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The Eimeria species are highly pathogenic parasites of chickens. Research aimed at reducing their impact is
hindered by a lack of non-subjective, quantitative, tools to measure parasite replication in the host. The time-
consuming, and often time-sensitive, nature of existing approaches precludes their use in large-scale genetic, ep-
idemiological, and evolutionary analyses.We have used quantitative real-time PCR (qPCR) to accurately quantify
Eimeria tenella in chicken tissue and shown this to bemore efficient and sensitive than traditionalmethodologies.
We tested four chicken-specific reference qPCR assays and found beta-actin (actb) to be optimal for sample nor-
malisation. In an experimental setting, chickens were inoculated with 500, 1500, or 4500 E. tenella oocysts and
parasite replication and the impact of infectionmeasuredby i) qPCR analysis of DNA extracted fromcaecal tissues
collected at five and eight days post-infection (dpi), ii) faecal oocyst counts (FOCs) on samples taken from six to
eight dpi, and iii) lesion scoring on caeca collected post-mortem at five and eight dpi. Quantitative real-time PCR
test results indicated a significant dose-dependent increase in parasite numbers among study groups for samples
collected five dpi (i.e., prior to gametogony) (R2= 0.994) (p b 0.002) but not in those from day eight (after most
oocyst shedding) (R2= 0.006) (p N 0.379). A strong dose-dependent increase in parasite replication and severity
of infection was also revealed by FOC (R2 = 0.997) and lesion scoring. Importantly, qPCR offers substantial im-
provements for animal welfare via improved statistical power and reduced group sizes in experimental studies.
The described qPCRmethod overcomes subjective limitations of coproscopic quantification, allows reproducible
medium- to high-throughput examination of tissues, faeces, and oocysts, and is a valuable tool for determining
the impact of Eimeria infections in both experimental and field settings.

© 2015 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Chicken coccidiosis is caused by seven strictly host-specific species
of Eimeria (Apicomplexa, Eimeriidae; [1]). Disease severity depends on
variables such as magnitude of dose, parasite and host genotype, and
host immune status. Symptoms of coccidiosis may include oedema of
the submucosa, stimulation of glandular tissues, thickening of the
intestinal walls, villus atrophy, and in severe cases complete villus
destruction resulting in extensive haemorrhage and death [2,3]. Current
control of Eimeria relies primarily on the administration of routine che-
moprophylaxis and, to a lesser extent, vaccinationwith livewild-type or
attenuated parasites. However, the development ofmulti-drug resistant
strains [4–6], and the relative cost and limited production capacity for
live vaccines, has undermined the portfolio of effective treatment
options [7]. In addition to chemical management, specific diagnosis
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and an understanding of parasite replication is critical for control and
surveillance of coccidiosis [8]. Presently, quantification of Eimeria relies
on faecal or litter oocyst counts (FOCs) [9–13] or protractedmicroscopic
examination of stained tissue sections (intracellular parasite stages),
while species identification commonly requires assessment of oocyst
morphology, or lesions and site of infection during post-mortem [2].
These techniques are robust when carried out by skilled individuals
although they can be subjective, time consuming, and difficult to scale
up for medium to high-throughput applications [14–16].

The persistent threat of coccidiosis highlights an urgent need for
quantitative tools that can rapidly and accurately determine parasite
numbers in both field and experimental investigations. Innovative mo-
lecular approaches have included the application of polymerase chain
reaction (PCR) assays that are specific, objective, and efficient but are
qualitative, and rely on visual interpretation of stained agarose gels
[17]. More recently genus- and species-specific quantitative real-time
PCR (qPCR) has been applied [18,19], which is a high-throughput
fluorescence-based method of enzymatic amplification in a ‘closed-
tube’ format that can detect and measure minute quantities of DNA
[20–22] and calculate genome or transcript copy number [23]. The
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utility of this technique to study Eimeria and other apicomplexans (e.g.,
Cryptosporidium [24], Isospora [25], and Toxoplasma and Cyclospora
[26]), is due to its sensitivity, specificity, and capacity to quantify differ-
ent parasites in excised tissue, faecal samples, and purified parasite sus-
pensions [27]. Here, we critically evaluate the reliability and suitability
of qPCR for large-scale quantitative investigations of Eimeria tenella in
experimentally infected chickens. We directly compare our test results
to the traditional McMaster oocyst counting, and lesion-scoring
techniques, as an entrée to using qPCR for novel large-scale genetic,
epidemiological and evolutionary studies.

2. Materials and methods

2.1. Chicken management

Forty, two-week-old specific pathogen-free (SPF) Lohmann white
chickens (Gallus gallus domesticus) were housed with environmental
enrichment in coccidia-free conditions and allowed to acclimatise for
seven days. For the duration of this study birds were observed twice
per day for signs of illness and/or welfare impairment andwere housed,
handled, and treated following Home Office regulations under the
Animals (Scientific Procedures) Act 1986 (ASPA), and the guidelines
laid down by the Royal Veterinary College ethics committee.

2.2. Parasite preparation and inoculation

Sporulated E. tenella oocysts of theWisconsin (Wis) reference strain
[28]were produced andmaintained as described previously to generate
inocula of 1000, 3000, and 9000 sporulated oocysts per ml [10].

At experimental day 0, three-week old chickens were randomly
assigned to four groups. Four birds (group 1) were maintained as
study controls and were not inoculated, while the remaining 36
chickens were equally divided among three groups and inoculated via
oral gavage with 0.5 ml of one inoculum receiving a single dose of 500
(group 2), 1500 (group 3), or 4500 (group 4) sporulated oocysts.

2.3. DNA standard dilution series

Tenfold DNA standard dilution series representing E. tenella or chick-
en total genomic DNA (gDNA) were prepared as described previously
[29]. In brief, the concentration of each gDNA sample was determined
by NanoDrop spectroscopy in a ND-1000 spectrophotometer (Thermo
Scientific, Wilmington, USA) and by comparison with known standards
resolved via agarose gel electrophoresis in triplicate [30]. Based upon
predicted genomes sizes of 51.8 Mbp (E. tenella) [31] and 1.2 Gbp
(G. domesticus) [32,33] genome copy number was determined per
microliter (using Avogadro's number 6.022 × 1023 molecules/mol and
the averageweight of a base pair of 660 g/mol), to generate the standard
dilution series using glycogen (Thermo Scientific) as a carrier (final
concentration of 33 μg/ml; [34]). Dilution series ranged from 104–100

genome copies per ml.
Table 1
Primer pairs employed to amplify chicken cytoplasmic beta-actin (actb), beta-2microglobulin (
gene fragments, which were evaluated here as reference sequences for qPCR normalisation.

Target
gene

Primer identity Sequence (5′ to 3′) Theoretical annealing
temperature (°C)

actb Forward — actbF GAGAAATTGTGCGTGACATCA 60
Reverse — actbR CCTGAACCTCTCATTGCCA 60

β2m Forward — b2mF GCAAACCTCTGTCTTTCGGC 60
Reverse — b2mR ATGTTCAGACCAGAGCCTGC 60

gapdh Forward — GAPDH_For1 CGCAAGGGCTAGGACGG 60
Reverse — GAPDH_Rev1 GCGCTCTTGCGGGTACC 60

tbp Forward — tbpF TAGCCCGATGATGCCGTAT 62
Reverse — tbpR GTTCCCTGTGTCGCTTGC 60
2.4. Primer selection, PCR amplification and sequencing of host qPCR targets
to determine specificity

Genomic DNA was purified from E. tenella oocysts and uninfected
chicken intestinal tissue as described previously [19] and subjected to
PCR amplification and sequencing to determine primer specificity. For
quantification of E. tenella genome copy number we used the published
primers Ete_qPCRf (forward: 5′-TCGTCTTTGGCTGGCTATTC-3′) and
Ete_qPCRr (reverse: 5′-CAGAGAGTCGCCGTCACAGT-3′) [19], targeting
the E. tenella RAPD-SCAR marker Tn-E03-1161 [35]. Four other primer
pairs (see Table 1), targeting portions of the chicken cytoplasmic beta-
actin (actb), beta-2 microglobulin (β2m), glyceraldehyde 3-phosphate
dehydrogenase (gapdh), and tata-binding protein (tbp) genes, were
evaluated for their suitability as reference sequences for the purposes
of normalisation.

PCR amplification of 121 nucleotides of Tn-E03-1161 was achieved
with an established protocol [19]. A portion of each actb, β2m, gapdh,
and tbp locus were amplified in a volume of 50 μl containing 20 mM
Tris–HCl (pH 8.4) and 50 mM KCl (10× PCR buffer, −Mg), 3.0 mM of
MgCl2, 0.2 mM of each deoxynucleotide triphosphate, 50 pmol of each
primer, 1.25 U of Taq DNA polymerase, recombinant (Invitrogen™,
Life Technologies, Carlsbad, USA), and 2.0 μl of gDNA utilising the
cycling protocol 95 °C/5 m (initial denaturation), followed by 35 cycles
of 95 °C/30 s (denaturation), 60 °C/30 s (annealing), 72 °C/30 s (exten-
sion), followed by a final extension of 72 °C/10 m. Visualisation of PCR
ampliconswas achieved on 1.5%w/v agarose in TBE (tris, boric acid, eth-
ylenediaminetetraacetic acid [EDTA] buffer) gel stained with SafeView
Nucleic Acid Stain (Novel Biological Solutions, Huntingdon, UK). In
brief, 5 μl of each amplicon was mixed with 1 μl of 6× DNA loading
Dye (Thermo Scientific) and then subjected to electrophoresis at 50 V
for 1 h using TBE buffer (0.89 M tris base, 0.89 M boric acid, 0.5 M
EDTA; Sigma Aldrich, USA). A GeneRuler Low Range DNA Ladder
(Thermo Scientific) was included on each gel for size comparison
purposes. All PCR amplicons were purified using a QIAquick® PCR Puri-
fication Kit (Qiagen, Hilden, Germany), according to themanufacturer's
instructions. Purified amplicons were then subjected to cycle sequenc-
ing reactions using ABI Ready Reaction Mix (BigDye® Terminator v3.1
chemistry, Applied Biosystems, USA) and the same primers employed
for PCR (separately), followed by direct automated sequencing at
GATC Biotech, Cologne, Germany. Sequence quality was verified by
comparison with corresponding electropherograms and consensus
sequences were constructed using the software package CLC Main
Workbench v.6.9.1 (CLC bio, Aarhus, Denmark). Sequence similarity
was ascertained by Basic Local Alignment Search Tool analyses
(BLAST®: http://blast.ncbi.nlm.nih.gov/Blast.cgi).

2.5. Quantification of in vivo E. tenella replication

2.5.1. Quantitative real-time PCR (qPCR)
Six birds fromeach of study groups 2–4, representing half of each in-

oculated group, were euthanised five days post infection (dpi; 120 h pi)
and the remaining 22 birds (the other half of each study group plus the
β2m), glyceraldehyde 3-phosphate dehydrogenase (gapdh) and tata-binding protein (tbp)

Amplicon
size (bp)

Primer
references

GenBank accession nos.
for locus

Primer location
(from 5′ end)

Gene
references

152 [58] X00182 3003–3023 [41]
3136–3154

126 this study Z48922 3191–3210 [42]
3297–3316

98 [59] M11213 220–236 [43]
301–317

147 [58] NM_205103 144–162 [44]
273–290

http://blast.ncbi.nlm.nih.gov/Blast.cgi
ncbi-n:X00182
ncbi-n:Z48922
ncbi-n:M11213
ncbi-n:NM_205103
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four study controls) were euthanised eight dpi (192 h pi) according to
the guidelines of the Home Office regulations under A(SP)A. Immedi-
ately upon death the viscera were exposed, the caeca separated from
the large intestine, the caecal contents removed, and the complete
caecal pair transferred to a 30 ml polypropylene tube containing 5–10
volumes of RNAlater® (Life Technologies; Carlsbad, CA, USA) at room
temperature (RT), as per the manufacturer's instructions. Samples
were stored for a period of seven days at 4 °C before the RNAlater®
was decanted and samples stored at−20 °C.

Total gDNA was isolated from each caecal pair using a DNeasy®
Blood and Tissue kit (Qiagen). In brief, caeca were weighed and
suspended in an equal w/v of Qiagen tissue lysis buffer. Complete
caeca were then homogenised employing a TissueRuptor (Qiagen)
and the equivalent of ≤ 25 mg of the homogenate added to a sterile
1.5 ml microcentrifuge tube. Genomic DNA was then extracted as per
the manufacturer's instructions for Purification of Total DNA from
Animal Tissues. Total gDNA was stored at −20 °C, until further
investigation.

Quantitative real-time PCR was performed using a CFX96 Touch®
Real-Time PCR Detection System (Bio-Rad Laboratories, Hercules,
California, USA), as described by themanufacturer. Briefly, each sam-
ple was amplified in triplicate in a 20 μl volume containing 1 μl of
total gDNA, 300 nM of each primer, 10 μl of SsoFast™ EvaGreen®
Supermix (Bio-Rad Laboratories), and 8.8 μl of DNase/RNase free
water (Gibco™, Life Technologies) with qPCR cycling conditions
that consisted of 95 °C/2 m (enzyme activation/initial denaturation),
followed by 40 cycles of 95 °C/15 s (denaturation), 60 °C/30 s (an-
nealing/extension), followed bymelt analysis of 65 °C–95 °C at incre-
ments of 0.5 °C/0.5 s. Each qPCR assay included the relevant gDNA
dilution series (standards) and no template controls (NTC), and
was conducted employing white hard-shell® 96-well PCR plates
(Bio-Rad Laboratories) sealed with Thermo Scientific adhesive
sealing sheets.

2.5.2. Collection of faecal material and McMaster oocyst counts
To quantify E. tenella replication by FOC we collected total faecal

material from six to eight dpi separately from each of the 22 birds that
remained after the five dpi sampling to coincide with the period of
greatest oocyst excretion [36,37]. Total FOC per bird was determined
as described by Shirley [38].

2.5.3. Lesion scoring
Caecal lesion scores were determined prior to tissue preservation

from birds culled five and eight dpi employing the method described
by Johnson and Reid [39].

2.6. Statistics

The copy number of each qPCR target (for each test sample) was
calculated based on the slope and intercept generated by the corre-
sponding reference dilution series using qPCR software CFC manager
v.3.1 (Bio-Rad Laboratories). Predicted parasite genome copy number
in tissue samples was normalised by comparison to the estimated host
genome copy number. Samples collected five dpi were analysed
independently of those collected eight dpi. The normalised number of
parasite genomes per host genome (in one μl) was employed to infer
parasite copy number per milligramme of host tissue. Quantification
cycle data (Cq) resulting from triplicate qPCR amplification of each
test sample, standard, and NTC was averaged and the standard devia-
tion (SD) and relative standard deviation (% RSD) recorded. The effi-
ciency (E) of each qPCR assay was determined employing the formula
(Eq. (1)) [40]:

Efficiency of qPCR Eð Þ ¼ 10
−1
slope−1

� �
� 100: ð1Þ
The arithmetic mean, SD, and % RSD of Cq values for each biological
replicate/study group were determined using the programme Excel
(Microsoft Corporation, Redmond, Washington, USA). Faecal oocyst
count figures were normalised by Log10 transformation prior to statisti-
cal analysis. Statistical analyses were conducted using the software
package IBM SPSS Statistics 22 (IMB, New York, USA) and included
one-way ANOVA and the a posteriori Bonferroni and Tukey's tests.
Statistical significance of categorical lesion score data was assessed
using the Kruskal–Wallis test and the a posteriori Dunn's test. Differ-
ences were considered significant with a p-value of b0.05. Power
calculations to identify the minimum sample size (number of birds
per study group) required to obtain significant FOC were done at the
Statistical Solutions LLC website (http://www.statisticalsolutions.net/
pss_calc.php) where mu(0) was the average of all of the samples (not
including the no parasite control), mu(1) was the average of one
group (any), and the default values of 0.05 and 0.8 were employed for
‘alpha’ and ‘power’ (respectively).

In assessing which of four genomic loci were most suitable to serve
as reference sequences for the purposes of normalisation we examined
assay specificity, repeatability (i.e., short-term precision; see Bustin
et al. [23]), and efficiency on three separate occasions. Subsequently,
we endeavoured to obtain a standard curve (log [DNA copy number]
vs. Cq) with a slope of −3.322, which would theoretically yield an
amplification factor of 2.0 and an assay efficiency of 100%.

3. Results

3.1. Identification of an optimal chicken genomic DNA reference sequence

Four primer pairs targeting portions of separate protein-encoding
loci, which could serve as reference sequences for the purposes of data
normalisation,were evaluated for their specificity during PCR by a com-
bined PCR/sequencing/comparative analyses-based approach and by
qPCR via melting curve analysis. Visualisation of PCR amplicons by aga-
rose gel electrophoresis indicated that cyclic amplification of each locus
had generated a single product that ranged in size from 98–152 base
pairs, as expected (see Table 1). Subsequent sequencing and appraisal
of resultant genetic data indicated that each amplicon generated in
this studywas unique. Comparison of these sequenceswith information
available in public databases (i.e., GenBank) revealed that each was
100% identical to the corresponding sequence representing the chicken
actb (represented by the GenBank accession number X00182; [41]),
β2m (Z48922; [42]), gapdh (M11213; [43]), and tbp (NM_205103;
[44]) genes. To provide further evidence of specificity for each assay,
melting curve analysis of amplicons following qPCR indicated that the
meanmelting temperature of each locus, across 36 reactions (including
triplicates), was 83.03 ± 0.1 for actb, 82.79 ± 0.3 for β2m, 87.62 ± 0.4
for gapdh, and 83.74 ± 2.0 for tbp.

Quantitative real-time PCR assay repeatability and efficiency were
evaluated in three separate assays over a two-week period following
asmany freeze/thaw events.We amplified a single set of linear genomic
DNA dilutions over six, then five, orders of magnitudewith each sample
amplified in triplicate. The short-term precision, or intra-assay variabil-
ity, was determined by analysis of the mean % RSD for Cq variance (see
Fig. 1). Overall, assay precision was comparable for the four loci with %
RSD values ranging from 0.4–2.5 for actb, 0.3–2.3 for β2m, 0.5–2.1 for
gapdh, and 0.3–1.4 for tbp. Precision generally decreased with a reduc-
tion in genome copy number; this trend appeared stronger (i.e., a great-
er increase in % RSD with each further dilution of gDNA) for assays
amplifying actb and β2m compared to those for gapdh and tbp (see
Fig. 1). Differences in precision among the four loci at each dilution
were not significant (p N 0.185).

In assessing qPCR efficiency (E), analysis of each assay indicated that
all reactions resulted in linearly positive correlations with mean coeffi-
cients of determination (R2) of 0.985 ± 0.009 (actb), 0.983 ± 0.009
(β2m), 0.975 ± 0.009 (gapdh), and 0.988 ± 0.006 (tbp). The mean

http://www.statisticalsolutions.net/pss_calc.php
http://www.statisticalsolutions.net/pss_calc.php
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slope, amplification factor, and efficiency of assays amplifying three of
four lociwere comparable; amplification of actb,β2m, and tbp generated
slopes of (ca.) −3.0 ± 0.2, amplification factors of 2.1 ± 0.1, and
efficiencies of 113% ± 13 (see Table 2). In contrast, assays amplifying
gapdh produced results of −2.400 ± 0.427 (slope), 2.685 ± 0.533
(amplification factor), and 170.529% ± 54.955 (efficiency).
3.2. Comparison of McMaster oocyst counts and lesion scores with
quantitative real-time PCR as a measure of parasite replication

McMaster oocyst counts were obtained from total faecal samples
collected daily and pooled between six and eight dpi. The arithmetic
mean number of oocysts excreted per chicken in each study group in-
creased as initial oocyst dose increased (Table 3), while oocysts were
not detected during FOCs on faeces collected from control-group birds
(group 1). Oocyst output among the three differently inoculated groups
exhibited a strong dose-dependent linear positive correlation (R2 =
0.997; Table 3), although the differences were not statistically signifi-
cant (p N 0.098). Mean lesion scores were also found to increase as oo-
cyst dose increased at both five (groups 2 and 3 significantly different
from group 4, p=0.002) and eight dpi (group 2 compared with groups
3 and 4, p = 0.001), although not all differences were significant
(Table 3). Chickens in the control group did not have lesions.
Table 2
Quantitative real-time PCR test results for a Gallus gallus domesticus gDNA dilution series over
beta-2 microglobulin (β2m), glyceraldehyde 3-phosphate dehydrogenase (gapdh), and tata-b
provided for the coefficient of determination, slope, amplification factor and efficiency of three

Coefficient of
determination (R2)

Slope

Locus Repeat Template Linear range Value Mean ± SD Value

actb 1 Genomic DNA 1.05–1.00 0.990 0.985 ± 0.009 −2.92
2 Genomic DNA 1.04–1.00 0.990 −3.27
3 Genomic DNA 1.04–1.00 0.975 −2.94

β2m 1 Genomic DNA 1.05–1.00 0.974 0.983 ± 0.009 −2.93
2 Genomic DNA 1.04–1.00 0.984 −3.37
3 Genomic DNA 1.04–1.00 0.992 −2.88

gapdh 1 Genomic DNA 1.05–1.00 0.978 0.975 ± 0.009 −1.91
2 Genomic DNA 1.04–1.00 0.965 −2.69
3 Genomic DNA 1.04–1.00 0.983 −2.60

tbp 1 Genomic DNA 1.05–1.00 0.992 0.988 ± 0.006 −2.86
2 Genomic DNA 1.04–1.00 0.981 −3.01
3 Genomic DNA 1.04–1.00 0.992 −3.27
The trend of increased parasite number versus initial inoculum dose
was reflected in the number of intracellular parasite genomes detected
five dpi by qPCR with a strongly linear positive correlation (R2 =0.994;
Table 3). A posteriori tests indicated that differences among the means
across all groups were significant (p b 0.002) (Table 3). Quantitative
real-time PCR data generated from samples collected eight dpi did not
demonstrate a relationship between residual intracellular parasite
genome numbers and initial dose, reflected by the absence of a clear
correlation (R2 = 0.006) and no statistically significant differences
(p N 0.379).

The precision of the qPCR assays, measured as the standard devia-
tion of triplicate Cq values for each sample, was high with variation
ranging from 0.017–0.167. This resulted in SD in copy number (prior
to normalisation) of as little as 23.8 to 3453.5 genome copies. No ampli-
fication was observed for any of the NTC samples, on any occasion.
These findings demonstrate the specificity of the PCR conditions
employed to amplify the E. tenella RAPD-SCAR marker Tn-E03-1161.

4. Discussion

This study represents the first validation of an objective, highly sen-
sitive, and efficient published quantitative real-time PCR technique to
expedite the process of determining Eimeria parasite replication in
tissue for both small and large-scale investigations in laboratory and
five orders of magnitude (104–100) for the amplification of cytoplasmic beta-actin (actb),
inding protein (tbp) protein-encoding gene fragments. Mean and standard deviation are
replicate reactions targeting the four loci.

Amplification factor Efficiency (%)

Mean ± SD Value Mean ± SD Value Mean ± SD

0 −3.048 ± 0.198 2.253 2.124 ± 0.119 120.022 113.452 ± 9.992
6 2.020 101.953
8 2.100 118.380
8 −3.066 ± 0.270 2.185 2.121 ± 0.123 118.961 112.984 ± 13.256
6 1.979 97.792
4 2.200 122.198
0 −2.400 ± 0.427 3.300 2.685 ± 0.533 233.857 170.529 ± 54.955
0 2.354 135.368
1 2.400 142.364
7 −3.053 ± 0.205 2.247 2.137 ± 0.114 123.253 113.247 ± 10.632
9 2.144 114.405
3 2.020 102.083



Table 3
Eimeria tenella replication and impact defined by average faecal oocyst count (FOC) per bird, lesion score and qPCR quantified intracellular genomes.

Group Dose (oocysts per bird) FOC (Log10 oocysts/bird) Lesion score Log10 parasite genomes/mg host tissue

5 dpi 8 dpi 5 dpi 8 dpi

1 Uninfected ND nd 0a nd 0
2 500 6.67 ± 0.73 1.3 ± 0.5a 1.2 ± 0.7a 5.2 ± 0.1a 4.9 ± 0.2
3 1500 7.14 ± 0.69 2.0 ± 0.6a 2.8 ± 0.4b 5.6 ± 0.2b 4.6 ± 0.4
4 4500 7.58 ± 0.37 3.6 ± 0.5b 3.0 ± 0.3b 6.1 ± 0.2c 5.0 ± 0.4

R2 0.9969 0.7384 0.6302 0.9942 0.0059

ND = none detected; the limit of detection was 4.3 Log10 oocysts/bird. nd = not done. Statistically significant differences in columns indicated by different superscript letters.
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field-place settings. Previous reports using qPCR methods have focused
on developing assays for the specific identification of multiple chicken-
infecting Eimeria species [19,45–48], or for quantification of a single spe-
cies (i.e., Eimeria acervulina [18,27] and Eimeria maxima [29]). Here, we
directly compared qPCR of tissue samples with FOC and lesion scores in
experimentally infected chickens to demonstrate a robust correlation
between oocyst dose, qPCR test results, and FOC.

We detected E. tenella genomic DNA in all 36 experimentally infect-
ed chickens. Quantitative real-time PCR test results from tissues collect-
ed five dpi indicated a dose-dependent relationship between the size of
inoculum and intracellular parasite genome copy number. By eight dpi,
after completion of most oocyst shedding, this relationship was no
longer apparent (R2= 0.006). FOC and lesion scores also showed strong
relationships between inoculum dose and oocyst outputs or lesion
scores; however, there was an overall lack of statistically significant
differences between groups in FOC while differences in lesion scores
were significant between two, but not all doses (Table 3). Thesefindings
are ofmajor importance. The low intra-group variation defined by qPCR
atfive dpi compared to traditionalmeasures of parasite replication, such
as FOC or lesion scoring, offer opportunities to reduce experimental
group sizes without compromising statistical quality, a reduction in
line with the National Centre for the Replacement, Refinement and
Reduction of Animals in Research (NC3Rs; http://www.nc3rs.org.uk/)
principles. Statistical significance for E. tenella commonly requires at
least eight replicate birds per experimental groupwhen usingmeasures
such as FOC [49]. Here, power calculations using the standard deviation
associated with the within-group FOC variation indicated that we
would have required group sizes in excess of 20 to detect significant
differences in oocyst excretion associated with dose size, compared to
just six for qPCR when measured at five dpi.

Biological and technical factors can influence gDNA-based qPCR re-
sults andmust be considered carefully before this tool can be usedwide-
ly as a realistic alternative to FOC. In previous qPCR studies with Eimeria
carried out by Morgan et al. [48] and Raj et al. [45], gDNAwas extracted
directly from faeces employing (singly or in combination) a QIAamp®
DNA Stool Mini Kit (Qiagen), DNeasy® Tissue Kit (Qiagen), and/or a
standard cetyl trimethylammonium bromide (CTAB) [50] extraction
protocol. These methods are at least partially ineffective at removing
faecal components inhibitory to PCR, as demonstrated using an internal
positive control (IPC) qPCR in the latter study. Using tissue samples in
place of caecal contents or faeces can reduce the risk of inhibition and
could be confirmed by inclusion of an IPC assay [45]. Quantification of
Eimeria genome numbers in tissue, rather than faecal or litter samples,
offers the additional benefit of removing sporulation as a variable. Spo-
rogony usually occurs between 24 and 72 h after oocyst excretion, but
can be completed in under 24 h under optimal conditions of tempera-
ture and moisture [51], introducing at most a four-fold potential for
error as the diploid unsporulated oocyst differentiates to eight haploid
sporozoites [19]. Efforts to account for such variation have included cal-
culation of a sporulation factor [48] or sample refrigeration to minimise
sporulation [45]. Moreover, qPCR using species-specific assays (e.g.,
[29]) can be of value when assessing the impact of co-infection by
more than one Eimeria species. The influence of other biological vari-
ables, such as the crowding effectwhereby parasite fecundity is reduced
once a ‘crowding threshold’ has been reached [11,52], are likely to exert
equal effects on both qPCR and FOC quantification of faecal oocyst load.

Despite these technical benefits, when quantifying Eimeria numbers
in tissue samples, it is critical that the timing of infection is known as
qPCR targeted at gDNA will not differentiate between a high level of
infection early in the parasite's life cycle and a lower level of infection
later in the life cycle. Thus, qPCR quantification of Eimerian parasites in
tissue samples should be considered an excellent replacement for FOC
under controlled experimental conditions or in unusual field situations
when the time of infection is known. Of particular value will be the
reductions in animal usage achieved through the use of smaller experi-
mental group sizes and a substantial reduction in investigator time in
large-scale experimental and/or field studies, including those aimed at
developing new vaccines and for investigations into parasite genetics,
population biology, and epidemiology.

For studies that define parasite numbers in tissue samples via a
gDNA-based qPCR approach to be comparedwith each other, it is essen-
tial that a standardised protocol be adopted. A thorough understanding
of the life cycle of the species under study is essential for effective inter-
pretation of results and to avoid those stages of development/reproduc-
tion that may skew data. In this study we specifically sampled and
homogenised whole caecal pairs to avoid the introduction of bias
associated with uneven parasite replication and/or distribution within
and between caeca. For E. tenella sampling at five dpi gave a balance
between sensitivity (by targeting the massive numbers of parasites
present within the developing third generation schizonts [53]), and
reproducibility (by avoiding the developing macro- and microgametes
[54]). Even small variations in the ratio of macro- to microgametocytes
could skew the association between final numbers of oocysts and
parasite genome numbers observed during gametogony [55,56].
Although definitive sex ratios remain unknown for any coccidian
species, Reece et al. [57] found significant variation in the sex ratios of
Plasmodium chabaudi gametocytes in infected MF1 mice that were
parasite-adjusted in response to the presence of unrelated conspecifics.
Although Plasmodium is not a coccidian, this phenomenon is likely to
occur in other apicomplexans such as Eimeria so sampling during
gametogony could add significant unexpected variation to the assay in
the absence of a genetically homogeneous infection.

In developing this protocol we assessed amplification of a portion of
each of four genetic markers within the chicken genome using previ-
ously validated assays to serve as reference sequences for the purposes
of qPCR normalisation. Our final choice of target (152 nucleotides of the
actb gene) was influenced by the specificity, repeatability (i.e., short-
term precision; see [23]), and assay efficiency for each locus. Overall,
there was minimal separation among actb, β2m, and tbp in as much as
amplification of each locus resulted in highly comparable coefficients
of determination (R2), standard curves, amplification factors, and
assay efficiencies (see Table 2). The determining factor was the mean
melting temperature of each locus, which suggested that the qPCR
reaction amplifying actb was more specific compared to that for either
β2m or tbp. In assessing efficiency, which can be influenced by amplicon
length, G + C content and secondary structure, we endeavoured to
obtain a standard curve with a slope of−3.322, which would theoreti-
cally yield an amplification factor of 2.0, and an assay efficiency of 100%
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(i.e., DNA copies effectively doubling at each cycle of the PCR). Although
variation in efficiency of between 90–115% is considered acceptable,
efficiencies N100% can indicate non-target fluorescence or DNA satura-
tion, which results in reduced change in Cq scores at higher sample
concentrations, causing a slope compression that inflates efficiency
[48]. In the future, in order to bring efficiency closer to 100%, use of a
target-specific probe would be preferred using TaqMan qPCR or a simi-
lar technology. Introducing this technology (i.e., multiplexed qPCR)
would have the additional benefits of i) increased sample throughput,
ii) reduced sample handling thereby decreasing opportunities for oper-
ator induced errors or those that result as a consequence of multiple
freeze/thaw events, iii) reduced reagent/consumable cost, and iv) the
need for large sample sizes, especially when samples are precious.

In conclusion, this study represents a breakthrough to quantifying
Eimeria replication with particular relevance to experimental settings
of infection. Quantitative real-time PCR is capable of detecting andmea-
suring minute quantities of DNA from a variety of biological/environ-
mental materials, which can be stored prior to in-depth evaluation or
retrospective re-evaluation. Access to this medium-/high-throughput
tool tomeasure Eimeria genome numbers provides a unique opportuni-
ty to investigate key aspects of Eimeria biology and control on a scale not
previously accessible using FOC/lesion scoring. Importantly, the qPCR
technique provides an unprecedented opportunity to i) reduce experi-
mental animal group sizes without compromising statistical quality, a
reduction in line with NC3Rs and ii) investigate the genetic basis of
resistance/susceptibility to eimerian infection, providing a quantifiable
phenotype amenable to quantitative trait locus mapping. In the future,
comparative genetic studies of isolates with differing phenotypic traits
linked to parasite–host interplay, virulence and pathogenicity as well
as disease, together with host genetics, will be critical to understanding
coccidiosis and improving anticoccidial control. Consequently, this
study's immediate benefits are directly connected to the commercial
poultry industry and associated management sectors, as well as aca-
demic research institutions.
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