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Correlation Bounds and #SAT Algorithms for Small

Linear-Size Circuits

Ruiwen Chen∗ Valentine Kabanets†

December 28, 2014

Abstract

We revisit the gate elimination method, generalize it to prove correlation bounds of boolean
circuits with Parity, and also derive deterministic #SAT algorithms for small linear-size circuits.
In particular, we prove that, for boolean circuits of size 3n−n0.51, the correlation with Parity is

at most 2−nΩ(1)

, and there is a #SAT algorithm running in time 2n−nΩ(1)

; for circuit size 2.99n,
the correlation with Parity is at most 2−Ω(n), and there is a #SAT algorithm running in time
2n−Ω(n). Similar correlation bounds and algorithms are also proved for circuits of size almost
2.5n over the full binary basis B2.

Keywords: boolean circuit, random restriction, correlation bound, satisfiability algorithm.

1 Introduction

Connections between circuit lower bounds and efficient algorithms have been explicitly exploited in
several recent breakthroughs. In particular, the “random restriction” technique, which was used to
prove circuit lower bounds, was extended to get both satisfiability algorithms and average-case lower
bounds for boolean formulas [San10, KR13, KRT13, CKK+14] and AC0 circuits [IMP12, BIS12].

For de Morgan formulas, Santhanam [San10] gave a #SAT algorithm running in time 2n−Ω(n)

for formulas of linear size; the algorithm is based on a generalization of the “shrinkage under
random restrictions” property, which was used to prove formula lower bounds [Sub61, H̊as98].
Santhanam [San10] observed that, one can define a random process of restrictions such that the
formula size shrinks with high probability. This concentrated shrinkage implies not only #SAT
algorithms but also correlation bounds. As shown in [San10], a linear-size de Morgan formula has
correlation at most 2−Ω(n) with Parity; the correlation of two n-input functions f and g is |Pr[f(x) =
g(x)] − Pr[f(x) 6= g(x)]|, where x is chosen uniformly at random from {0, 1}n. Santhanam’s

algorithm was extended to 2n−n
Ω(1)

-time #SAT algorithms for de Morgan formulas of size n2.49

in [CKK+14] and size n2.63 in [CKS14]. For formulas over the full binary basis B2, Seto and
Tamaki [ST12] extended [San10] to give a 2n−Ω(n)-time #SAT algorithm for B2-formulas of linear
size, and also showed that such formulas cannot approximately compute affine extractors.

On the other hand, Komargodski, Raz, and Tal [KR13, KRT13] also used the concentrated
shrinkage property to generalize the worst-case formula lower bounds to the average case. They
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Table 1: Worst-case and average-case lower bounds for computing Parity

Worst-Case Lower Bounds Average-Case Upper / Lower Bounds

AC0 s = exp(nθ(
1

d−1
)) [Yao85, H̊as86] ε = 2−Ω(n/(log s)d−1) [H̊as12]

De Morgan s = n2−θ(1) [Sub61] ε > 2−Ω(n2/s) ε 6 2−Ω(n/
√
s) [BBC+01, Rei11]

formulas ε 6 2−Ω(n/c2) for s = cn [San10]

U2-circuits s = 3n− θ(1) [Sch74] ε > 2−Ω(3n−s) ε 6 2−Ω((3n−s)2/n) [This work]

gave an explicit function (computable in polynomial time) such that de Morgan formulas of size

n2.99 can compute correctly on at most 1/2 + 2−n
Ω(1)

fraction of inputs. Combining the techniques

in [KRT13, CKK+14], one can get a randomized 2n−n
Ω(1)

-time #SAT algorithm for de Morgan
formulas of size n2.99.

1.1 Our results and techniques

In this work, we get correlation bounds and #SAT algorithms for general boolean circuits. We
consider circuits over the full binary basis B2 and circuits over the basis U2 = B2 \ {⊕,≡}.

We prove that, for U2-circuits of size 3n− nε for ε > 0.5, the correlation with Parity is at most
2−n

Ω(1)
, and there is a #SAT algorithm running in time 2n−n

Ω(1)
; for U2-circuits of size 3n− εn for

ε > 0, the correlation is at most 2−Ω(n), and there is a #SAT algorithm running in time 2n−Ω(n).
For B2-circuits, we give a similar #SAT algorithm for circuits of size almost 2.5n, and show the
average-case hardness of computing affine extractors using such circuits.

Our correlation bounds of U2-circuits with Parity are almost optimal, up to constant factors in
the exponents. In fact, one can construct a U2-circuit of size 3n − l which computes Parity on at
least 1/2 + 2−Ω(l) fraction of inputs. Table 1 summarizes the known worst-case and average-case
lower bounds against Parity for several restricted circuit models. Note that, for the average-case
bounds, we express the correlation ε as a function of the circuit size s.

However, there is still a gap between our average-case lower bounds and the worst-case lower
bounds. The best known worst-case explicit lower bound is 5n− o(n) for U2-circuits [LR01, IM02],
and 3n− o(n) for B2-circuits [Blu84].

For #SAT algorithms, there is a known algorithm for B2-circuits by Nurk [Nur09] which runs
in time O(20.4058s) for circuits of size s. The running time of our algorithm for B2-circuits is almost
the same as Nurk’s [Nur09]. We are not aware of any #SAT algorithm for U2-circuits.

Our techniques. We extend the gate elimination method which was previously used to prove
worst-case circuit lower bounds [Sch74, Blu84, Zwi91, LR01, IM02, DK11]. We define a random
process of restrictions such that the circuit size shrinks with high probability. This is similar to the
concentrated shrinkage approach for boolean formulas [San10, ST12, KR13, KRT13, CKK+14]. We
analyze this random process using the concentration bound given by a variant of Azuma’s inequality
as in [CKK+14]. This analysis is then used to get both correlation bounds and #SAT algorithms.
The same approach works for both U2-circuits and B2-circuits, although we need different rules on
defining restrictions.

As a byproduct of our algorithms, we show that small linear-size circuits have decision trees of
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non-trivial size. In particular, U2-circuits of size s have equivalent decision trees of size 2n−Ω((3n−s)2/n),
and B2-circuits of size s have parity decision trees of size 2n−Ω((2.5n−s)2/n). Our correlation bounds
follow directly from such non-trivial decision-tree representations.

Related work. For U2-circuits, the best known worst-case lower bound is 5n− o(n) by Iwama
and Morizumi [IM02], improving upon a 4.5n − o(n) lower bound by Lachish and Raz [LR01], a
4n−c lower bound against symmetric functions by Zwick [Zwi91], and a 3n−c lower bound against
Parity by Schnorr [Sch74]. For B2-circuits, the best known worst-case lower bound is 3n − o(n)
by Blum [Blu84]; Demenkov and Kulikov [DK11] gives an alternative proof of this lower bound
against affine dispersers. Nurk [Nur09] gave a satisfiability algorithm running in time O(20.4058s)
for B2-circuits of size s. Nurk’s algorithm [Nur09] is also based on gate elimination and the running
time is similar to ours, although we use a slightly different case analysis for gate elimination. We
are not aware of any previous average-case lower bounds (correlation bounds) for general circuits.

2 Preliminaries

2.1 Circuits

Let B be a binary basis, i.e., a set of boolean functions on two variables. A B-circuit on n input
variables is a directed acyclic graph with (1) nodes of in-degree 0 labeled by variables or constants,
which we call inputs, and (2) nodes of in-degree 2 labeled by functions from B, which we call gates.
There is a single node of out-degree 0, designated as the output. Without loss of generality, we
assume, for each variable xi, there is at most one input labeled by xi. A circuit on n variables
computes a boolean function f : {0, 1}n → {0, 1}. For two nodes u and v, we will write u→ v if u
feeds into v.

We consider two binary bases: the full basis B2, which contains all boolean functions on two
variables, and the basis U2 = B2 \ {⊕,≡}. Specifically, the basis B2 contains the following 16
functions f(x, y):

• six degenerate functions: 0, 1, x, ¬x, y, ¬y;

• eight ∧-type functions: x ∧ y, x ∨ y, and the variations by negating one or both inputs;

• two ⊕-type functions: x⊕ y, x ≡ y.

The size of a circuit C, denoted by s(C), is the number of gates in C. The circuit size of a
function f : {0, 1}n → {0, 1} is the minimal size of a boolean circuit computing f . For convenience,
we define µ(C) = s(C) + N(C), where N(C) is the number of inputs that C depends on. We let
µ(C) = 0 if C is constant, and µ(C) = 1 if C is a literal.

A restriction ρ is a mapping from the input variables to {0, 1, ∗}. For a circuit C, the restricted
circuit C|ρ is obtained by fixing xi = b for all xi such that ρ(xi) = b ∈ {0, 1}.

It is convenient to work with circuits without redundant nodes or wires. We will call a non-
constant circuit (over U2 or B2) simplified if it does not have the following:

1. nodes labeled by constants,

2. gates labeled by degenerate functions,

3. non-output gates with out-degree 0, or
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4. any input x and two gates u, v with three wires x→ u, x→ v, u→ v.

Lemma 2.1. For any circuit C, there is a polynomial-time algorithm transforming C into an
equivalent simplified circuit C ′ such that s(C ′) 6 s(C) and µ(C ′) 6 µ(C).

Proof Sketch. Cases (1)-(3) are trivial. For case (4), suppose w is the other node feeding into u. If
C is over B2, then v computes a binary function of x and w; if C is over U2, then v computes an
∧-type function of x and w (because a ⊕-type function requires at least 3 gates). In either case, we
can connect w directly to v, remove the wire u → v, and change the gate label of v. By checking
through each input and gate, the transformation can be done in polynomial time.

2.2 Correlation

Definition 2.2. Let f and g be two boolean functions on n input variables. The correlation of f
and g is defined as

Corr(f, g) = |Pr[f(x) = g(x)]−Pr[f(x) 6= g(x)]| = |2Pr[f(x) = g(x)]− 1| ,

where x is chosen uniformly at random from {0, 1}n.

The correlation of f with a circuit class C is the maximum of Corr(f, C) for any C ∈ C. Note
that, a circuit C has correlation c with f if and only if C computes f or its negation correctly on a
fraction (1 + c)/2 of all inputs. The correlation bound is also referred to as the average-case lower
bound in the literature.

2.3 Decision Tree

A decision tree is a tree where (1) each internal node is labeled by a variable x, and has two outgoing
edges labeled by x = 0 and x = 1, and (2) each leaf is labeled by a constant 0 or 1. A decision tree
computes a boolean function by tracking the paths from the root to leaves. The size of a decision
tree is the number of leaves of the tree.

A parity decision tree extends a decision tree such that each internal node is labeled by the
parity of a subset of variables (including one single variable as a special case). We insist that,
for each path from the root to a leaf, the parities appearing in the internal nodes are linearly
independent.

2.4 Concentration bounds

Theorem 2.3 (Chernoff bounds). [AB09] Let {Xi}ni=1 be mutually independent random variables
over {0, 1}, and let µ =

∑n
i=1 E[Xi]. Then, for every c > 0,

Pr

[∣∣∣∣∣
n∑
i=1

Xi − µ

∣∣∣∣∣ > cµ

]
6 2 · e−min{c2/4, c/2}µ.

A sequence of random variables X0, X1, . . . , Xn is called a supermartingale with respect to
a sequence of random variables R1, . . . , Rn if E[Xi | Ri−1, . . . , R1] 6 Xi−1, for 1 6 i 6 n. The
following is a variant of Azuma’s inequality which holds for supermartingales with one-side bounded
differences.
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Lemma 2.4. [CKK+14] Let {Xi}ni=0 be a supermartingale with respect to {Ri}ni=1. Let Yi =
Xi −Xi−1. If, for every 1 6 i 6 n, the random variable Yi (conditioned on Ri−1, . . . , R1) assumes
two values with equal probability, and there exists ci > 0 such that Yi 6 ci, then, for any λ > 0, we
have

Pr[Xn −X0 > λ] 6 exp

(
− λ2

2
∑n

i=1 c
2
i

)
.

3 U2-circuits

All known lower bounds for U2-circuits [IM02, LR01, Zwi91, Sch74] were proved using the gate
elimination method. We will generalize this method by defining a random process of restrictions
under which the circuit size reduces with high probability. This allows us to get a #SAT algorithm
for U2-circuits of size almost 3n, and also prove a correlation bound against Parity.

3.1 Concentrated shrinkage under restrictions

We call an ∧-type function of two variables a twig. We now define a random process of restrictions
where, at each step, we pick a variable or a twig and randomly assign it a value 0 or 1; we also
simplify the circuit by eliminating unnecessary gates. The choice of variables or twigs at each step
is determined by the following cases:

• If the circuit is a literal, choose the variable in the literal.

• If there is an input x with out-degree at least two, choose x.

• Otherwise, there must be a gate u fed by two variables having out-degree 1; we choose u
(which is a twig).

Let C be a simplified U2-circuit on inputs x1, . . . , xn. Let C ′ be the simplified circuit obtained
after one step of restriction. Then we have the following lemma on the reduction of µ(C).

Lemma 3.1. Suppose µ(C) > 4. Let σ = µ(C)− µ(C ′). Then we have σ > 3, and E[σ] > 4.

Proof. Consider the following cases (see also Figure 3.1):

(1) Suppose there is an input xi feeding into two gates u and v. By Lemma 2.1, there is no edge
between u and v. We randomly assign 0 or 1 to xi, and consider the following sub-cases on
the successors of u and v.

(a) If u and v feed into two different successors, we have the following possibilities. If under
one assignment to xi, none of u, v become constants, then we can eliminate xi, u, v; and
under the other assignment to xi, since both of u, v will be constants, we can eliminate
two more gates (successors of u, v); thus we have Pr[σ > 5] > 1/2, and σ > 3. If under
each assignment to xi, only one of u, v becomes a constant, then we can eliminate xi, u, v
and one successor; thus σ > 4.

(b) If u and v feed into one single common successor w, we have similar situations as above.
If under one assignment to xi, both u and v become constants, then we can eliminate
xi, u, v, w and a successor of w; and under the other assignment to xi, we can eliminate
xi, u, v. If under each assignment to xi, only one of u, v becomes a constant, then we
can eliminate xi, u, v, w.

5



(2) If all inputs have out-degree 1, find a gate u fed by two inputs, say xi and xj . We randomly
assign 0 and 1 to u; for each assignment, eliminate xi, xj , u and at least one successor of u.
Then we have σ > 4.

In all cases, we have σ > 3, and E[σ] > 4.

u v

xi

(1.a)

w

u v

xi

(1.b)

u

xi xj

(2)

Figure 1: Cases in Lemma 3.1

Next consider the reduction of µ(C) under a sequence of restrictions. Let C0 := C, and, for
i = 1, . . . , d, let Ci be the circuit obtained after the i-th step. For convenience, we let µi := µ(Ci).
Let Ri be the random value assigned to the variable or twig at each step. We define a sequence of
random variables {Zi} as follows:

Zi =

{
µi − (µi−1 − 4), µi−1 > 4,

0, µi−1 < 4.

Note that 0 < µi−1 < 4 holds only when Ci−1 itself is a literal or a twig, which means Ci will be a
constant.

Lemma 3.2. Let X0 = 0 and Xi =
∑i

j=1 Zi. Then we have Zi 6 1, and {Xi} is a supermartingale
with respect to {Ri}.

Proof. By Lemma 3.1, conditioning on R1, . . . , Ri−1, when µi−1 > 4, we have µi 6 µi−1 − 3 and
E[µi] 6 µi−1 − 4. Therefore, we get Zi 6 1, E[Zi | Ri−1, . . . , R1] 6 0, and E[Xi | Ri−1, . . . , R1] 6
Xi−1. Thus {Xi} is a supermartingale with respect to {Ri}.

Lemma 3.3. For λ > 0, Pr [µd > max{µ0 − 4d+ λ, 1}] 6 exp(−λ2/2d).

Proof. Conditioning on R1, . . . , Ri−1, the variable Zi assumes two values with equal probability.
By Lemma 3.2, we have {Xi} is a supermartingale with respect to {Ri}, and Zi 6 ci ≡ 1. Applying
the bound in Lemma 2.4, we have

Pr

[
d∑
i=1

Zi > λ

]
6 exp

(
−λ

2

2d

)
.

When µd > 0, we have
∑d

i=1 Zi = µd − µ0 + 4d. Let E1 be the event that µd > 0; let E2 be the

event that
∑d

i=1 Zi > λ. Then the final probability is Pr[E1 ∧ E2] 6 Pr[E2] 6 exp(−λ2/2d).
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3.2 #SAT algorithms

We now give a #SAT algorithm for circuits of size almost 3n based on the concentrated reduction
of circuit size.

Theorem 3.4. For U2-circuits of size s < 3n, there is a deterministic #SAT algorithm running
in time 2n−Ω((3n−s)2/n).

Proof. Let C be a circuit on n inputs x1, . . . , xn with size s < 3n. Let µ0 := µ(C) 6 s+ n.
We use the following procedure to construct a generalized decision tree, where each internal

node is labeled by a variable or a twig. We start with the root node and C.

• If C is a constant, label the current node by this constant and return.

• Use the cases in Lemma 3.1 to find either a variable or a twig; denote it by u. Label the
current node by u.

• Build two outgoing edges labeled by u = 0 and u = 1. For each child node, simplify the
circuit, and recurse.

We say a complete assignment to x1, . . . , xn is consistent with a path (from the root to a leaf) if
it satisfies the restrictions along the path. Since each assignment a ∈ {0, 1}n is consistent with only
one path, the paths give a disjoint partitioning of the boolean cube {0, 1}n. To count the number
of satisfying assignments for C, one can count for each path with leaf labeled by 1, and return the
summation. Restrictions along each path is essentially a read-once 2-CNF, for which counting is
easy. We next only need to bound the size of the tree.

We wish to bound the probability that a random path has length larger than n− k, for k to be
chosen later. Let λ = 4(n− k)− µ0 + 1. Then by Lemma 3.3, at depth n− k, the restricted circuit
becomes a constant with probability at least 1 − exp(−λ2/2(n − k)) > 1 − 2−cλ

2/n for a constant
c > 0. The total number of paths with length larger than n− k is at most

2n−k · 2−cλ2/n · 2k 6 2n−cλ
2/n.

Therefore, the size of the tree is at most 2n−k + 2n−cλ
2/n. Choosing k = (3n− s)/8, both the tree

size and the running time of the counting algorithm are bounded by 2n−Ω((3n−s)2/n).

The following corollary is immediate.

Corollary 3.5. (1) For U2-circuits of size 3n − εn with ε > 0, there is a deterministic #SAT
algorithm running in time 2n−Ω(n). (2) For U2-circuits of size 3n − nε with ε > 0.5, there is a

deterministic #SAT algorithm running in time 2n−n
Ω(1)

.

3.3 Correlation with Parity

Schnorr [Sch74] proved a 3n − c lower bound for computing Parity using the following fact: a
simplified U2-circuit computing Parity cannot have any input variable with out-degree exactly 1.
Indeed, if such an input x exists, one can fix all other variables such that the gate fed by x becomes
a constant, but this makes the function independent of x, which is impossible for Parity.

We next generalize this lower bound to the average case by showing that a U2-circuit of size s <
3n cannot approximate well with Parity. We will convert the generalized decision tree constructed
in the proof of Theorem 3.4 into a decision tree without twigs, and argue that the tree size will not
increase too much.
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Lemma 3.6. Any function computed by a U2-circuit of size s < 3n has a decision tree of size
2n−Ω((3n−s)2/n).

Proof. Let T be the (generalized) decision tree constructed in Theorem 3.4 for the given circuit.
We expand each node labeled by a twig into two nodes labeled only by variables. For example,
suppose we have a node labeled by x∨y with two subtrees A and B; we can replace it by two nodes
x and y by making two copies of A. Denote the new decision tree by T ′, and we wish to bound the
size of T ′.

For a twig x ∨ y, we say the restriction x ∨ y = 1 is good (since it allows three configurations of
x, y), whereas x ∨ y = 0 is bad. We use similar definitions for the other types of twigs. For a path
in T with l twigs having good restrictions, it will be replaced by 2l paths in T ′.

We first consider paths in T of length larger than n − k. As shown in Theorem 3.4, at depth
n− k of T , there are at most 2n−k · 2−cλ2/n nodes which are not leaves. Let v be such a node, and
let l be the number of twigs on the path from the root to v. Then all paths in T passing through
v will be replaced by at most 2l · 2k−l = 2k paths in T ′. Therefore, all paths in T of length larger
than n− k will be replaced by at most 2n−cλ

2/n paths.
For a path in T of length at most n − k, let l be the number of twigs with good restrictions

along the path. If l 6 k/2, then this path is replaced by at most 2k/2 paths in T ′. For all paths in
T of length at most n− k such that l 6 k/2, they will be replaced by at most 2n−k · 2k/2 = 2n−k/2

paths.
Consider a path of length at most n− k which has l > k/2 twigs with good restrictions. After

expanding the twigs, it is replaced by 2l paths. When expanding a twig with a bad assignment, the
path length increases by 1; when expanding a twig with a good assignment, the path becomes two
paths with length increased by 0 and 1, respectively. Thus, by Chernoff bounds (choosing µ = l/2
and c = 1/2 in Theorem 2.3), over the 2l new paths, at most a fraction 2 · e−l/32 < 2−k/c

′
(for some

constant c′) will have length larger than n− l+3l/4 = n− l/4. Therefore, there are at most 2n−k/c
′

new paths having length larger than n− k/8.
Choosing k = (3n− s)/8 gives the result.

The following lemma gives a simple relationship between the size of a decision tree and its
correlation with Parity. It was previously used to derive correlation bounds for de Morgan formu-
las [San10] and AC0 circuits [IMP12] .

Lemma 3.7. A decision tree of size 2n−k has correlation at most 2−k with Parity.

Proof. For a path of the decision tree with length strictly less than n, the restricted function is a
constant, and thus it has zero correlation with Parity. Since there are less than 2n−k paths with
length exactly n, the decision tree computes Parity correctly on at most 1/2 + 2−k fraction of all
inputs.

Theorem 3.8. Let C be a U2-circuit of size s < 3n. Then its correlation with Parity is at most
2−Ω((3n−s)2/n). In particular, for s = 3n − εn with ε > 0, the correlation is at most 2−Ω(n); for
s = 3n− nε with ε > 0.5, the correlation is at most 2−n

Ω(1)
.

Proof. The proof is immediate by Lemmas 3.6 and 3.7.

The above correlation bounds with Parity almost match with the upper bounds. To see this,
we can construction an approximate circuit for Parity in the following way. Divide n inputs into l
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groups each of size n/l, use circuits of size 3(n/l−1) to compute Parity exactly for each group, and
then take the disjunction of the outputs from all groups. This circuit outputs 0 with probability
2−l, but whenever it outputs 0, it agrees with Parity. Thus its correlation with Parity is at least
2−l. The circuit size is 3(n/l − 1) · l + l = 3n− 2l.

Remark 3.9. The best U2-circuit lower bound is 5n − o(n) [IM02, LR01]. It was proved against
the so-called strongly two-dependent functions, which are functions such that fixing any two inputs
results in four different sub-functions. Our approach cannot generalize this lower bound to the
average case; a major difficulty is that an approximate circuit may not have the “strongly two-
dependent” property.

3.4 Applications

Lemma 3.6 shows that, a circuit of size less than 3n has a decision tree of non-trivial size. Following
from this property, one can get compression algorithms as in [CKK+14] and Fourier concentration
result as in [IK14].

Corollary 3.10. There is an algorithm running in time 2O(n) such that, given the truth table of
an (unknown) n-input boolean circuit of size s < 3n, the algorithm produces an equivalent DNF of
size 2n−Ω((3n−s)2/n) · poly(n).

This corollary follows directly from Lemma 3.6 and [CKK+14]. The decision tree constructed
in Lemma 3.6 allows us to conclude that any function computed by U2-circuits of size s < 3n has
a DNF of size S = n · 2n−Ω((3n−s)2/n). Then given the truth table, one can run a greedy set cover
algorithm to construct an equivalent DNF of size at most O(n) factor larger than S. We omit the
proof.

Corollary 3.11. Let f be a function computable by a boolean circuit of size s < 3n. Then,∑
A⊆[n] : |A|>n−Ω((3n−s)2/n)

f̂(A)2 6 2−Ω((3n−s)2/n).

This corollary follows from Lemma 3.6 and the fact that any decision tree of size S has∑
A⊆[n] : |A|>k f̂(A)2 6 ε for k = log(S/ε) (see Proposition 3.17 in [O’D14]).

4 B2-circuits

In this section, we give #SAT algorithms and correlation bounds for B2-circuits of size almost 2.5n.

4.1 Concentrated shrinkage and #SAT algorithms

Given a simplified B2-circuit C, we will construct a generalized parity decision tree, where each
internal node is labeled by either a twig or a parity of a subset of variables. Starting from the root
with the given circuit C, we use the following case analysis to identify labels and build branches
recursively.

If the circuit becomes a constant, we label the current node by the constant; then this node is
a leaf. If the circuit is a literal or a gate fed by two variables, then we choose the variable of the
literal or the circuit itself as the label, and build two branches. Otherwise, consider a topological
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v⊕ w

(2)

u∧

xi xj

v

(3)

u∧

xi xj

(4)

Figure 2: Cases for eliminating gates in B2-circuits

order on the gates of the circuit, and let u be the first gate which is either ⊕-type of out-degree at
least 2 or ∧-type. Consider the following cases (see also Figure 4.1):

(1) If u is a ⊕-type gate of out-degree at least 2, then it computes ⊕i∈Ixi (or its negation) for
some subset I ⊆ [n]. We choose ⊕i∈Ixi as the label, and build two branches; for the branch
⊕i∈Ixi = b ∈ {0, 1}, we replace u by a constant, and substitute an arbitrary variable xj for
j ∈ I by a sub-circuit ⊕i∈I\{j}xi⊕ b. In both branches, we can eliminate one variable xj , and
at least 3 gates (u and its two successors).

(2) If u is an ∧-type gate fed by some ⊕-type gate v, suppose w is the other node feeding into u.

• If w has out-degree 1, then we choose the parity function computed at v as the label,
and build two branches similar to Case (1). In one branch, we can eliminate some input
xj and two gates v, u; in the other branch, we can eliminate two more nodes: w and a
successor of u.

• If w has out-degree at least 2, then it must be a variable. We choose w as the label, and
build two branches. In one branch, we can eliminate w and its two successors; in the
other branch, we can eliminate two more gates: v and a successor of u.

(3) If u is an ∧-type gate fed by two inputs xi and xj where at least one of them, say xi, has
out-degree at least 2, then we choose xi as the label and build two branches. In one branch,
we can eliminate xi and its two successors; in the other branch, we can eliminate one more
gate: a successor of u.

(4) If u is an ∧-type gate fed by two inputs each of out-degree 1, then choose the twig computed
at u as the label. In both branches, we can eliminate xi, xj , u and a successor of u.

Consider a random path from the root of the decision tree to its leaves. Let C0 := C, and let
Ci be the restricted circuit obtained at depth i. Let µi := µ(Ci). The next lemma follows directly
from the above case analysis.

Lemma 4.1. If µi > 4, then µi − µi+1 > 3, and E[µi − µi+1] > 3.5. If µi 6 4, then µi+1 = 0.

Then we have the following concentrated shrinkage.

Lemma 4.2. For λ > 0, Pr [µd > max{µ0 − 3.5d+ λ, 1}] 6 exp(−λ2/2d).

10



Theorem 4.3. For B2-circuits of size s < 2.5n, there is a deterministic #SAT algorithm running
in time 2n−Ω((2.5n−s)2/n). In particular, for s = 2.5n − εn with ε > 0, the algorithm runs in time
2n−Ω(n); for s = 2.5n− nε with ε > 0.5, the algorithm runs in time 2n−n

Ω(1)
.

We omit the proofs of Lemma 4.2 and Theorem 4.3 since they are similar to the proofs of
Lemma 3.3 and Theorem 3.4.

4.2 Correlation bounds

Demenkov and Kulikov [DK11] proved that affine dispersers for sources of dimension d requires
B2-circuits of size 3n−Ω(d). We next extend this result to the average case by showing that affine
extractors have small correlations with B2-circuits of size less than 2.5n.

Definition 4.4. Let F2 be the finite field with elements {0, 1}. A function AE : Fn2 → F2 is a
(k, ε)-affine extractor if for any uniform distribution X over some k-dimensional affine subspace of
Fn2 ,

|Pr[AE(X) = 1]− 1/2| 6 ε.

We will need the following constructions of affine extractors.

Theorem 4.5. [Bou07, Yeh11, Li11] (1) For any δ > 0 there exists a polynomial-time computable
(k, ε)-affine extractor AE1 : {0, 1}n → {0, 1} with k = δn and ε = 2−Ω(n). (2) There exists a
constant c > 0 and a polynomial-time computable (k, ε)-affine extractor AE2 : {0, 1}n → {0, 1} with

k = cn/
√

log log n and ε = 2−n
Ω(1)

.

We will prove our correlation bounds using the following representation of B2-circuits by parity
decision trees.

Lemma 4.6. Any function computed by a B2-circuit of size s < 2.5n is computable by a parity
decision tree of size 2n−Ω((2.5n−s)2/n).

The proof, which we omit here, is almost the same as the proof of Lemma 3.6. That is, using
the algorithm in Theorem 4.3, one can construct a generalized parity decision tree which may have
twigs, and then expand the twigs and argue that the tree size does not increase much. Note that,
when we restrict a twig, the two variables in the twig are completely eliminated; when we restrict
a parity, since one variable is substituted, all parity restrictions are linearly independent.

Lemma 4.7. (1) For any δ > 0, a parity decision tree of size 2n−k for k = δn has correlation at
most 2−Ω(n) with AE1. (2) There is a constant c > 0 such that a parity decision tree of size 2n−k

for k = cn/
√

log log n has correlation at most 2−n
Ω(1)

with AE2.

Proof. Consider a parity decision tree of size 2n−k for k = δn. All paths from the root to leaves
give a disjoint partitioning of the boolean cube {0, 1}n.

For each path of length at most n− k/2, the inputs that are consistent with the path form an
affine subspace of dimension at least k/2. Over all such short paths, by Theorem 4.5, the parity
decision tree computes AE1 correctly on at most 2n · (1/2 + 2−Ω(n)) inputs. For paths of length
larger than n − k/2, since the tree size is at most 2n−k, the number of inputs that are consistent
with these paths is at most 2n−k · 2k/2 = 2n−k/2. Therefore, the parity decision tree computes AE1

correctly on at most a fraction 1/2 + 2−Ω(n) + 2−k/2 = 1/2 + 2−Ω(n) of the inputs.
The proof for the second case is similar.
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The next theorem follows by Lemma 4.6 and Lemma 4.7.

Theorem 4.8. (1) For any δ > 0 and B2-circuit of size 2.5n−δn, its correlation with AE1 is at most
2−Ω(n). (2) There exists a constant c > 0 such that, for any B2-circuit of size 2.5n− cn/ 4

√
log log n,

its correlation with AE2 is at most 2−n
Ω(1)

.

5 Open questions

It is open whether our correlation bounds (for the size almost 3n for U2-circuits, and almost 2.5n for
B2-circuits) can be improved to match with the best known worst-case lower bounds (for the size
almost 5n for U2-circuits, and almost 3n for B2-circuits). Pseudorandom generators for boolean
formulas were constructed in [IMZ12] based on concentrated shrinkage and decomposition of the
formula tree. It would be interesting to get pseudorandom generators for general boolean circuits.
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