

Edinburgh Research Explorer

Video classification with Densely extracted HOG/HOF/MBH
features: an evaluation of the accuracy/computational efficiency
trade-off

Citation for published version:
Uijlings, JRR, Duta, IC, Sangineto, E & Sebe, N 2015, 'Video classification with Densely extracted
HOG/HOF/MBH features: an evaluation of the accuracy/computational efficiency trade-off' International
Journal of Multimedia Information Retrieval, vol. 4, no. 1, pp. 33-44. DOI: 10.1007/s13735-014-0069-5

Digital Object Identifier (DOI):
10.1007/s13735-014-0069-5

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
International Journal of Multimedia Information Retrieval

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43715022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s13735-014-0069-5
https://www.research.ed.ac.uk/portal/en/publications/video-classification-with-densely-extracted-hoghofmbh-features-an-evaluation-of-the-accuracycomputational-efficiency-tradeoff(d5a67558-eb57-43d8-b1ad-ffa2d323c9af).html

Noname manuscript No.
(will be inserted by the editor)

Video Classification with Densely Extracted HOG/HOF/MBH
Features: An Evaluation of the Accuracy/Computational
Efficiency Trade-off

J. Uijlings · I.C. Duta · E. Sangineto · Nicu Sebe

Received: date / Accepted: date

Abstract The current state-of-the-art in video clas-

sification is based on Bag-of-Words using local visual

descriptors. Most commonly these are Histogram of

Oriented Gradient (HOG), Histogram of Optical Flow

(HOF) and Motion Boundary Histogram (MBH) de-

scriptors. While such approach is very powerful for clas-

sification, it is also computationally expensive. This

paper addresses the problem of computational effi-

ciency. Specifically: (1) We propose several speed-ups

for densely sampled HOG, HOF and MBH descriptors

and release Matlab code; (2) We investigate the trade-

off between accuracy and computational efficiency of

descriptors in terms of frame sampling rate and type

of Optical Flow method; (3) We investigate the trade-

off between accuracy and computational efficiency for

computing the feature vocabulary, using and compar-
ing most of the commonly adopted vector quantiza-

tion techniques: k-means, hierarchical k-means, Ran-

dom Forests, Fisher Vectors and VLAD.

Keywords Video Classification, HOG, HOF, MBH,

Computational Efficiency

J. Uijlings
University of Edinburgh, UK
E-mail: jrr.uijlings@ed.ac.uk

I.C. Duta
DISI, University of Trento, Italy
E-mail: duta@disi.unitn.it

E. Sangineto
DISI, University of Trento, Italy
E-mail: enver.sangineto@unitn.it

N. Sebe
DISI, University of Trento, Italy
E-mail: sebe@disi.unitn.it

1 Introduction

The Bag-of-Words method [10,37] has been successfully

adapted from the domain of still images to the domain

of video by using local, visual, space-time descriptors

(e.g. [25,13,22,35,36,45]). Successful applications range

from Human Action Recognition [25,24,32] to Event

Detection [38] and Concept Classification [39,38]. How-

ever, analysing video is even more computationally ex-

pensive than analysing images. Hence, in order to deal

with the enormous, growing amount of digitalized video

it is important to have not only accurate, but also com-

putationally efficient methods.

In this paper we take a powerful, commonly used

Bag-of-Words pipeline for video classification and in-

vestigate how we can make it more computationally
efficient while sacrificing as little accuracy as possible.

The general pipeline is visualised in Figure 1. In this

pipeline we focus on densely sampled local visual de-

scriptors only, since dense sampling has been found

to be more accurate than keypoint-based sampling,

both in images [20] and in video [46]. As type of lo-

cal visual descriptors, we focus on the standard ones,

which are based on local 3D volumes of Histograms

of Oriented Gradients (HOG) [11], Histograms of Op-

tical Flow (HOF) [12,25] and Motion Boundary His-

tograms (MBH) [12]. For transforming the set of local

descriptors extracted from a video into a fixed-length

vector necessary for classification, we compare a vari-

ety of techniques: k-means, hierarchical k-means, Ran-

dom Forests [4,16], Fisher Vectors [31] and Vector of

Locally Aggregated Descriptors (VLAD) [19]. Starting

from this pipeline, this evaluation paper makes the fol-

lowing contributions:

Fast Dense HOG/HOF/MBH. We exploit the

nature of densely sampled descriptors in order to speed

2 J. Uijlings et al.

!"#$%&'#$(&)*++

,#+&"%-'."(/0'"*&'%.1 2%+3*)(4."$(5++%617#1' 8)*++%9%&*'%.1

! ,#1+#(:;<

! ,#1+#(:;=
! >?:@0ABC
! DDD

! E7#*1+

! :%#"*"&F%&*)(G7#*1+

! H*1$.7(=."#+'

! =%+F#"(2#&'."
! 2I5,
! DDD

! J2>(K%'F(:%+'.6"*7
L1'#"+#&'%.1(E#"1#)

! J2>(K%'F(I%1#*"
G#"1#)

! DDD

2%$#.(M.)37#

Fig. 1: General framework for video vlassification using a Bag-of-Words pipeline. The methods evaluated in this

paper are instantiated in this diagram.

up their computation. HOG, HOF and MBH descrip-

tors are created from subvolumes. These subvolumes

can be shared by different descriptors similar to what

was done in [42]. In this paper we generalize their idea

of reusing subregions to 3 dimensions. Matlab source

code will be made available1.

Evaluation of frame subsampling. Videos con-

sist of many frames, making them computational ex-

pensive to analyse. However, subsequent frames also

largely carry the same information. In this paper we

evaluate the trade-off between accuracy and computa-

tional efficiency when subsampling video frames.

Evaluation of Optical Flow. Calculating opti-

cal flow is generally expensive and takes up much of

the total HOF and MBH descriptor extraction time.

But for optical flow there is also a trade-off between

computational efficiency and accuracy. Moreover, op-

tical flow methods are generally tested against optical

flow benchmarks such as [2,7], but it is not immedi-

ately obvious that methods which perform well on these

benchmarks would automatically also yield better HOF

and MBH descriptors. Therefore in this paper we evalu-

ate optical flow methods directly in our task of interest:

video classification. Specifically, we compare the optical

flow methods of Lukas-Kanade [28], Horn-Schunk [17],

Farnebäck [15], Brox 04 [5], and Brox 11 [6].

Evaluation of descriptor encoding. The classi-

cal way of transforming a set of local visual descriptors

into a single fixed-length vector is by using a k-means

visual vocabulary and assign local descriptors to the

mean of the nearest cluster (e.g. [10]). However, both

hierarchical k-means and Random Forests [30,42] are

viable fast alternatives. Furthermore, the Fisher Vec-

tor [31] significantly outperforms classical k-means rep-

resentation in many tasks, whereas VLAD [19] can be

considered a simplified non-probabilistic version of the

1 http://homepages.inf.ed.ac.uk/juijling/index.php

#page=software

Fisher Vector [33] and it is computationally more effi-

cient. In this paper we evaluate the accuracy/efficiency

trade-off of all five methods above in the context of

video classification.

2 Related Work

The most used local spatio-temporal descriptors are

modelled after SIFT [27]: each local video volume is

divided into blocks, for each block one aggregates re-

sponses (either oriented gradients or optical flow), and

the final descriptor is a concatenation of the aggre-

gated responses of several adjacent blocks. Both Dalal

et al. [12] and Laptev et al. [25] proposed to aggregate

2D Oriented Gradient Responses (HOG) and Optical

Flow responses (HOF). Additionally, Dalal et al. [12]

also proposed to calculate changes of optical flow, or

Motion Boundary Histograms (MBH). Both Scovanner

et al. [36] and Kläser et al. [22] proposed to measure

oriented gradients also in the temporal dimension, re-

sulting in 3-dimensional gradient responses. Everts et

al. [14] extended [22] to include colour channels. As

Wang et al. [46] found little evidence that the 3D re-

sponses of [22] are better than HOG, in this evaluation

paper we implemented and evaluated the descriptors

which are most widely used: HOG, HOF and MBH.

Wang et al. [46] evaluated several interest point se-

lection methods and several spatio-temporal descrip-

tors. They found that dense sampling methods gener-

ally outperform interest points, especially on more dif-

ficult datasets. As this result was earlier found in image

analysis [20,34], this paper focuses on dense sampling

for videos. In [46] the evaluation was on accuracy only.

In contrast, this paper focuses on the trade-off between

computational efficiency and accuracy.

Recently, Wang et al. [45] proposed to use dense tra-

jectories. In their method, the local video volume moves

spatially through time; it tries to stay on the same part

of the object. Additionally, they use changes in opti-

http://homepages.inf.ed.ac.uk/juijling/index.php
#page=software

An Evaluation of the Accuracy/Computational Efficiency Trade-off 3

cal flow rather than the optical flow itself. They show

good improvements over normal HOG, HOF and MBH

descriptors. Nevertheless, combining their dense tra-

jectory descriptors with both normal HOG, HOF and

MBH descriptors still gives significant improvements

over dense trajectories alone [21,45]. In this paper we

focus on HOG, HOF and MBH. Note that we evalu-

ate the accuracy/efficiency trade-off for several optical

flow methods which may be of interest also when using

dense trajectories.

In [34], Sangineto proposes to use Integral Im-

ages [44] to efficiently compute densely extracted SURF

features [3] in still images. The work of Uijlings et

al. [42] proposes several methods to speed up the Bag-

of-Words classification pipeline for image classification

and provides a detailed evaluation on the trade-off be-

tween computational efficiency and classification accu-

racy. In this paper we perform such evaluation on video

classification. Inspired by [42] we propose accelerated

densely extracted HOG, HOF and MBH descriptors

and provide efficient Matlab implementations. Addi-

tionally, we evaluate various video-specific aspects such

as frame sampling rate and the choice of optical flow

method.

The Fisher Vector [31] has been shown to outper-

form standard vector quantization methods such as k-

means in the context of Bag-of-Words. On the other

hand, the recently proposed VLAD descriptors [19] can

be seen as a non-probabilistic version of Fisher Vectors

which are faster to compute [19,33]. In this paper we

evaluate the accuracy/efficiency trade-off using Fisher

Vector and VLAD in the context of video classification.

3 Bag-of-Words for Video

In this section we explain in detail the pipeline that

we use. We mostly use off-the-shelf yet state-of-the-

art components to construct our Bag-of-Words pipeline,

which is necessary for a good evaluation paper. Addi-

tionally, we explain how to create a fast implementation

of densely sampled HOG and HOF descriptors, and also

implicitly for MBH, being MBH based on HOG and Op-

tical Flow. We make the HOG/HOF/MBH descriptor

code publicly available.

3.1 Descriptor Extraction

In this section we describe the details of our implemen-

tation for dense extraction of HOG, HOF and MBH

descriptors. Specifically, in Section 3.1.1 we show how

HOG and HOF can be efficiently extracted and aggre-

gated from video blocks. Then, in Section 3.1.2 we deal

with MBHs, which are largely based on HOG. Finally,

since in this paper we compare our implementation with

the widely used available code of Laptev [25], in Sec-

tion 3.1.3, we show the parameters we have adopted in

using Laptev’s code. Both ours and the Laptev’ system

work on grey-values only. Note that Laptev’s imple-

mentation does not include MBH descriptors, thus the

comparison performed in our experiments only concerns

HOG and HOF.

3.1.1 Fast Dense HOG/HOF Descriptors

For both HOG and HOF descriptors, there are several

steps. First one needs to calculate either gradient mag-

nitude responses in horizontal and vertical directions

(for HOG), or optical flow displacement vectors in hor-

izontal and vertical directions (for HOF). Both result

in a 2-dimensional vector field per frame. Then for each

response the magnitude is quantized in o orientations,

usually o = 8. Afterwards, one needs to aggregate these

responses over blocks of pixels in both spatial and tem-

poral directions. The next step is to concatenate re-

sponses of several adjacent pixel blocks. Finally, de-

scriptors have to be normalized and sometimes PCA is

performed to reduce their dimensionality, often leading

to computational benefits or improved accuracy.

To calculate gradient magnitude responses we use

HAAR-features. These are faster to compute than Gaus-

sian Derivatives and have proven to work better for

HOG [11]. Quantization in o orientations is done by

dividing each response magnitude linearly over two ad-

jacent orientation bins.

We use the classical Horn-Schunk [17] method for

optical flow responses as a default. We use the version

implemented by the Matlab Computer Vision System

Toolbox. Additionally, we evaluate four other optical

flow methods: Lucas-Kanade [28], also using the Mat-

lab Computer Vision System Toolbox, the method of

Färneback [15], using OpenCV2 with the mexopencv

interface3, Brox 04 [5], and Brox 11 [6] using the au-

thor’s publicly available code.

Both HOG and HOF descriptors are created out of

blocks. By choosing the sampling rate identically to the

size of a single block, one can reuse these blocks. Fig-

ure 2 shows an example on how a video volume can

be divided into blocks. Once responses per block are

computed, descriptors can be formed by concatenating

adjacent blocks. In this paper we use descriptors of 3 by

3 blocks in the spatial domain and 2 blocks in the tem-

poral domain, as shown in blue in Figure 2, but these

parameters can be easily changed. Hence each block is

2 http://opencv.org
3 https://github.com/kyamagu/mexopencv

http://opencv.org
https://github.com/kyamagu/mexopencv

4 J. Uijlings et al.

reused 18 times (except for the blocks on the borders

of the video volume).

Fig. 2: Blocks in a video volume can be reused for de-

scriptor extraction. In our paper descriptors consist of

3 by 3 blocks in space and 2 blocks in time, shown in

blue.

To aggregate responses over space we use the Matlab-

friendly method proposed by [42]: Let R be an N ×M
matrix containing responses in a single orientation (be

it gradient magnitude or optical flow magniture). Let

BN and BM be the number of elementary blocks from

which HOG/HOF features are composed. Now it is pos-

sible to construct (sparse) matrices O and P of respec-

tively BN×N and M×BM such that ORP = A, where

A is a BN × BM matrix containing the aggregated re-

sponses for each block. O and P resemble diagonal ma-

trices but are rectangular and the filled in elements fol-

low the ’diagonal’ of the rectangle instead of positions

(i, i). By proper instantiation of these matrices we per-

form interpolation between blocks, which provides the

descriptors some translation invariance. For integration

over time we add the responses of the frames belonging

to a single block. For more details we refer the reader

to the work of [42].

In this paper, we extract descriptors on a single scale

where blocks consist of 8 by 8 pixels by 6 frames, which

at the same time is our dense sampling rate. Descriptors

consist of 3 by 3 by 2 blocks. Both for HOG and HOF

the magnitude responses are divided into 8 orientations,

resulting in 144 dimensional descriptors. PCA is per-

formed to reduce the dimensionality by 50% resulting

in 72 dimensional vectors. Afterwards, normalization

is performed by the L1-norm followed by the square

root, which effectively means that Euclidean distances

between descriptors in fact reflect the often superior

Hellinger distance [1].

3.1.2 Motion Boundary Histograms Descriptor

Another commonly used descriptor for video classifica-

tion tasks is Motion Boundary Histogram (MBH), pro-

posed by Dalal et al. [12], who proved its robustness to

camera and background motion. The intuitive idea of

MBH is to represent the oriented gradients computed

over the vertical and the horizontal optical flow com-

ponents. The advantage of such representation is that

constant camera movements tend to disappear and the

description focuses on optical flow differences between

frames (motions boundaries).

In more detail, the optical flow’s horizontal and ver-

tical components are separately represented using two

scalar maps, which can be seen as gray-level “images”

of the motion components. Histograms of oriented gra-

dients are then computed for each of the two optical

flow component images, using the same approach used

for computing HOG in still images. Taken into account

only flow differences, the information about changes in

motion boundaries is kept and the constant motion in-

formation is removed, which leads to the cancelation of

most of the effects of camera motion.

In our MBH implementation we follow the pipeline

suggested in [12] and mentioned above. Once computed

the horizontal and vertical optical flow components, his-

tograms of oriented gradients are computed on each im-

age component using the same efficient approach and

the same parameters shown in Section 3.1.1. Also the

block-based aggregation step is analogous to what de-

scribed in Section 3.1.1.

The outcome of this process is a pair of horizontal

(MBHx) and vertical (MBHy) descriptors [12], each

one composed of 144 dimensions. We separately apply

PCA to both MBHx and MBHy and we obtain two vec-

tors of 72 dimensions each. The (PCA-reduced) MBHx

and MBHy vectors can then be either separately used

in the subsequent visual word assignment and classi-

fication stages (Figure 1) or combined in order to get

a unique descriptor. In [45] the authors state that late

fusion of MBHx and MBHy gives a better performance

than concatenating the two descriptors before the vi-

sual word assignment step. Hence in this paper we will

report results for MBHx and MBHy separately, and a

late fusion of the two which we simply denote as MBH.

This late fusion combines the outcomes of the two (inde-

pendent) classifications with equal weights. Finally, in

Section 4.6, we will also show results concerning a late

fusion strategy involving all the descriptors (MBHx,

MBHy, HOG and HOF).

3.1.3 Existing HOG/HOF Descriptors

We use the existing implementation of Laptev et al. [25].

We use the default parameters as suggested by the au-

thors, which compared to our descriptors are as follows:

They perform a dense sampling at multiple scales. At

An Evaluation of the Accuracy/Computational Efficiency Trade-off 5

the finest scale, blocks are 12 by 12 pixels by 6 frames,

sampling rate is every 16 pixels by every 6 frames. They

consider 8 spatial scales and 2 temporal scales for a to-

tal of 16 scales, where each scale increases the descrip-

tor size by a factor of
√

2. In the end, they generate

around 33% less descriptors than our single scale dense

sampling method.

Unlike our descriptor extraction, the implementa-

tion of [25] uses 4 orientations for HOG and 5 orien-

tations for HOF, resulting in respectively 72 and 90

dimensional descriptors.

3.2 Visual Word Assignment

We use five different ways of creating a single feature

representation of a set of descriptors extracted from a

single video: k-means, hierarchical k-means, Random

Forests [4,16], VLAD [19] and Fisher Vectors [31].

For hierarchical k-means we use the implementation

made available by VLFeat [43]. For the regular k-means

assignment, we make use of the fact that the descrip-

tors are L2-normalised: Euclidean distances are propor-

tional to dot products (cosine of angles) between the

vectors. Hence finding the minimal euclidean distance

is equivalent to finding the maximal dot product, yet

more efficient to compute [42]. For both hierarchical k-

means and regular k-means, we use 4096 visual words.

For hierarchical k-means, we learn a hierarchical tree

of depth 2 with 64 branches per node of the tree (pre-

liminary experiments showed a large decrease in accu-

racy when using a higher depth with fewer branches,

but only marginal improvements in computational ef-

ficiency, data not shown). We normalize the resulting

frequency histograms using the square root, which dis-

counts frequently occurring visual words, followed by

L1-normalization.

Random Forests are binary decision trees which are

learned in a supervised way by randomly picking sev-

eral descriptor dimensions at each node with several

random thresholds and choose the one with the highest

Entropy Gain. We follow the recommendations of [42],

using 4 binary decision trees of depth 10, resulting in

4096 visual words. The resulting vector is normalized

by taking the square root followed by L1.

The Fisher Vector [18] as used in [31] encodes a

set of descriptors D with respect to a Gaussian Mix-

ture Model (GMM) which is trained to be a generative

model of these descriptors. Specifically, the set of de-

scriptors is represented as the gradient with respect to

the parameters of the GMM. This can be intuitively

explained in terms of the EM algorithm for GMMs:

Let Gλ be the learned GMM with parameters λ. Now

use the E-step to assign the set of descriptors D to

Gλ. Then the M-step yields a vector F with adjust-

ments on how λ should be updated to fit the data (i.e.

how the GMM clusters should be adjusted). This vec-

tor F is exactly the Fisher Vector representation. We

follow [31] and normalize the vector using a square root

of the absolute values and afterwards keep the original

sign ((sign(fi))
√
|fi|), followed by L2. In this paper we

use two common cluster sizes for the GMM: 64 and

256 clusters [31]. Without a spatial pyramid [26], for

our 72 dimensional HOG/HOF/MBHx/MBHy features

this will yield vectors of 9,216 and 36,864 dimensions

respectively. While not comparable with the dimension-

ality of other methods, Fisher Vectors (and VLAD)

allow for linear Support Vector Machines rather than

Histogram Intersection or χ2-kernels. Hence efficiency-

wise, the simpler classifiers will compensate for the larger

dimension of the feature vectors.

The recently proposed VLAD [19] representation

can be seen as a simplification of the Fisher Vector [19,

33] in which: (1) a spherical GMM is used, (2) the soft

assignment is replaced with a hard assignment and (3)

only the gradient of Gλ with respect to the mean is

considered (first order statistics). This leads to a lower

dimensional representation, half of the dimensions of a

Fisher Vector, in which second order statistics are also

used. Following [19] we use for VLAD the same normal-

ization scheme used for Fisher Vectors: We square-root

the VLAD vectors while keeping their sign, followed by

L2-normalisation. For good comparison to the Fisher

Vectors, we use a dictionary of 128 and 512 clusters re-

spectively, leading to features of dimensionality identi-

cal to the Fisher Vectors: 9,216 and 36,864 dimensions.

We use the Spatial Pyramid [26] in all our exper-

iments. Specifically, we divide each video volume into

the whole video and into three horizontal parts which

intuitively roughly corresponds to a ground, object, and

sky division (in outdoor scenes).

3.3 Classification

For classification we use Support Vector Machines which

are powerful and widely used in a Bag-of-Words context

(e.g. [10,26,42,43]). For k-means, hierarchical k-means,

and Random Forests, we use SVMs with the Histogram

Intersection kernel, using the fast classification method

as proposed by [29]. For the Fisher Vector and VLAD,

we use linear SVMs. For both types of SVMs, we make

use of the publicly available LIBSVM library [8] and

the fast Histogram Intersection classification of [29].

6 J. Uijlings et al.

4 Experiments

Our baseline consists of densely sampled HOG, HOF

and MBH(x/y) descriptors, all consisting of blocks of 8

by 8 pixels by 6 frames. For HOF and MBH(x/y), opti-

cal flow is calculated using Horn-Schunk. Gradient and

flow magnitude responses are quantized in 8 bins. The

final descriptors consist of 3 by 3 by 2 blocks. PCA

always reduces dimensionality of descriptors by 50%.

We use a spatial pyramid division of 1 × 1 × 1 and

1× 3× 1 [26] (we have no temporal division). Normal-

isation after word assignment is done by either taking

the square root while keeping the sign followed by L2

for the Fisher Kernel, or by the square root plus L1 for

all other methods. We use SVMs for classification, with

either a linear kernel for the Fisher Vectors or histogram

intersection kernel for all other visual word assignment

methods.

Starting from our baseline we perform four experi-

ments: (1) We compare five different visual word assign-

ment methods: k-means, hierarchical k-means, Random

Forests, VLAD and the Fisher Kernel; (2) We compare

our densely extracted descriptors with the descriptors

provided by Laptev et al. [25]; (3) We evaluate the effi-

ciency/accuracy trade-off by subsampling video frames

for the descriptor extraction process; (4) For HOF and

MBH(x/y) descriptors, we compare five different opti-

cal flow implementations: Horn-Schunk, Lukas-Kanade,

Farnebäck [15], Brox 04 [5] and Brox 11 [6].

All timing experiments are performed on a single

core of an Intel(R) Xeon(R) CPU E5620 2.40GHz. We

use mainly Matlab, but most toolboxes used by us have

mex-interfaces to c++ implementations for critical func-

tions. All implementations are heavily optimized for

speed. Since the computation involves many common

operations that use standardized and optimized libraries

(e.g. convolutions, matrix multiplications) on large quan-

tities of data, virtually the entire time is spend on core

calculations while the overhead is negligible; using only

c++ will not result in noticeable differences in the over-

all timing results presented in this paper.

Based on our experiments we provide two recom-

mendations, one for real-time video classification and

one for accurate video classification. Finally we give a

comparison with the state-of-the-art.

4.1 Dataset

We perform all experiments on the UCF50 Human Ac-

tion Recognition dataset [32]. This dataset contains 6600

realistic videos taken from Youtube and as such has

large variations in camera motion, object appearance

and pose, illumination conditions, scale, etc. The 50

human action categories are mutually exclusive and in-

clude actions such as biking, diving, drumming, and

fencing. The frames of the videos are 320 by 240 pixels.

The video clips are relatively short with a length that

varies around 70-200 frames. The dataset is divided in

25 predefined groups. Following the standard procedure

we perform a leave-one-group-out cross-validation and

report the average classification accuracy over all 25

folds. Optimization of the SVM slack parameter is done

for every class for every fold on the training set (con-

taining 24 groups).

4.2 Visual Word Assignment

In this experiment we compare the following visual

word assignment methods: k-means, hierarchical k-

means, Random Forests, VLAD and Fisher Vector. K-

means, hierarchical k-means and Random Forests are

similar in the sense that the final vector represents vi-

sual word counts. To compare these methods we en-

sure that all have 4096 visual words. For k-means this

means performing clustering with k=4096. For hierar-

chical k-means we use a hierarchy of depth 2 with 64

branches at each node. The Random Forest consists of

4 trees of depth 10. We choose to base our Fisher Vec-

tors on standard sizes for the number of clusters: 64 and

256 clusters [31,9]. While Fisher Vectors are of higher

dimensionality, the vectors work with linear classifiers.

This means that Fisher Vectors are best compared with

the other visual word assignment methods in terms of

the accuracy/efficiency trade-off. Similarly, we adopted

2 standard cluster sizes for VLAD: 128 and 512 dimen-

sions respectively [19] and we used linear classifiers as

well.

The accuracy and computational efficiency for the

various word assignment methods for our HOG, HOF

and MBH(x/y) features are presented in Figure 3 and

Table 1. The first thing to notice is that the Fisher

Vector with 256 clusters has the best accuracy of 0.765

for HOG, 0.795 for HOF, 0.796 for MBHx and 0.804

for MBH, while taking 3.39 seconds per video (per de-

scriptor type). K-means has also good accuracy at 0.728

for HOG, 0.791 for HOF, 0.782 for MBHx and 0.8 for

MBH. However, the computational time is at 1.81 sec-

onds per video. This means that the Fisher Vector (with

256 clusters) for video classification is superior in ac-

curacy but slightly slower compared to k-means. For

computational efficiency, the Random Forest is by far

the fastest and takes 0.1 seconds per video. The hierar-

chical k-means (hk-means) is four times slower at 0.47

seconds per video, and performs slightly worse on HOG

(0.718 hk-means vs. 0.729 RF) but significantly better

on HOF (0.780 hk-means vs. 0.732 RF) and on MBHx,

An Evaluation of the Accuracy/Computational Efficiency Trade-off 7

k-means hk-means RF FV 64 FV 256 VLAD 128 VLAD 512
HOG Acc 0.728 0.718 0.729 0.746 0.765 0.653 0.671
HOF Acc 0.791 0.780 0.732 0.779 0.795 0.751 0.783
MBHx Acc 0.782 0.774 0.738 0.767 0.796 0.749 0.774
MBHy Acc 0.772 0.763 0.739 0.759 0.787 0.737 0.765
MBH Acc 0.800 0.791 0.765 0.786 0.804 0.769 0.792

sec/video 1.81 0.51 0.10 1.10 3.39 0.19 0.47
frame/sec 108 387 1910 180 58 1011 415

Table 1: Trade-off accuracy/efficiency for the following visual word assignment methods: k-means, hierarchical k-

means (hk-means), Random Forest (RF), Fisher Kernel with 64 and 256 clusters (FK 64 and FK 256). Assignment

time for HOG and HOF is the same.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.65

0.7

0.75

0.8

0.85

0.9
HOG − HOF − MBH

frame/sec

a
c
c
u

ra
c
y

Kmeans+HOG

HKmeans+HOG

Forest+HOG

Fisher64+HOG

Fisher256+HOG

VLAD128+HOG

VLAD512+HOG

Kmeans+HOF

HKmeans+HOF

Forest+HOF

Fisher64+HOF

Fisher256+HOF

VLAD128+HOF

VLAD512+HOF

Kmeans+MBH

HKmeans+MBH

Forest+MBH

Fisher64+MBH

Fisher256+MBH

VLAD128+MBH

VLAD512+MBH

Fig. 3: Accuracy/Efficiency trade-off for various word

assignment methods and features. For a better read-

ability of the figure, we omitted the results concerning

MBHx and MBHy (see Table 1).

MBHy and MBH (respectively, 0.774 vs 0.738, 0.763 vs.

0.739 and 0.791 vs 0.765).

In terms of classification time per video, we mea-

sure 0.017 seconds per video when using the fast His-

togram Intersection based classification for SVMs [29]

for k-means, hk-means, and Random Forests. We mea-

sure 0.001 seconds per video for the linear classifier

used on the Fisher Vector representation with 256 clus-

ters. This means that the classification time is negligible

compared to the word assignment time and is of little

concern for video classification.

For the remainder of this paper, we choose to per-

form our evaluation on two word assignment methods:

the Fisher Vector, which yields the most accurate re-

sults, and hk-means, which is the second fastest af-

ter Random Forests, while its accuracy for HOF and

MBH(x/y) is much higher than using Random Forests.

4.3 Comparison with Laptev et al.

In this experiment we compare the publicly available

code from [25] with our implementation. We compare

only to the dense sampling option as [46] has already

proven that dense sampling outperforms the use of space-

time interest points. Moreover, only HOG and HOF fea-

tures are used for comparison because the code in [25]

does not include any implementation for MBH features.

Results are presented in Figures 4 and 5 and in Table 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

HOF+Fisher

HOF+HKmeans

HOG+Fisher

HOG+HKmeans

accuracy

Laptev et al.

Ours

Fig. 4: Accuracy comparison between [25] and our

HOG/HOF descriptors

0 2 4 6 8 10 12 14 16

Laptev et al.

Ours

frame/sec

Fig. 5: Computational Efficiency comparison be-

tween [25] and our HOG/HOF descriptors

The results show that for all settings there is a sig-

nificant difference in accuracy between the dense im-

plementation of [25] and our method. For the Fisher

Vector, HOG descriptors yield 0.670 accuracy for [25]

and 0.765 accuracy for our implementation and HOF

8 J. Uijlings et al.

hk-means FV 256 efficiency
HOG HOF HOG HOF sec/vid frame/sec

[25] 0.657 0.590 0.670 0.725 141 1.4
ours 0.718 0.780 0.765 0.795 15 12.8

Table 2: Comparing the dense HOG/HOF implemen-

tation of [25] and ours. The descriptor extraction time

is measured for extracting both HOG and HOF fea-

tures, as the binary provided by [25] does always both.

Descriptor extraction time is independent of the visual

word assignment method (RF or FV 256).

descriptors yield 0.725 accuracy for [25] and 0.795 ac-

curacy for our implementation. These are accuracy in-

creases of 9% and 7% respectively. Similar differences

are obtained using hk-means. Part of the difference can

be explained by the fact that we sample differently:

because we reuse blocks of the descriptors, our sam-

pling rate is defined by the size of a single block. This

means we sample descriptors every 8 pixels and every

6 frames at a single scale, whereas [25] samples every

16 pixels and every 6 frames at 10 increasingly course

scales. For our method this yields around 150 descrip-

tors per frame or around 29,000 descriptors per video

whereas [25] generates around 90 descriptors per frame

or around 17,500 descriptors per video, which means we

generate 66% more descriptors. While this may seem

unfair towards [25], in this paper we are interested in

the trade-off between accuracy and computational ef-

ficiency, which makes the exact locations from where

descriptors are sampled irrelevant.

In terms of computational efficiency our method is

more than 9 times faster: their method takes 141 sec-

onds per video while our method takes 15 seconds per
video. Our method is faster because we reuse blocks

in our dense descriptor extraction method. Note that

because the method of [25] samples fewer descriptors,

visual word assignment time is faster. But by using [25]

the overall computation time will be completely domi-

nated by descriptor extraction.

To conclude, our implementation is significantly

faster and significantly more accurate than the version

of [25].

4.4 Subsampling Video Frames

In video, subsequent video frames largely contain the

same information. As the time for descriptor extrac-

tion is the largest bottleneck in video classification, we

investigate how the accuracy behaves if we subsample

video frames and hence speed-up the descriptor extrac-

tion process.

0 10 20 30 40 50 60 70 80
0.7

0.72

0.74

0.76

0.78

0.8

F=1

F=2
F=3

F=6

F=1

F=2 F=3
F=6

F=1 F=2

F=3 F=6

F=1

F=2
F=3

F=6

F=1

F=2 F=3

F=6

F=1 F=2
F=3

F=6

frame/sec

a
c
c
u
ra

c
y

HOG+HKmeans

HOG+Fisher

HOF+HKmeans

HOF+Fisher

MBH+HKmeans

MBH+Fisher

Fig. 6: Trade-off accuracy/efficiency when varying sam-

pling rate. F stands for frames per block and it is di-

rectly related to sampling rate.

For a fair comparison, we want the descriptors al-

ways to describe the same video volume. In our base-

line, each descriptor block consists of 8 by 8 pixels by

6 frames. To subsample in such a way that every block

describes the same video volume regardless of the sam-

pling rate, we do the following: if we sample every 2

frames, we aggregate responses over 3 frames (i.e. of

frame 2, 4 and 6). When sampling every 3 frames, we

aggregate responses over 2 frames (i.e. frame 2 and 5),

and when sampling every 6 frames in which we only

consider a single frame per descriptor block (i.e. frame

3). Results are presented in Figure 6 and Table 3.

For HOG descriptors, subsampling video frames has
surprisingly little effect on the accuracy, both for hk-

means and Fisher Vectors: using Fisher Vectors, a sam-

pling rate of 1 yields an accuracy of 0.765 while a sam-

pling rate of 6 yields 0.762 accuracy. The result of hk-

means is basically constant, with slight oscillations. In

terms of computational efficiency, a significant speed-

up is achieved: sampling every 6 frames instead of every

frame gives a speed-up from 6.5 seconds per video to

3.3 seconds per video.

For HOF descriptors, subsampling has a bigger im-

pact: For the Fisher Vector accuracy is 0.795 using a

sampling rate of 1, maintains a respectable 0.791 accu-

racy at a subsampling rate of 2 frames, while dropping

significantly to 0.763 for sampling every 6 frames. Accu-

racy with hk-means is less affected and drops from 0.78

at sample rate of 1 to 0.762 at sample rate 6. Again, a

good speed-up is obtained by subsampling. While de-

scriptor extraction takes 8.9 seconds when using every

frame, a sampling rate of 2 yields a factor 1.5 speed-

An Evaluation of the Accuracy/Computational Efficiency Trade-off 9

HOG

(
frames/block
sample rate

) (
6
1

) (
3
2

) (
2
3

) (
1
6

)
hk-means 0.718 0.716 0.712 0.719
FV 256 0.765 0.759 0.760 0.762
sec/vid 6.5 4.5 3.9 3.3
frame/sec† 30.2 43.7 50.3 58.9

HOF

(
frames/block
sample rate

) (
6
1

) (
3
2

) (
2
3

) (
1
6

)
hk-means 0.780 0.773 0.766 0.762
FV 256 0.795 0.791 0.784 0.763
sec/vid 8.9 5.9 4.8 3.8
frame/sec† 22.1 33.5 40.7 51.8

MBHx

(
frames/block
sample rate

) (
6
1

) (
3
2

) (
2
3

) (
1
6

)
hk-means 0.774 0.767 0.769 0.758
FV 256 0.796 0.794 0.788 0.771
sec/vid 9.4 6.1 5.0 3.9
frame/sec† 20.9 32.1 39.4 50.7

MBHy

(
frames/block
sample rate

) (
6
1

) (
3
2

) (
2
3

) (
1
6

)
hk-means 0.763 0.757 0.752 0.741
FV 256 0.787 0.785 0.772 0.750
sec/vid 9.4 6.1 5.0 3.9
frame/sec† 20.9 32.1 39.4 50.7

MBH

(
frames/block
sample rate

) (
6
1

) (
3
2

) (
2
3

) (
1
6

)
hk-means 0.791 0.788 0.787 0.772
FV 256 0.804 0.803 0.800 0.775
sec/vid 13.7 8.3 6.5 4.6
frame/sec† 14.3 23.6 30.1 42.9

Table 3: Trade-off between frame sampling rate and

accuracy. We keep video volumes from which descip-

tors are extracted the same for all sampling rates.
†Frames/second is measured in terms of the total num-

ber of frames of the video, not in terms of how many

frames are actually processed during descriptor extrac-

tion.

up while sampling every 6 frames yields a factor 2.34

speed-up.

The remaining rows of Table 3 present results ob-

tained with different combinations of the vertical and

the horizontal components of the Motion Boundary His-

tograms (Section 3.1.2). Note that when calculating

both components of the MBH features, the optical flow

has to be calculated only once, so computation time

is faster than simply adding the times of MBHx and

MBHy.

We observe a particular order of accuracy among

these three combinations: using the only horizontal com-

ponent (MBHx) always results in a higher accuracy

than using the only vertical component (MBHy), in-

dependently of whether Fisher Vectors or hk-means is

used as word assignment method. This sharp differ-

ence is probably due to the fact that in the test videos

the horizontal motion is more frequent than the verti-

cal one. Moreover, as expected, late fusion of the two

components (MBH), always outperforms using MBHx

only. Concerning the drop of accuracy depending on

the sample rate, for all the three descriptor combina-

tions (MBHx, MBHy, MBH) and both word assignment

methods (Fisher Vectors and hk-means), the accuracy

loss as a function of the sample rate is similar to what

happens with HOF and much higher than HOG. We

believe that this is due to the fact that HOG are basi-

cally ”static” features, representing the appearance of a

given image window independently of possible motion

information. As a consequence, they are less affected by

optical flow errors (which is used to compute both HOF

and MBH(x/y)) and better exploit the redundancy of

consecutive video frames.

As for HOG and HOF and also for MBH(x/y) and

MBH, we observe a significant computational efficiency

gain using subsampling. For instance, sampling every 6

frames yelds a factor of 2.4 speed-up for MBH(x/y) and

a factor of 3 speed-up for MBH with respect to using

all the frames.

To conclude, HOG descriptors can be sampled ev-

ery 6 frames with negligible loss of accuracy yielding

a speed-up of a factor 2. HOF and MBH descriptors

can be sampled every 2 frames with negligible loss of

accuracy yielding a speed-up of a factor 1.5 and 1.7

respectively. When speed is more important than ac-

curacy, both HOF and MBH descriptors can also be

sampled every 6 frames leading to 1-3% accuracy loss

while gaining a significant speed-up of a factor 2.3-3.

4.5 Choice of Optical Flow

The results reported in the previous section show that
both the HOF and the MBH(x/y) descriptors are much

more expensive to extract than the HOG descriptors

(Table 3). This is because calculating the optical flow

is computationally expensive. Additionally, not much

research has been done on how different optical flow

methods affect HOF/MBH descriptors. Therefore in

this experiment we evaluate five available optical flow

implementations to investigate both their computa-

tional efficiency and accuracy. In particular, we com-

pare: (1) Farnebäck [15] from OpenCV using the mex-

opencv interface, (2) Lucas-Kanade [28] and (3) Horn-

Schunk [17] from the Matlab Computer Vision Systems

Toolbox, (4) Brox 04 [5] and (5) Brox 11 [6] using the

available author’s code.

Results are presented in Tables 4 and 5. Specifically,

while in Table 4 we used the same setting adopted in the

other experiments of this paper, in Table 5 we down-

scaled the frame resolution of all the videos by a factor

of 4 (i.e., using 80 × 60 pixel frames) and we subsam-

pled every 6 frames (see Section 4.4). This scale and

10 J. Uijlings et al.

time subsampling was necessary in order to process our

large video dataset with both Brox 04 and Brox 11, two

state-of-the-art dense optical flow methods not able to

process videos in real time. In fact, processing all the

frames of our 6600 videos at full spatial resolution with

Brox 11 would require a few months.

With the original frame resolution (Table 4), and

with both hk-means and Fisher Vectors, the three com-

putationally feasible optical flow methods have the same

ranking in terms of accuracy. For the Fisher Vector,

Horn-Schunk performs best at an accuracy of 0.795, fol-

lowed by Lucas-Kanade at an accuracy of 0.747, while

the method of Farnebäck performs relatively poorly

with an accuracy of 0.641. These results show that the

optical flow method is crucial to the performance of

the HOF descriptor: the choice of optical flow affects

the results by up to 15%(!).

In terms of computational efficiency, Lucas-Kanade

is the fastest at 27 frames/second, followed by Horn-

Schunk at 22 frames per second, while Farnebäck is

slower with 10 frames/second. However, while Lucas-

Kanade is faster, its trade-off between efficiency and

accuracy is not good: As seen in Table 3 Horn-Shunk

with a frame sampling rate of 2 outperforms the Lukas-

Kanade results in Table 4 in both speed (33 frames vs

27 frames) and accuracy (0.77 vs 0.75).

Table 5 reports results when we subsample frames

and reduce the frame size by a factor 4, enabling com-

parison with the Brox methods. Note that for a fair

comparison these times include the computation for re-

ducing the frame sizes (although these times are negligi-

ble compared to the total description extraction time).

It can be seen that both Brox methods are better than
Farneback, but surprisingly not better than the Horn-

Shunk and Lucas-Kanade method. One explanation is

that this is due to the low resolution of the frames,

which makes dense optical flow extraction not suffi-

ciently accurate. Another possibility is that optical flow

methods performing better on optical flow benchmarks

are not necessarily optimal for use in classification; re-

ducing mistakes in most parts of the flow may intro-

duce artefacts elsewhere that negatively affect results

in a classification framework.

In terms of computational efficiency, Brox 11 is the

slowest, followed by Brox 04: even subsampled on re-

duced frames Brox 04 still processes only 27 frames/sec.

In contrast to results without downsampling, Farnebäck

is here the fastest method. Apparently, there is some

overhead in the Matlab optical flow implementations.

To conclude, the choice of optical flow method dras-

tically influences the power of the resulting HOF de-

scriptor and it is not necessarily correlated with the

performance on optical flow benchmarks. Additionally,

many optical flow methods aim for accuracy rather

then computational efficiency (e.g. Sun et al. [41] pro-

vide a very good overview for accuracy but do not

report computational efficiency). Indeed, except the

Horn-Schunk, Lucas-Kanade, and Farnebäck methods

we did not find any other freely available optical flow

method fast enough for use in our classification pipeline.

Our evaluation shows that the Horn-Schunk method

has the best trade-off between accuracy and computa-

tional efficiency and that subsampling every two frames

works better than switching to Lucas-Kanade optical

flow. Horn-Schunk is therefore the current method of

choice.

4.6 Recommendations for Practitioners

Based on the results of the previous experiments, we

can now give several recommendations when accuracy

or computational efficiency is preferred. For calculating

Optical Flow, Section 4.5 showed that the Matlab im-

plementation of Horn-Schunk is always the method of

choice. In terms of frame sampling rate, for HOG de-

scriptors we always recommend a sampling rate of ev-

ery 6 frames. For HOF descriptor, if one wants accuracy

we recommend a sampling rate of every 2 frames and

if one wants computational efficiency we recommend a

sampling rate of 6. The same holds for MBH(x/y) de-

scriptors. For the word assignment method, the Fisher

Vector is the method of choice for accuracy. For compu-

tational efficiency there are two candidates: hierarchical

k-means and the Random Forest. Observe first that the

descriptor extraction time is the most costly phase of

the pipeline: Extracting HOF descriptors with a sam-

pling rate of 6 frames takes 3.8 seconds per video to

compute. And while the Random Forest is five times

faster than hierarchical k-means, the difference is only

0.41 seconds per video, which is very small compared to

the descriptor extraction phase. Furthermore, Table 1

showed a significant drop of accuracy from 0.780 for hi-

erarchical k-means to 0.732 for Random Forests (and a

similar drop of accuracy is observed with MBH(x/y)).

Therefore we recommend using hierarchical k-means for

a fast video classification pipeline.

We found that late fusion of the classifier outputs

gave slightly better results than early fusion of the de-

scriptors (e.g. concatenating HOG and HOF). Hence

in our recommendations we perform a late fusion with

equal weights.

We tested different descriptor combinations, using

equal-weights-based late fusion and with the goal of se-

lecting: (1) the most accurate set of descriptors, possi-

bly taking into account the complementarity of appear-

ance/motion information of different features, and (2)

An Evaluation of the Accuracy/Computational Efficiency Trade-off 11

Horn-Schunk Lucas-Kanade Färneback
hk-means 0.780 0.750 0.652
FV 256 0.795 0.747 0.641

sec/video 8.8 7.2 19.0
frame/sec 22 27 10

Table 4: Comparison of different optical flow methods used to compute HOF features. Results obtained with no

frame subsampling and at full original spatial resolution (320× 240 pixels).

Horn-Schunk Lucas-Kanade Färneback Brox 04 Brox 11
hk-means 0.713 0.681 0.529 0.548 0.552
FV 256 0.718 0.697 0.542 0.638 0.652

sec/video 2.9 2.8 0.76 7.2 12.4
frame/sec 68 69 257 27.4 16

Table 5: Comparison of different optical flow methods used to compute HOF features. Results obtained subsampling

a frame every 6 and at reduced spatial resolution (80× 60 pixels).

Fig. 7: Recommended pipeline for accurate video classification. This pipeline yields an accuracy of 0.818 on UCF50

while processing 9 frames per second.

Fig. 8: Recommended pipeline for realtime video classification. This pipeline yields an accuracy of 0.790 on UCF50

while processing 28 frames per second.

12 J. Uijlings et al.

Method Accuracy
Wang et al. [45] (2013) 0.856%
This paper 0.818%
Reddy et al. [32] (2012) 0.769%
Solmaz et al. [40] (2012) 0.737%
Everst et al. [14] (2013) 0.729%
Kliper-Gross et al. [23] (2012) 0.727%

Table 6: Comparison with the State-of-the-Art.

the fastest solution with a sufficiently good accuracy

degree. The final recommended pipelines are visualised

in Figures 7 and 8.

The most accurate pipeline (Figure 7) combines all

the descriptors we adopted in this paper: HOG, HOF,

MBHx and MBHy. HOG are extracted using all the

frames, while HOF and MBH(x/y) are extracted with

a sampling rate of 2. The word assignment method used

in this case is the Fisher Vector. Using this pipeline we

can process 11 frames per second (for video frames of

320 by 240 pixels) at an accuracy of 0.818 on UCF50.

Conversely, our recommended pipeline for computational

efficiency (Figure 8) is based on late fusion of only HOG

and HOF, both extracted with a sampling rate of 6 and

using hk-means. This second pipeline can process 28

frames per second at a respectable accuracy of 0.790.

4.7 Comparison with State-of-the-Art

In this section we compare our descriptors to the state-

of-the-art. Results of several recent works are given in

Table 6. This comparison is done in terms of accu-

racy only, as most compared methods evaluate accuracy

only. This paper in Table 6 indicates the late fusion of

all the descriptors (HOG, HOF, MBH(x/y)): see Sec-

tion 4.6 and Figure 7.

As can be seen, the method of [45] yields the best

results. This method is a combination of Dense Trajec-

tories and STIP features [25]. As our results are better

than [25], we expect that a combination of dense trajec-

tories with our method would increase results further.

In general, our method yields good performance com-

pared to many recently proposed methods, which shows

that we provide a strong implementation of densely

sampled HOG, HOF and MBH(x/y) descriptors.

5 Conclusion

This paper presented an evaluation of the trade-off be-

tween computational efficiency and accuracy for video

classification using a Bag-of-Words pipeline with HOG,

HOF and MBH descriptors. Our first contribution is a

strong and fast Matlab implementation of densely sam-

pled HOG, HOF and MBH descriptors, which we make

publicly available.

In terms of visual word assignment, the most accu-

rate method is the Fisher Kernel. Hierarchical k-means

is more than 6 times faster while yielding an accuracy

loss of less than 2% and is the method of choice for a

fast video classification pipeline. HOG descriptors can

be subsampled every 6 frames with a negligible loss in

accuracy, while being 2 times faster. HOF and MBH de-

scriptors can be subsampled every 2 frames with negli-

gible loss in accuracy, being 1.5 - 1.7 times faster. When

speed is essential, HOF and MBH descriptors may be

subsampled every 6 frames.

For the HOF and MBH descriptors, we showed that

the choice of optical flow algorithm has a large im-

pact on the final performance. The difference between

the best method, Horn-Schunk, and the second best

method, Lucas-Kanade, is already 5%, while the differ-

ence with Färneback is a full 15%. Brox 04 and Brox 11

are computationally very demanding, and cannot be

used in a real time video classification scenario.

Compared to the state-of-the-art, the Dense Tra-

jectory method of [45] obtains better results. Neverthe-

less, the huge difference for the choice of optical flow

methods suggests this would also influence dense tra-

jectories. Furthermore, Dense Trajectories still benefit

from a combination with normal HOG, HOF and MBH

desciptors [21,45]. Finally, comparisons with other re-

cent methods on UCF50 shows that we provide a strong

implementation of dense HOG, HOF and MBH descrip-

tors to the community.

References

1. R. Arandjelović and A. Zisserman. Three things everyone
should know to improve object retrieval. In CVPR, 2012.

2. S. Baker, D. Scharstein, J.P. Lewis, S. Roth, M.J. Black,
and R. Szeliski. A database and evaluation methodology
for optical flow. In IJCV, 2011.

3. H Bay, A Ess, T Tuytelaars, and L Van Gool. Speeded-Up
Robust Features (SURF). Computer Vision and Image
Understanding, 110:346–359, 2008.

4. L. Breiman. Random forests. Machine learning, 45(1):5–
32, 2001.

5. Thomas Brox, Andrés Bruhn, Nils Papenberg, and
Joachim Weickert. High accuracy optical flow estimation
based on a theory for warping. In ECCV, pages 25–36,
2004.

6. Thomas Brox and Jitendra Malik. Large displacement
optical flow: Descriptor matching in variational motion
estimation. PAMI, 33(3):500–513, 2011.

7. D.J. Butler, J. Wulff, G.B. Stanley, and M.J. Black. A
naturalistic open source movie for optical flow evaluation.
In ECCV, 2012.

8. Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A li-
brary for support vector machines. ACM Transactions on

An Evaluation of the Accuracy/Computational Efficiency Trade-off 13

Intelligent Systems and Technology, 2011. Software avail-
able at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

9. K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisser-
man. The devil is in the details: an evaluation of recent
feature encoding methods. In BMVC, 2011.

10. G Csurka, C R Dance, L Fan, J Willamowski, and C Bray.
Visual Categorization with Bags of Keypoints. In ECCV
International Workshop on Statistical Learning in Com-
puter Vision, Prague, 2004.

11. N Dalal and B Triggs. Histograms of oriented gradients
for human detection. In CVPR, 2005.

12. N. Dalal, B. Triggs, and C. Schmid. Human detection
using oriented histograms of flow and appearance. In
ECCV, 2006.

13. P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie. Be-
havior recognition via sparse spatio-temporal features. In
VS-PETS, 2005.

14. I. Everts, J. van Gemert, and T. Gevers. Evaluation of
color STIPs for human action recognition. In CVPR,
2013.

15. G. Farnebäck. Two-frame motion estimation based on
polynomial expansion. In Scandinavian Conference on
Image Analysis, 2003.

16. P Geurts, D Ernst, and L Wehenkel. Extremely random-
ized trees. Machine Learning, 63(1):3–42, 2006.

17. B. Horn and B. Schunck. Determining optical flow. Ar-
tificial Intelligence, 17:185–203, 1981.

18. T. Jaakkola and D. Haussler. Exploiting generative mod-
els in discriminative classifiers. In NIPS, 1999.

19. H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregat-
ing local descriptors into a compact image representation.
In CVPR, pages 3304–3311, 2010.

20. F Jurie and B Triggs. Creating Efficient Codebooks for
Visual Recognition. In ICCV, 2005.

21. S. Karaman, L. Seidenari, A. Bagdanov, and A. del
Bimbo. L1-regularized logistic regression stacking and
transductive CRF smoothing for action recognition in
video. In ICCV Workshop on Action Recognition with
a Large Number of Classes, 2013.

22. A. Kläser, M. Marszalek, and C. Schmid. A spatio-
temporal descriptor based on 3d-gradients. In BMVC,
2008.

23. O. Kliper-Gross, Y. Gurovich, T. Hassner, and L. Wolf.
Motion interchange patterns for action recognition in un-
constrained videos. In ECCV, 2012.

24. H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and
T. Serre. HMDB: A large video database for human mo-
tion recognition. In ICCV, 2011.

25. I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld.
Learning realistic human actions from movies. In CVPR,
2008.

26. S Lazebnik, C Schmid, and J Ponce. Beyond Bags of Fea-
tures: Spatial Pyramid Matching for Recognizing Natural
Scene Categories. In CVPR, 2006.

27. D G Lowe. Distinctive Image Features from Scale-
Invariant Keypoints. IJCV, 60:91–110, 2004.

28. B. Lucas and T. Kanade. An iterative image registration
technique with an application to stereo vision. In In-
ternational Joint Conference on Artificial Intelligence,
1981.

29. S Maji, A C Berg, and J Malik. Classification using In-
tersection Kernel Support Vector Machines is Efficient.
In CVPR, 2008.

30. F Moosmann, E Nowak, and F Jurie. Randomized Clus-
tering Forests for Image Classification. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
9:1632–1646, 2008.

31. F. Perronnin, J. Sanchez, and T. Mensink. Improving
the Fisher Kernel for Large-Scale Image Classification.
In ECCV, 2010.

32. K. Reddy and M. Shah. Recognizing 50 human action
categories of web videos. In Machine Vision and Appli-
cations, 2012.

33. J. Sánchez, F. Perronnin, T. Mensink, and J. J. Ver-
beek. Image classification with the fisher vector: Theory
and practice. International Journal of Computer Vision,
105(3):222–245, 2013.

34. E. Sangineto. Pose and expression independent facial
landmark localization using dense-SURF and the Haus-
dorff distance. PAMI, 2013.

35. C. Schuldt, I. Laptev, and B. Caputo. Recognizing hu-
man actions: A local svm approach. In ICIP, 2004.

36. P. Scovanner, S. Ali, and M. Shah. A 3-dimensional sift
descriptor and its application to action recognition. In
ACM MM, 2007.

37. J Sivic and A Zisserman. Video Google: A Text Retrieval
Approach to Object Matching in Videos. In ICCV, 2003.

38. A F Smeaton, P Over, and W Kraaij. Evaluation cam-
paigns and TRECVID. In ACM SIGMM International
Workshop on Multimedia Information Retrieval (MIR),
2006.

39. C G M Snoek, M Worring, J Gemert, J Geusebroek, and
A Smeulders. The Challenge Problem for Automated
Detection of 101 Semantic Concepts in Multimedia. In
ACM MM, 2006.

40. B. Solmaz, S. Assari, and M. Shah. Classifying web videos
using a global video descriptor. Machine Vision and Ap-
plications, 2012.

41. D. Sun, S. Roth, and M. Black. A quantitative analysis
of current practices in optical flow estimation and the
principles behind them. IJCV, 2013.

42. J R R Uijlings, A W M Smeulders, and R J H Scha. Real-
time Visual Concept Classification. IEEE Transactions
on Multimedia, 12, 2010.

43. A. Vedaldi and B. Fulkerson. VLFeat - an open and
portable library of computer vision algorithms. In ACM
MM, 2010.

44. P Viola and M Jones. Rapid object detection using
a boosted cascade of simple features. In Proceedings
CVPR, volume 1, pages 511–518, 2001.

45. H. Wang, A. Kläser, C. Schmid, and C. Liu. Dense
trajectories and motion boundary descriptors for action
recognition. International Journal of Computer Vision,
103:60–79, 2013.

46. H. Wang, M. Ullah, A. Kläser, I. Laptev, and C. Schmid.
Evaluation of local spatio-temporal features for action
recognition. In BMVC, 2009.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Introduction
	Related Work
	Bag-of-Words for Video
	Experiments
	Conclusion

