather than enforcing G2P’s best guess. We ran an evaluation
on dev2012 with this pronunciation lexicon, usingGMM1

and the pruned LM, LM1. The resulting WER was 29.86%,
an absolute improvement of almost 6% compared to the orig-
inal dict1. When replacing the acoustic model GMM1 for
GMM2, the WER becomes slightly higher: 30.91%. A pos-
sible explanation is that the degrees of freedom introduced
by pronunciation variation allow the model to over-train.

A DNN is then trained up in a hybrid configuration
with model GMM2. This DNN consists of 6 hidden lay-
ers, with 2048 nodes each, connecting through a logistic
sigmoid non-linearity. The output layer performs a soft-
max operation. At the input of the network are the MLLT-
transformed speaker-adapted MFCC features we described
above, stacked within a context window of 11 frames, which
results in a 440-dimensional representation per frame (40×
11). The output is a vector of posterior probabilities over
the context-dependent states of the GMM, converted into
scaled likelihoods using prior probabilities obtained from

GMM1 + dict0 + LM0 37.65
GMM1 + dict1 + LM1 35.88
GMM1 + dict2 + LM1 29.86
GMM2 + dict2 + LM1 30.91

+ LM rescore 28.07
+ RNNLM rescore 27.59

GMM2 + DNN + dict2 + LM1 27.83
+ LM rescore 25.33
+ RNNLM rescore 24.90

Table 11: The results of the German system on dev2012

training data [30]. The network is pre-trained with layer-wise
RBM training, and finetuned by optimising a negative log-
likelihood cost function. Evaluating this hybrid DNN setup
on dev2012 gives a WER of 27.83%. Note that all results
thus far have either been obtained with the Europarl LM, or
with a heavily pruned LM optimised for TED. The full TED-
specific model has not been used due to computational limi-
tations. We can, however, rescore the results with this larger
LM, obtaining further reductions in WER. Similarly, all of
the previous results can be rescored using the RNNLM. All
results on dev2012 are summarised in table 11.The system
has an official score of 35.7% on the tst2014 test set.

5. Conclusions
We have described our ASR systems for the English and Ger-
man 2014 IWSLT evaluation. Improvements to our English
system, most particularly the use of AMI data, and the de-
ployment of hybrid DNNs with LHUC and sequence train-
ing, result in a relative WER reduction of around 30% on the
challenging tst2013 evaluation set compared to our 2013
system. We intend to carry over these benefits to our Ger-
man system, where a lack of suitable training data remains a
challenge.

In the future, we plan to further investigate methods for
robust DNN training and adaptation when the training data
is limited or poorly-transcribed, something which should en-
able us to develop systems in new languages more rapidly.
We also plan to work on removing the dependence on a
dictionary completely, perhaps by adapting grapheme-based
models. We also aim to re-incorporate RNN language mod-
els in our most competitive English system.
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