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Abstract
In this paper, we investigate a combination of several feed-

forward deep neural networks (DNNs) for a high-quality statis-
tical parametric speech synthesis system. Recently, DNNs have
significantly improved the performance of essential components
in the statistical parametric speech synthesis, e.g. spectral fea-
ture extraction, acoustic modeling and spectral post-filter. In
this paper our proposed technique combines these feed-forward
DNNs so that the DNNs can perform all standard steps of the
statistical speech synthesis from end to end, including the fea-
ture extraction from STRAIGHT spectral amplitudes, acoustic
modeling, smooth trajectory generation and spectral post-filter.
The proposed DNN-based speech synthesis system is then com-
pared to the state-of-the-art speech synthesis systems, i.e. con-
ventional HMM-based, DNN-based and unit selection ones.
Index Terms: Speech synthesis, DNN, Acoustic feature extrac-
tion, Acoustic modeling, Post-filtering

1. Introduction
Recently, statistical speech synthesis research has been signif-
icantly advanced thanks to deep neural networks (DNNs) with
many hidden layers. For instance, DNNs have been applied for
acoustic modeling. Zen et al. use a DNN to learn the rela-
tionship between input texts and extracted features instead of
decision tree-based state tying[1]. Restricted Boltzmann ma-
chines or deep belief networks have been used to model output
probabilities of hidden Markov model (HMM) states instead
of GMMs[2]. Recurrent neural networks and long-short term
memories have been used for prosody modelling[3] and acous-
tic trajectory modelling[4]. In addition, an auto-encoder neural
network has also been used to extract low dimensional exci-
tation parameters[5]. Furthermore a DNN-based probabilistic
post-filter was also proposed[6] where a DNN is used to model
the conditional probability of the spectral differences between
natural and synthetic speech so that the fine spectral structure
lost during modeling can be reconstructed at synthesis time.

In this paper we try to apply multiple feed-forward DNNs
into several components of statistical speech synthesis systems
rather than focusing on the improvement of a specific compo-
nent and aim to better connect many components through neural
network representations resulting in the construction of a high-
quality statistical parametric speech synthesis system. More
specifically we combine three types of feed-forward DNNs so
that the DNNs can perform all standard steps of the statistical
speech synthesis from end to end, including the feature extrac-
tion from STRAIGHT spectral amplitudes [7], acoustic model-

ing, smooth trajectory generation and spectral post-filter.
On the basis of this vision, we first construct a DNN that

directly synthesizes high-dimensional spectral amplitudes from
linguistic features without using spectral envelope parameters
such as mel-cepstrum. However, it is well known that there
are many problems for training a DNN such as the local op-
tima, vanishing gradients and so on [8]. To train the DNN effi-
ciently, we stack two DNNs, an auto-encoder neural network for
data-driven non-linear feature extraction from the spectral am-
plitudes and another network for acoustic modeling and context
clustering. We have confirmed that this training technique is ef-
fective and provides improvements in our previous experiment
[9].

Although the above stacked DNN can predict spectral am-
plitudes from linguistic inputs frame-by-frame, we also need
to consider sequential characteristics of speech for generating a
smooth trajectory of spectral amplitudes. In the statistical para-
metric speech synthesis system, the parameter generation algo-
rithm using time derivative features is a well known technique
for synthesizing smooth trajectories [10]. There are also several
new attempts to use recurrent neural networks or long short-
term memories for explicitly modeling time-series data [3, 11].
There are two ways for synthesizing smooth trajectories; one is
to consider time derivative features in a post processing, and the
other is to have time dependency in the acoustic modeling.

In this paper we focus on a post-filter approach based
on a feed-forward DNN that uses consecutive frames as in-
puts and outputs[6]. This DNN-based post-filter can perform
the smoothing process in the time domain as well as spectral
peak enhancement in frequency domain for generating natural-
sounding smooth spectral amplitudes. As a result, three types
of feed-forward DNNs; a feature extractor, an acoustic model
and a post-filter, are used for constructing the proposed system.

The rest of this paper is organized as follows. Section 2
shows the DNN-based acoustic feature extractor. Section 3 de-
scribes the technique for constructing a DNN that directly syn-
thesizes the spectral amplitudes. The DNN-based postfilter is
shown in Section 4. The experimental conditions and results
are shown in Section 5. Concluding remarks and future works
are presented in Section 6.

2. Deep Auto-encoder based Acoustic
Feature Extraction

An auto-encoder is an artificial neural network that is used gen-
erally for learning a compressed and distributed representation
of a dataset. It consists of the encoder and the decoder. In the
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Figure 1: Greedy layer-wise pre-training for constructing a deep
auto-encoder.

basic one-hidden-layer auto-encoder, the encoder maps an input
vector x to a hidden representation y as follows:

y = fθ(x) = s(Wx+ b), (1)

where θ = {W,b}. W and b represent an m× n weight ma-
trix and a bias vector of dimensionality m, respectively, where
n is the dimension of x. The function s is a non-linear trans-
formation on the linear mapping Wx+ b. A sigmoid, a tanh,
or a ReLU function is typically used for s. y, the output of the
encoder, is then mapped to z, the output of the decoder. The
mapping is performed by a linear mapping followed by an arbi-
trary function t that employs an n ×m weight matrix W′ and
a bias vector of dimensionality n as follows:

z = gθ′(y) = t(W′y + b′), (2)

where θ′ = {W′,b′}. An auto-encoder can be made deeper
by stacking multiple layers of encoders and decoders to form a
deep architecture.

Pre-training is widely used for constructing a deep auto-
encoder. In pre-training, the number of layers in a deep auto-
encoder increase twice compared to a deep neural network
(DNN) when stacking each pre-trained unit. In this paper, we
restrict the decoding weight as the transpose of the encoding
weight following[12], that is, W′ = WT where WT denotes
the transpose of W. Each layer of a deep auto-encoder can be
pre-trained greedily to minimize the reconstruction loss of the
data locally. Figure 1 shows a procedure for constructing a deep
auto-encoder using pre-training. In pre-training, a one-hidden-
layer auto-encoder is trained and then the encoded output of the
locally trained layer is used as the input and the output for the
next layer. After all layers are pre-trained, they are stacked and
fine-tuned to minimize the reconstruction error over the entire
dataset using error backpropagation[13]. The mean square error
(MSE) is used for the loss function of a deep auto-encoder.

3. DNN-based Acoustic Model
The DNN-based acoustic models representing the relationship
between linguistic and speech features have been proposed for
statistical parametric speech synthesis[1, 2, 3, 4]. One of the
state-of-the-art DNN-based acoustic models[1] is briefly re-
viewed in this section.

Figure 2 illustrates a framework of the DNN-based acous-
tic model. In this framework, linguistic features obtained from
a given text are mapped into speech parameters by a DNN.
The input linguistic features are composed of binary answers
to questions about linguistic contexts and numeric values such

Linguistic feature sequence	
including binary and numeric features	

Speech parameter vector sequence	

Text	

Test analysis	

Linguistic feature	
extraction	
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#frame : 	 1	 2	 T	・・・	

Figure 2: A framework of DNN-based acoustic model.

as the number of words in the current phrase, the position of
the current syllable in the word, and durations of the current
phoneme. In [1] the output speech parameters include spectral
and excitation parameters and their time derivatives (dynamic
features). By using pairs of input and output features obtained
from training dataset, the parameters of the DNN can be trained
with a stochastic gradient descent (SGD)[12]. Speech param-
eters can be predicted for an arbitrary text by a trained DNN
using forward propagation.

3.1. Spectral amplitude modeling using a DNN

The DNN-based acoustic model described above may be used
for the direct spectral modeling by substituting the output of
the network from mel-cepstrum to the spectrum. However, the
dimension size of spectrum is much higher than that of mel-
cepstrum. For a speech signal at 48 kHz, the mel-cepstral anal-
ysis order typically used is around 60-dim, whereas the dimen-
sion of FFT spectrum is 2049. Because of this high dimensional
data, a more efficient training technique is needed to construct a
DNN that directly represents the relationship between linguistic
features and spectra. In this paper, we hence use a function-wise
pre-training technique where we explicitly divide the general
flow of the statistical parametric speech synthesis system into
sub-processes, they are used to construct and optimize a DNN
for each task individually, and to stack the individual networks
for the final optimization.

Figure 3 shows the procedure for constructing the proposed
DNN-based spectral model. Each step of the proposed tech-
nique is as follows:

Step 1. Train a deep auto-encoder using spectral amplitudes
and extract bottleneck features. Layer-wise pre-training
or other initialization may be used for the learning of the
deep auto-encoder.

Step 2. Train a DNN-based acoustic model using the bot-
tleneck features extracted in Step 1. Layer-wise pre-
training or other initialization may be used for learning
the DNN.

Step 3. Stack the trained DNN-based acoustic model for bot-
tleneck features and the decoder part of the trained deep
auto-encoder as shown in Figure 3 and optimize the
whole network.

A DNN that represents the relationship between linguistic fea-
tures and spectra is constructed based on a DNN-based spectral
generator and a DNN-based acoustic model using the bottle-
neck features. After this proposed pre-training, we can fine-tune
the DNN to minimize the error over the entire dataset using
pairs of linguistic features and spectral amplitudes in training
data with SGD.
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Figure 3: Procedure for constructing a DNN-based spectral model based on a
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Table 1: The detail of the English and Korean databases.

English Korean
Speaker Professional female

#Utterance (Train) 12,085 11,937
#Sentence (Test) 200 200

Sampling rate 48kHz 16kHz

4. DNN-based Post-filter for Parameter
Generation in the Spectral Domain

The feed-forward DNN for probabilistic modeling of the differ-
ences between spectra of synthesized and natural speech have
been proposed[6]. Figure 4 shows the structure of the DNN
based post-filter. The DNN is trained layer-by-layer using two
restricted Boltzmann machines (RBMs)[14] and a Bernoulli bi-
directional associative memory (BBAM)[15] as shown in Fig-
ure 4. This model is directly applied to the high-dimensional
spectral amplitudes.

One of the special properties of this technique is that
consecutive synthesized and natural spectral amplitudes can
be used as segmental inputs and outputs at each frame [6]
and therefore this technique would enhance spectral ampli-
tudes considering the differences between natural and synthetic
speech in the time-frequency domain. In other words, the
DNN performs spectral peak enhancements as well as spectral
smoothing within the given segments in the time-frequency do-
main. In this paper we have further applied overlapp-add oper-
ation onto the outputs of the DNN-based post-filter instead of
MLPG algorithm used in [6]. Using the overlap-added spectral
amplitude sequences, we can drive the STRAIGHT vocoder to
generate a synthetic speech waveform.

5. Experiments
We have evaluated the proposed technique in subjective exper-
iments using English and Korean databases. Table 1 shows the
detail of the English and Korean databases. The test sentences
are not included in the training utterances.

The database provided for the Blizzard Challenge 2011[16],
which contains approximately 17 hours of speech data, com-
prising 12K utterances, was used for the English experiment.
The phoneme sequences, their boundaries and other linguistic
information are automatically generated using Festival.

The Korean database is approximately 38 hours of speech
data, which includes 11K utterances. The scripts are mostly
news sentences including weather forecasts, traffic announce-

Table 2: Spectral analysis conditions in the English and Korean
experiments.

English Korean
FFT points (dim) 4096 (2049-dim) 2048 (1025-dim)
Cepstrum dims. 59 39

ments, stock market conditions etc. The phoneme sequences,
their boundaries and break strength are manually corrected.

We have compared five techniques; US is the unit selection-
based speech synthesis system, HMM is the HMM-based
speech synthesis system with a GV technique1[17, 18], DNN
is the conventional single DNN-based speech synthesis sys-
tem with a signal processing-based post-filter for cepstrum
vectors[19], MDNNs1 and MDNNs2 are the proposed sys-
tems. The differences between MDNNs1 and MDNNs2 are
F0 and aperiodicity measures. The proposed systems synthe-
size only spectrum features, and F0 and aperiodicity measures
synthesized from HMM and DNN were used for MDNNs1 and
MDNNs2 respectively.

Figure 5 shows network structures used in DNN and the
proposed systems in the English experiment. We trained five-
hidden-layer DNN-based acoustic models for DNN, MDNNs1
and MDNNs2. The number of units in each of the hidden lay-
ers was set to 1024. Random initialization was used in a way
similar to [1]. The symmetric five-hidden-layer auto-encoder
was trained for the proposed systems. The numbers of units of
the hidden layers were 2049-500-60-500-2049. As a result, we
constructed and fine-tuned the eight-hidden-layer DNN for the
acoustic model of the proposed systems. A two-hidden-layer
DNN was trained for the spectral post-filtering in the proposed
systems. Three consecutive spectral amplitudes were used as
the segmental input and the output. The unit numbers of the
hidden layers were 2048-2048 in the postfiltering DNN. During
the overlap-add operation using the segmental outputs of the
postfiltering DNN, weighting coefficients were 0.25, 0.5, 0.25
for previous, current and next frames respectively. Although in
both the English and Korean experiments the settings of hidden
layers were the same, the dimensions of input and output vec-
tors were different due to differences of spectral analysis con-
ditions. We have used a sigmoid function for all units in the
hidden and output layers of all DNNs.

For each waveform, we first extract its frequency spectra us-
ing the STRAIGHT vocoder. Cepstrum vectors were extracted

1In this paper, the GV technique is applied to only spectral parame-
ters.
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Figure 5: Structures of networks in DNN and the proposed systems.

Figure 6: Subjective results (English).

Figure 7: Subjective results (Korean).

from frequency spectra for constructing HMM and DNN sys-
tems. Spectrum and cepstrum were both frequency-warped us-
ing the Bark scale. Table 2 shows spectral analysis conditions
for English and Korean datasets. Feature vectors for HMM and
DNN systems were comprised of 258 and 198 dimensions for
the English and Korean experiments: 59 (English) or 39 (Ko-
rean) bark-cepstral coefficients (plus the 0th coefficient), log f0,
25 dimensional band aperiodicity measures, and their dynamic
and acceleration coefficients. Phoneme durations were also es-
timated by HMM-based speech synthesis in each language. The
context-dependent labels were built using the pronunciation lex-
icon Combilex [20] for English and manual corrected phoneme
sequences were used for Korean. The linguistic features for
DNN acoustic models were comprised of 897 and 858 dimen-
sions for English and Korean respectively. The linguistic fea-
tures and spectral amplitudes in the training data were normal-
ized for training DNNs. The input linguistic features were nor-
malized to have zero-mean unit-variance, whereas the output
spectral amplitudes were normalized to be within 0.0–1.0. We
synthesized speech samples from spectrum amplitudes, F0 fea-
tures and aperiodicity measures using the STRAIGHT vocoder
in HMM, DNN, MDNNs1 and MDNNs2. In HMM and DNN,
synthesized mel-cepstral vectors were converted into spectrum
amplitudes for the same STRAIGHT vocoder.

A Multisyn method[21] and NVOICE[22], which is the
triphone-based in-house system of NAVER, were used to con-
struct the English and Korean unit selection speech synthesis
systems respectively.

For subjective evaluation, MUSHRA tests were conducted.
Natural speech was used as a hidden top anchor reference.
In the Korean experiment, a conventional HMM-based speech
synthesis system without GV was used as a hidden bottom an-
chor. Thirty three and twenty three native subjects participated
in the English and Korean experiments respectively. Fifteen
sentences were randomly selected from the test set for each sub-
ject. The experiments were carried out using headphones in a
quiet room.

5.1. Experimental results
Figures 6 and 7 show subjective results in the English and Ko-
rean experiments respectively. The results for reference and an-
chor speech were excluded from the figures to make comparison
easier.

First we can see that the ratings of the unit selection system
vary. As shown in figures 6 and 7, the Korean unit selection

speech synthesis system is rated higher than the Korean HMM
system. Whereas the English unit selection system is rated
lower than the English HMM system. This would be because
the Korean unit selection speech synthesis system used man-
ually corrected phoneme alignments while the phoneme align-
ments were automatically estimated using HMMs in the English
one.

More importantly, it can also be seen that DNN systems sig-
nificantly outperformed the unit selection speech synthesis sys-
tem in both English and Korean. In the case of Korean, although
there were not many artifacts in each sample of unit concatena-
tion as a result of the manual valuation, interestingly many test
participants did not prefer US samples.

Comparing DNN and MDNNs2 in the figure 6, we can ob-
serve that the proposed combination techniques produce more
natural-sounding speech in the English experiment. This differ-
ence is statistically significant. In the Korean experiment how-
ever the proposed combination techniques produce almost the
same quality of synthetic speech compared to HMM (HMM vs.
MDNNs1) and less natural-sounding speech compared to DNN
(DNN vs. MDNNs2) as shown in figure 7. This is the com-
pletely opposite outcome to the English findings.

We believe that this difference of the results between the
English and Korean experiments may be caused by slightly
different architectures due to different FFT points and sam-
pling rate. In the proposed technique the best network struc-
ture of DNNs would strongly depend on FFT points and a high-
frequency part only included in 48kHz sample rate speech, that
is directly modeled and enhanced by the proposed technique.
This would affect the quality of synthesized speech. Further in-
vestigation into 16kHz sample rate speech is required for the
proposed technique.

6. Conclusions
In this paper, multiple feed-forward DNNs were combined to
construct a high performance speech synthesis system that can
deal with all of modeling of spectral amplitudes obtained from
the STRAIGHT vocoder, enhancement and smoothing via neu-
ral networks. In the English experiment, the proposed com-
bination technique was evaluated better than the conventional
HMM, DNN and even unit selection systems. In future work,
we will investigate the effect of the structures of the DNNs more
thoroughly. Modeling F0 and aperiodicity measures in the pro-
posed framework is also an interesting topic.
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