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Abstract

This paper studies information transmission between multiple agents with di¤erent preferences

and a welfare maximizing decision maker who chooses the quality or quantity of a public good

(e.g. provision of public health service; carbon emissions policy; pace of lectures in a classroom)

that is consumed by all of them. Communication in such circumstances su¤ers from the agents�

incentive to "exaggerate" their preferences relative to the average of the other agents, since the

decision maker�s reaction to each agent�s message is weaker than in one-to-one communication.

As the number of agents becomes larger the quality of information transmission diminishes.

The use of binary messages (e.g. "yes" or "no") is shown to be a robust mode of communication

when the main source of informational distortion is exaggeration.
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Referendum
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1 Introduction

In many social environments policy decisions are made after communication with interested par-

ties. For example, a local authority may try to �nd the optimal public services policy for the

community (e.g. how much to be spent on health care or education out of a given budget) by dis-

cussing with the residents, or a teacher may ask her students how fast or how di¢ cult they would

like her lectures to be. A government may ask environmental experts for advice on emissions pol-

icy. Non-binding referenda may be thought of as a communication device between a government

and citizens. Suppose that a decision maker chooses the quality or quantity of a public good

that is consumed by members of a group with di¤erent preferences but no monetary transfers

are allowed. Before making her decision, the benevolent decision maker may communicate with

the members to �gure out the optimal provision of the public good. Are the agents willing to

reveal their private information truthfully? How does the number of agents a¤ect the nature of

communication? Why is it very often the case that, in communication with many individuals, the

decision maker asks them questions in a binary form (e.g. "yes or no", "agree or disagree" with a

statement) even when policy choice, preferences and state (distribution of preferences) may not

be binary?

This paper addresses these questions by modelling communication as "cheap talk", whereby

each agent receives a private signal about his preference and sends a message to an uninformed

decision maker who, on the basis of the information received from all agents, makes a decision

that a¤ects their utilities. We demonstrate that communication becomes distorted by agents�

incentive to "exaggerate" their preferences, as the number of agents becomes larger and each

agent has less in�uence on the decision.1

Speci�cally, in the presence of multiple agents, extreme messages are less informative, while

moderate messages are more informative about agents�preferences. For instance, when a resident

wants his local authority to increase spending on education (health care), he may stress his needs

for educational (health care) support much more than his actual needs. It may thus be that his

words should not be taken literally and the intensity of his preference should be adjusted to take

his incentive to exaggerate into account. Similarly, when asked about the pace of lectures, a good

(weak) student who �nds it only slightly slow (fast) may nonetheless say the lecture is very slow

(fast), in an attempt to in�uence the teacher more than if he answered completely truthfully.

Extreme messages tend to be used by people with non-extreme as well as extreme preferences,

and this reduces the informativeness of such messages.2

Another example where potentially valuable communication appears to su¤er from exagger-

1By incentive to "exaggerate", we mean an agent�s incentive to misreport in such a way that, if words are taken

literally and believed by the decision maker, the agent whose type is high (low) "overstates" ("understates") his

type by saying his type is even higher (lower). In other words, incentive to "exaggerate" includes both downward

and upward biases simultaneously in a one dimensional policy/message space.
2 In our formal analysis (and in many other cheap talk models) messages used are completely arbitrary and

do not have to be taken literally. What matters for the equilibrium outcome is the correspondence between each

agent�s preference and the decision maker�s induced action, so that what word (or language) is used to induce a

particular action is irrelevant. However, throughout this paper we interpret our results by assuming that messages

directly refer to agents�types.
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ation (or the possibility of exaggeration) is policy debates on climate change. Although the vast

majority of scientists and politicians seem to have acknowledged certain basic scienti�c �ndings,

some media attention has been given to extreme claims from "global warming skeptics" such as

"Global warming is a hoax."3 Even among those who agree that carbon management is essential

to prevent global warming, we observe a wide spectrum of opinions about how strict emissions

regulations should be. Policy discussions and their informativeness often seem marred by exag-

geration and allegedly extremist messages that are possibly not completely truthful but rather

intended to increase public attention and in�uence on policy.4

Interestingly, however, we show that the incentive to exaggerate itself does not completely

eliminate the possibility of mutually bene�cial communication. Regardless of the number of agents

there always exists an equilibrium where binary messages (e.g. "yes or no") are meaningfully

communicated. Moreover, in certain settings as the number of agents becomes larger the most

informative communication converges to binary communication. The intuition is very simple:

when an agent has the choice between two messages and is unable to send any other messages

credibly, he cannot exaggerate his preference in any way. Hence to the extent that the potential

source of informational distortion is exaggeration, binary communication eliminates incentive to

misreport. This might explain why the "choice between the two" ("yes or no", "agree or disagree",

etc.) is a very common way of communicating when multiple interested parties are involved in a

decision, even when neither the agents�preferences nor the decision made after communication

is binary (e.g. quality of service, pace of lectures, or tightness of regulations). If an agent can

only say whether he agrees or disagrees with a statement, he cannot misrepresent the intensity

of (dis)agreement.

In policy debates, interested parties may have individual (partisan) bias as well as incentive

to exaggerate. For instance, a scientist who receives donations from a company that produces

low emission cars may be biased towards a stricter emissions policy, which might make his rec-

ommendation less credible even if he was the sole advisor to the government. In the environment

policy committee, he would be one of several expert members and may have less in�uence on its

decision. This give rises to incentive to exaggerate and thus another source of informational dis-

tortion, in addition to his individual bias. This paper also examines the interplay between these

two di¤erent sources of informational distortion: individual bias, and incentive to exaggerate due

to the presence of multiple agents.

The literature on public good provision has been concerned with mechanism design problems

where agents reveal their preferences (partially or fully) by sending a message on or voting for

the provision of a public good (Palfrey and Rosenthal, 1984; Bagnoli and Lipman, 1989; Ledyard,

1995). Typically monetary transfers are allowed and the decision maker is assumed to be a

mechanism designer who is able to commit to a mechanism (i.e. a mapping from messages to

3For instance: "As evidence mounts that humans are causing dangerous changes in Earth�s climate, a handful

of skeptics are providing some serious blowback." (Washington Post, May 28, 2006, p. W08) and "Global Warming

Skeptics Insist Humans Not at Fault" (Washington Post, March 4, 2008, p. A16).
4Some scientists and politicians have criticized former US vice president Al Gore�s �lm An Inconvenient Truth

for being "alarmist". See e.g., "Some Heated Words for Mr. Global Warming" (Washington Post, March 22, 2007,

p. A02).
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the decision including transfers). Having received the messages the decision maker implements

the provision and compels transfers, according to a pre-speci�ed rule. The main source of moral

hazard is the free rider problem, where agents have incentive to "understate" true preferences

for the public good, because given the amount of the public good everyone prefers to incur lower

costs. Without a truthful revelation mechanism the agents are negatively biased in reporting

their preferences.

The present paper sheds light on a di¤erent set of problems in public good provision. First,

we focus on situations where no transfers among members (including the decision maker) are

available and therefore each agent�s costly contribution is not a concern. As we have suggested

earlier, settings with no transfers characterize many important aspects of decision making in

regulatory and political relationships and other organizations. In many of these circumstances

monetary transfers are often infeasible or deemed inappropriate. Second, we assume that the

decision maker cannot commit to a mechanism. In other words, the decision maker makes her

decision strategically after hearing or reading the messages, which seems to be relevant to many

practical situations, especially where legally binding contracts are unavailable or the decision

maker does not have strong reputational concerns.

In this paper we extend the standard cheap talk model of Crawford and Sobel (1982) to a

setting with multiple agents. If there is only one informed agent, our model collapses to that

of Crawford and Sobel (1982). This enables us to contrast the e¤ect of the presence of multiple

agents, which is our primary focus, and the e¤ect of individual bias in one-to-one communication,

which is the focus of their analysis. Alonso, Dessein and Matouschek (2008) consider decision

making on a single action that a¤ects multiple agents with possibly di¤erent preferences that are

private information. Like us, they identify the incentive to exaggerate, and derive equilibria with a

similar structure to ours.5 However, they focus on communication with two agents. Carrasco and

Fuchs (2008) propose a simple dynamic allocation rule that implements the optimal outcome in

a model similar to Alonso, Dessein and Matouschek (2008), again with two agents. Remarkably,

Carrasco and Fuchs (2008) show that their allocation rule is implementable by a (utilitarian)

decision maker who lacks commitment to a mechanism. In a related context but with a mechanism

design approach Martimort and Semenov (2008) study whether the decision maker should allow

a coalition of informed parties.6 Unlike Alonso, Dessein and Matouschek (2008), Carrasco and

Fuchs (2008) and Martimort and Semenov (2008), we focus on how the nature of communication

changes according to the number of agents.

Morgan and Stocken (2008) study communication between a single decision maker and many

agents in the context of polls.7 They analyze a cheap talk model related to ours but assume that

the message space is binary while preferences and policy space are continuous. We do not restrict

the message space a priori, and �nd that �ner communication is generally available. However, we

also identify some desirable properties of binary communication.

5See also Melumad and Shibano (1991), Gordon (2007) and Blume, Board and Kawamura (2007).
6Bester and Strausz (2000) study the revelation principle in a related model but do not examine communication

in equilibrium.
7Feddersen and Pesendorfer (1997) analyze an information aggregation problem with a voting model. They

assume that the message (voting) space is binary.
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Other papers that study communication with multiple informed parties include Krishna and

Morgan (2001), Battaglini (2002, 2004), Ottaviani and Sørensen (2001) and Baliga, Corchon, and

Sjöström (1997) where agents observe the same or correlated states of nature while each agent

has a di¤erent bias or ability. Among models of communication with multiple senders, our model

is closer to Austen-Smith (1993) and Wolinsky (2002) where agents observe independent signals

(types). Austen-Smith (1993) focuses on the comparison between simultaneous and sequential

reporting, and Wolinsky (2002) considers information sharing between senders.

This paper proceeds as follows. The following section describes the model and examines

informative equilibria when the distribution of agents� types is known to the decision maker.

Section 3 extends the analysis to the case where the type distribution is imperfectly known.

Section 4 concludes.

2 Independent Preferences

Let us consider communication between a single decision maker and n agents labelled by i 2
f1; 2; ::; ng. Each agent may have a di¤erent preference for the decision maker�s action, denoted
by y 2 R, and the utility of agent i is given by

UAi(y; �i) = �(y � �i)2 for all i; (1)

where �i represents the agent�s preference for y and is private information to agent i. In the

context of public services example, the local authority chooses the level of service y (e.g. how

many sta¤ to hire) provided to the residents who have di¤erent preferences. Since (1) is a

quadratic loss function, each agent has an ideal policy y = �i that maximizes his utility. The

decision maker maximizes the sum of all agents�utilities

UDM (y;�) = �
nX
i=1

(y � �i)2, (2)

where � = [�1; �2; :::; �i; :::; �n] 2 [0; 1]n. The decision maker can be thought of as a utilitarian
social welfare maximizer who nonetheless acts as a "player". She is a "player" in the sense

that she determines her action strategically after receiving the messages. In other words, she

does not commit to a pre-determined mechanism that automatically prescribes and implements y

according to the reported messages. There is no con�ict at the individual level. That is, if n = 1,

both the decision maker and the agent share the same utility function.

The agent�s type �i is independently and uniformly distributed on [0; 1].8 Let mi 2M be the

message agent i reports to the decision maker, where the message space M has enough elements

to cover all types, and is shared by all agents. This means that, unlike the voting literature where

the message space is typically assumed to be binary, we do not impose a strong a priori restriction

on the messages to be reported.

Each agent reports a costless message after learning his type but before the decision maker

takes her action. Prior to choosing y the decision maker updates her belief on �i according to the

8We relax this independence assumption in Section 3.
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message from agent i, since the decision maker cannot observe the agent�s type directly. Except

for a later subsection (Section 2.4), throughout this paper we assume that all agents adopt the

same strategy, which means that any agent with an identical type induces the same (distribution

of) action from his viewpoint.9 The timing is restated as follows:

1. All agents privately learn their types;

2. The agents send messages to the decision maker;

3. The decision maker chooses her action y.

The decision maker�s maximization problem can be written

max
y

E

"
�

nX
i=1

(y � �i)2
�����m1;m2; :::;mn

#
=

nX
i=1

�E
�
(y � �i)2

��mi

�
=

nX
i=1

�
�(y � E[�i j mi])

2 � var(�i j mi)
�
:

The �rst equality follows because each agent�s type is independently distributed and therefore

the message from agent i is not informative about the other agents�types. In this maximization

problem we can ignore the variance term var(�i j mi), which is constant from the decision maker�s

viewpoint. Therefore the �rst order condition gives the decision maker�s best response function

y(m1;m2; :::;mn) �
1

n

nX
i=1

E[�i j mi]: (3)

Let us consider agent i�s strategy. From his viewpoint, after sending his message the decision

maker�s action is still a random variable, because it depends on the other agents�messages too.

In other words, a message induces a corresponding distribution of the decision maker�s action

y. However, since the utility functions are quadratic and the choice of message does not change

the variance of the induced distribution, it su¢ ces to consider the expected value of the decision

maker�s action. Since each agent does not observe the other agents�types or messages, (3) implies

that the expected action from the agent�s viewpoint conditional on his own message is given by

yA (mi) =
1

n
E[�i j mi] +

n� 1
n

E [E[��i j m�i]]

=
1

n
E[�i j mi] +

1� n
n

1

2
; (4)

where ��i denotes the type of any agent other than i. The second equality follows from the fact

that

E [E[��i j m�i]] = E[��i] =
1

2
:

We call yA(�) the reaction function, or the decision maker�s expected reaction to the message from
a particular agent. This is to be distinguished from the best response function y(m1;m2; :::;mn)

in (3), which is a function of the messages from all agents.

Let us illustrate how n � 2 gives rise to incentive not to reveal truthfully. An agent�s message
has less in�uence on the decision maker�s action as n becomes larger, since his conditional expected

9This assumption is necessary for the calculation of the decision maker�s expected utility but not for the con-

struction of equilibria in this section.
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0

1y

yA(θi )

yDM(θi,n) for n > 2

1
2

45
o

θi

Figure 1: Agent�s ideal action and decision maker�s reaction

type is weighted at 1=n. The expected reaction is weighted towards the expected type of any

other agent, 1=2.

De�ne

yA(�i) � �i

yDM (�i; n) � 1

n
�i +

n� 1
n

1

2
,

where yA(�i) denotes the agent�s ideal action given his type �i, and yDM (�i; n) is the decision

maker�s expected reaction given that �i is perfectly revealed to her.10 If the agent�s type is

�i = 1=2 we have yA(�i) = yDM (�i; n) for any n. Except for �i = 1=2, yA(�i) and yDM (�i; n) do

not coincide when there are two or more agents.

The agent�s ideal action and the decision maker�s reaction for given �i are depicted in Figure

1, where the horizontal axis represents the agent�s type �i and the vertical axis represents the

decision maker�s action y. When the decision a¤ects only a single agent (n = 1), the decision

maker�s reaction given that the agent reports his type �i truthfully is yDM (�i; 1) = �i, the 45

degree line, which implies yDM (�i; 1) = yA(�i) = �i. In this case, the agent can induce his ideal

action simply by revealing truthfully, because both parties�interests are perfectly aligned for all

�i. However, when n � 2 the agent�s ideal action may be higher or lower than the decision

10Note that yA(mi) denotes the decision maker�s expected reaction as a function of the agent�s message, while

yA(�i) is the agent�s ideal action as a function of his type.
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maker�s reaction depending on his type. If �i < 1=2, we have yA(�i) < yDM (�i; n) so that the

agent�s ideal action is lower than the decision maker�s expected reaction. On the other hand, if

�i > 1=2 then yA(�i) > yDM (�i; n), which implies that the agent�s ideal action is higher.

Figure 1 summarizes the nature of informational distortion we are considering. If the decision

maker naively believes the agents, they have incentive to exaggerate their types. An agent whose

type is low (i.e. below 1=2) would report an even lower type than his type, and an agent whose

type is high (above 1=2) would report an even higher type. Hence the following proposition holds:

Proposition 1 For any n � 2 there does not exist a fully revealing equilibrium.

2.1 Equilibrium

Let us examine the informative equilibria that take into account the agents�incentive to exag-

gerate.11 We �rst derive the agent�s equilibrium strategy given the decision maker�s reaction (4).

Let us introduce an alternative representation of the decision maker�s reaction. Let a and a be

two points in [0; 1] such that a < a. From (4) and the assumption that �i is uniformly distributed

E[�i j �i 2 [a; a)] =
a+ a

2
.

De�ne

�yA(a; a) �
1

n

a+ a

2
+
n� 1
n

1

2
: (5)

�yA(a; a) is the expected reaction from the agent�s viewpoint, conditional on the decision maker�s

belief that an agent�s type is such that � 2 [a; a).12 If �i = a then we write �yA(a; a). While yA(m)
is de�ned as a function of the agent�s message, �yA(a; a) is a function of an interval although they

both denote the decision maker�s reaction. Note that the decision maker�s action is a random

variable from the agent�s viewpoint. However, the randomness is caused only by messages from

the other agents. Hence, the variance of the decision maker�s action is independent from the

agent�s strategy (message). The quadratic utility functions imply that we can focus our attention

on the decision maker�s expected reaction �yA:

In any equilibrium partition each boundary type aj 2 (0; 1) must satisfy the "arbitrage"

condition which says that the agent with �i = aj is indi¤erent between inducing �yA(aj�1; aj) and

�yA(aj ; aj+1). Solving the condition

�(�yA(aj�1; aj)� aj)2 = �(�yA(aj ; aj+1)� aj)2 (6)

by using (5) we obtain a second-order di¤erence equation

1

n
aj+1 �

�
4� 2

n

�
aj +

1

n
aj�1 =

2

n
� 2: (7)

From (7) we can easily construct the following example of an informative equilibrium:13

11To be precise, by informative equilibrium we mean an equilibrium where with strictly positive probability the

decision maker�s action is di¤erent from the action she chooses based only on her prior belief. The uninformative

equilibrium refers to the equilibrium where the receiver�s action is based only on her prior belief with probability

1.
12We drop the subscript i for yA and boundary types aj to simplify notation.
13Solve (7) for a0 = 0 and a2 = 1:
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0.5860.414
0.5

0.5150.485

0.5230.477

0.5010.4990 1

n = 2

n = 6

Figure 2: Equilibrium with in�nite partition

Example 1 The partitional strategy f[0; 1=2); [1=2; 1]g supports a perfect Bayesian equilibrium
for any n.

This example points to the "robustness" of binary communication to exaggeration. As we

have seen in Figure 1, the more agents there are, the stronger the incentive to exaggerate is.

However, regardless of the number of agents, when an agent has the choice between two messages

and is unable to send any other messages credibly, he has no room for exaggerating his preference.

Since the only source of informational distortion is exaggeration in the present setting, binary

messages completely eliminate the incentive to misrepresent.

However, binary communication is not the unique informative equilibrium. In fact, it is easy

to see that (6) can generate an in�nite number of informative equilibria. The following proposition

states that, if we look for the equilibrium where the ex ante (i.e., before the agents learn their

types) expected utilities of the decision maker and the agents are highest for given n, we should

focus on the equilibrium that has the largest number of intervals.

Proposition 2 For any n � 2, both the decision maker and the agents are ex ante better o¤ in
an equilibrium with more intervals.

Proof. See Appendix I.

Let us consider the partition in the equilibrium with the largest number of intervals, which

we also call the most informative equilibrium. Solving (7) with respect to aj explicitly, we can let

J !1, which give us the following sequences

aj =
1

2
� 1
2

�
�1 + 2n� 2

p
n(n� 1)

�j
(8)

and

a0j =
1

2
+
1

2

�
�1 + 2n� 2

p
n(n� 1)

�j
(9)
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­0.085

­0.055

2 3 4 5 6
n

EU DM /n  = EU Ai

Infinite partition

Binary partition

Uninformative equilibrium

Figure 3: Decision maker�s expected utility per agent (= agent�s expected utility)

where a1 = 0 and a01 = 1. Since

0 < �1 + 2n� 2
p
n(n� 1) < 1 for n � 2;

(8) and (9) give strictly increasing sequences both of which converge to the average type 1=2. In

this equilibrium an in�nite number of messages are sent with positive probability but the messages

are not fully revealing. The equilibrium partition is illustrated in Figure 2, where the horizontal

lines denote the type space of an agent �i 2 [0; 1]. We can see that in the most informative

equilibrium there are an in�nite number of intervals in the neighbourhood of 1=2. The length of

intervals is longer as they are away from 1=2 and is narrower as they are closer to 1=2, which

implies that agent types are more accurately inferred when they are closer to the average.

Figure 3 indicates that when the number of agents is larger, the loss from playing the binary

partition equilibrium we have seen in Example 1 as opposed to the most informative one (with

the in�nite partition) can be very small. In Figure 3 the number of agents is -on the horizontal

axis and an agent�s expected utility is on the vertical axis. We can see that the di¤erence

between the expected utility in the most informative equilibrium and the expected utility in

binary communication diminishes as n becomes larger.14 The diminishing di¤erence implies that

messages in the most informative equilibrium become less precise due to stronger incentive to

exaggerate.

14We can also do a similar calculation for EUDM and con�rm that the di¤erence between EUDM with the in�nite

partition and EUDM with the binary partition diminishes as n becomes larger.
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2.2 Application to Multiple Choice Questionnaires

When more than a few people are a¤ected by a decision, multiple choice questions are commonly

asked to �nd the preferences of the interested parties. Such questions can be simple "Yes or

No", or a slightly elaborated one such as "Strongly Agree; Agree; Neutral; Disagree; Strongly

Disagree" (�ve choices). The analysis so far indicates that i) an arbitrary number of informative

messages can be used, but that ii) the bene�t of having additional messages in equilibrium can be

severely limited when the number of agents is large. The prevalent use of �ve or less choices may

suggest that the informational bene�t of allowing richer messages (e.g. free answer to a question)

is indeed smaller as the number of people involved becomes larger.

Another observation from our analysis is that, when the question involves four or more choices

the weight to be put on each choice must be adjusted to take into account the incentive to

exaggerate. Let us consider the following example of informative equilibria with �ve intervals,

which corresponds to the choice of "Strongly Agree; Agree; Neutral; Disagree; Strongly Disagree":

Example 2 The following partitional strategy15 supports a perfect Bayesian equilibrium for any
n:

f[ 0|{z}
a0

;
8n2 � 8n+ 1
16n2 � 12n+ 1| {z }

a1

); [
8n2 � 8n+ 1
16n2 � 12n+ 1| {z }

a1

;
8n2 � 6n

16n2 � 12n+ 1| {z }
a2

); [
8n2 � 6n

16n2 � 12n+ 1| {z }
a2

;
8n2 � 6n+ 1
16n2 � 12n+ 1| {z }

a3

);

[
8n2 � 6n+ 1
16n2 � 12n+ 1| {z }

a3

;
8n2 � 4n

16n2 � 12n+ 1| {z }
a4

); [
8n2 � 4n

16n2 � 12n+ 1| {z }
a4

; 1|{z}
a5

]g.

It is easy to see that the �rst boundary a1 is increasing in n and the last boundary type

a4 is decreasing in n. In the case of a questionnaire with �ve choices, as the number of agents

increases, a wider range of agent types report extreme messages, namely such as "Strongly Agree"

and "Strongly Disagree". Moreover, the �rst (last) boundary type increases (decreases) in n

at a faster rate than the second boundary type a2 (third boundary type a3). Therefore, their

informativeness may be very limited and the expected types of the agents who sent those messages

may be substantially closer to the average than the wording "Strongly" literally suggests. If n

is very large, most types fall into the �rst or the last intervals (i.e. send extreme messages),

although message from the types in the middle interval [a2; a3) becomes more informative.

2.3 Approximation to Binary Partition

How do the characteristics of the most informative equilibrium change when the number of agents

n increases? Since

�1 + 2n� 2
p
n(n� 1)

in (8) and (9) is decreasing in n for any n � 2, (8) and (9) imply that as n increases, every

boundary type except for a0 = 0 and a00 = 1 becomes closer to 1=2. Intuitively, as the number

of agents becomes larger the intervals in the most informative equilibrium are more concentrated

around 1=2, because the incentive to exaggerate is stronger and messages from agents whose types

15Solve (7) for a0 = 0 and a5 = 1.
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are away from 1=2 become less and less informative. In particular, as n!1, we have a1; a01 !
1=2: as the number of agents goes to in�nity the most informative equilibrium converges to the

equilibrium with two intervals. Even if the decision maker and the agents play the equilibrium

with an in�nite number of intervals, the probability that each agent induces either �y(0; a0) or

�y(a01; 1) may be close to 1, in which case communication may look as if each agent faces a binary

choice of message.

Note however that the agents�types are assumed to be drawn independently from a known

distribution. One important consequence of this assumption is that as the number of agents goes

to in�nity, by the law of large numbers the average type converges to 1=2 with probability 1.

This means that even without any communication y = 1=2 is a near-optimal action when n is

very large. Assuming independent draw from a known distribution seems reasonable when the

number of agents is relatively small and the decision maker has some prior information about the

group of the agents as a whole, as in expert committees, classrooms and small local communities.

In Section 3 we consider the case in which the distribution of agent types is imperfectly known.

2.4 Individually Biased Agents

So far we have assumed that there is no intrinsic preference divergence between the decision

maker and each agent. That is, if n = 1, both parties interests�perfectly coincide and perfect

communication is possible. However, in policy debates or expert committees, often the partici-

pants are known to be biased towards a particular direction of policy. For example, a scientist

who receives donations from a company that produces low emission cars may be biased towards

a stricter emissions policy, though he may indeed possess valuable information for policy making.

Here we examine the interaction between such individual bias and the incentive to exaggerate

caused by the presence of multiple agents.

To formalize the idea, the utility of the decision maker is given by �
nX
i=1

(y��i)2 as above, but

that of agent i is �(y� �i� bi)2. We assume that bi � 0 (e.g. the scientist�s political standpoint)
is common knowledge but �i is private information to agent i, and independently and uniformly

distributed on [0; 1]. The agent�s ideal action and the decision maker�s expected reaction when

the agent reveals truthfully are

yA(�i; bi) � �i + bi

and

yDM (�i; n) �
1

n
�i +

n� 1
n

1

2
;

respectively. We have yA(�i; bi) = yDM (�i; n) for

�i =
1

2
� bn

n� 1 � �̂.

We call �̂ the agreement type, whose ideal action coincides with the decision maker�s expected

reaction under truthful revelation. Clearly when the agent is not individually biased, we have

�̂ = 1=2 as bi = 0. As we will see shortly, the incentive to exaggerate takes a di¤erent from the

12
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Figure 4: Communication with individually biased agent

one in the case where bi = 0. Now the agent has the incentive to exaggerate his type relative to

the agreement type �̂, not necessarily 1=2.

Let us derive equilibrium partitions. The arbitrage condition (6) can be rewritten:

�(�yAi(aj�1; aj)� aj � bi)2 = �(�yAi(aj ; aj+1)� aj � bi)2: (10)

From (10) we obtain the following second-order di¤erence equation:

1

n
aj+1 �

�
4� 2

n

�
aj +

1

n
aj�1 = 4bi +

2

n
� 2: (11)

(11) determines the equilibrium partition for communication between the decision maker and

agent i. Note that the equilibrium partitions obtained from (11) depend on each individual bias

bi and thus di¤er among agents with di¤erent biases. When bi = 0 the structure of informative

equilibria are the same as the ones we have seen earlier.

Example 3 For bi � 1
2�

1
4n , the partition f[0;

1
2�

2bin
2n�1); [

1
2�

2bin
2n�1 ; 1]g supports a perfect Bayesian

equilibrium.16

Unlike the case without individual bias, the informative equilibrium with binary partition

may not exist when bi is very large, which is consistent with the model by Crawford and Sobel

(1982) where n = 1 and bi > 0. Figure 4 illustrates the equilibrium partitions with the largest

number of intervals when n = 6. In the �rst case where bi = 0:15, we have the agreement type

�̂ = 0:32 and an in�nite number of intervals in its neighbourhood.17 Note that the length of

an interval is longer as it is farther from 0:32, which implies that the incentive to exaggerate

relative to 0:32 is taken into account in equilibrium. In other words, an agent who is biased in

one direction at the individual level may still be biased towards both directions in the presence

16Solve (11) for a0 = 0 and a2 = 1.
17We can show that the ex ante expected utilities of both the decision maker and agents are higher in an

equilibrium with more intervals. The proof is almost identical to that of Proposition 2.
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of multiple counterparts. For example, in a policy committee that listens to several experts, a

scientist with the known individual bias (bi 6= 0) in a particular direction may still have both

upward and downward biases, depending on the information (�i) he has.

However, if individual bias is very large, it dominates incentive to exaggerate. See the second

partition in Figure 4 for bi = 0:42, where at most two intervals can be supported in equilibrium.

There the equilibrium partition accommodates only the upward bias due to a large bias bi = 0:42.

Messages from types in the upper interval �i 2 [0:042; 1] are less informative than those from types
the lower interval �i 2 [0; 0:042).

3 Communication with a Large Population

When the number of agents is very large and the decision maker has little information about the

nature of the population, she may need to infer the distribution itself. This assumption seems

appropriate when analyzing large-scale polls or non-binding referenda. Let us consider the case

where the distribution of preferences itself is uncertain. This implies that even if the number of

agents is very large, the decision maker needs communication to infer the realized distribution.

We obtain two main results related to the previous setting with a known iid distribution: namely

i) fully revealing equilibrium does not exist, and ii) equilibrium with binary partition exists for

any n.

Assume that the decision maker and the agents have the same quadratic utility functions

without individual bias (bi = 0 for all i) as given in (1) and (2). We also assume that �i is uniformly

distributed on [�; �+ �], but that � and � are both uniformly distributed on [1=2� �; 1=2] and
(0; 1=2], respectively.18 Note that now �i has a bell-shaped prior density on [0; 1]. Under this

distributional assumption, ex ante neither the decision maker nor the agents know the location

(�) or the length (�) of the realized distribution. We can consider � and � as variables that

parametrize the "state" of nature. Generically, in order to infer the realized distribution (� and

�) perfectly, the decision maker needs both fully revealing communication and an in�nite number

of agents. In any partitional equilibrium, the decision maker updates her belief on the distribution

of the agents according to the received messages, and computes the expected type of the agents

in each interval. Here we maintain the assumption that all agents adopt the same strategy, in

the sense that any agent with an identical type induces the same distribution of action from his

viewpoint.

Each agent updates his belief on the distribution of the other agents according to his own

type �i. Suppose that 0 � �i � 1=2. Given � (, which is not observed) and �i, the posterior

distribution of � is uniform on [1=2� �; �i]. Hence the expected type of the other agents is given
by

E[��i j �i; �] =
Z �i

1=2��

�+ (�+ �)

2

1

�i � (1=2� �)
d� =

1

4
+
1

2
�i:

18A related formulation of type distribution is used by Alesina and Rosenthal (1996, 2000).
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Similarly for 1=2 < �i � 1,

E[��i j �i; �] =
Z 1=2��

�i��

�+ (�+ �)

2

1

1=2 + (�i � �)
d� =

1

4
+
1

2
�i:

Since the conditional expectation turns out to be independent of �, we can write

E[��i j �i; �] = E[��i j �i] =
1

4
+
1

2
�i for �i 2 [0; 1]. (12)

Contrary to the setting with a known distribution, from an agent�s viewpoint the expected type

of the other agents changes according to his own type. However, no agent knows the exact type

distribution.

Proposition 3 For any n � 2 there does not exist a fully revealing equilibrium.

Proof. Suppose that the decision maker believes all agents reveal truthfully, and suppose also that
all agents except agent i reveal truthfully. Without loss of generality consider direct revelation,

where mi = ~�i 2 [0; 1]. Truthful revelation implies ~�i = �i. The expected action by the decision
maker from the agent�s viewpoint is given by

y(~�i) =
1

n
~�i +

n� 1
n

�
1

4
+
1

2
�i

�
:

Since the agent�s ideal action is �i, the message ~�
�
i that maximizes his expected utility is given by

~�
�
i (�i) =

8><>:
0 if �i(n+1)2 � (n�1)

4 � 0) � � 1
2 �

1
1+n

�i(n+1)
2 � (n�1)

4

1 if �i(n+1)2 � (n�1)
4 � 1) � � 1

2 +
1
1+n :

Note that ~�
�
i (�i) = �i only if �i = 1=2. Otherwise ~�

�
i (�i) 6= �i, which contradicts full revelation.

Therefore a fully revealing equilibrium does not exist.

The intuition for this result is straightforward and very similar to that in the setting where

the realized distribution is known. Given that all the other agents reveal truthfully, an agent does

not reveal truthfully because he has incentive to exaggerate his type relative to the conditional

mean of the other agents�types E[��i j �i] = 1
4 +

1
2�i. In particular, when n is large the message

~�
�
i is likely to be the "extreme", either 0 or 1 in direct revelation. Note that, since there is no fully

revealing equilibrium, the decision maker cannot infer the distribution perfectly even if n ! 1.
This is due to the fact that not only the location (mean) but also the length (variance) of the

realized distribution is unknown.

In an informative equilibrium, the decision maker updates her belief on the entire distribution

of the agents�preferences according to the received messages, and then computes the expected

type of the agents who sent the same message (i.e. those in each particular interval). The

updating process and corresponding strategies are intractable in our present setting,19 but we are

able to show that there exists an equilibrium with binary partition for any n.
19Note that estimation of a realized distribution is extremely complex when the sample size is �nite and/or

observed data are partitional (grouped) as in our model. Related problems arise even without strategic incentive

to misrepresent information. See, e.g. Reddy and Minoiu (2007) and Minoiu and Reddy (2008).
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Proposition 4 For any n � 1 there exists an equilibrium with two intervals, f[0; 1=2); [1=2; 1]g.

Proof. See Appendix I.

This con�rms the intuition behind Proposition 3 and Example 1 we have seen earlier: binary

communication is "robust" to exaggeration because it eliminates incentive to exaggerate. The

existence of binary partition equilibrium holds for more general distributions, if sending a higher

(lower) message induces higher action (higher expected type), given all the other messages.20

The robustness of binary communication therefore might account for the extensive use of binary

communication in polls and (non-binding) referenda, where richer communication potentially

leads to a better estimation of population preferences but incentive to exaggerate may severely

limit the informativeness.

4 Conclusion

Communication on a decision that a¤ects multiple interested parties is subject to exaggeration,

which becomes more severe as the number of agents increases. In principle, it is possible to

transmit information with an arbitrary number of meaningful messages, but the value of adding

more messages is decreasing in the number of agents. Our model can shed light on the nature

of communication for public good provision, and how the nature of communication may change

according to the number of agents a¤ected by the decision. We have demonstrated that the

concern for exaggeration may lead to binary communication, where reporting parties cannot

possibly exaggerate their preferences. We have also examined how the incentive to exaggerate and

individual bias interact in communication. This paper contributes to the literature on public good

provision by o¤ering an analysis of communication where the decision maker cannot commit to

a mechanism and no transfers are available, which seems relevant to a lot of practical situations,

including political or regulatory decision making as well as choice of action in classrooms or

organizations.

20See Appendix II.
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5 Appendix I: Proofs

5.1 Proposition 2

Before we prove the proposition, we provide some useful lemmas and outline how we construct

the main proof. Let us call a sequence (a0; a1; :::; aJ) that satis�es the arbitrage condition (6) a

"solution" to (6). We make use of the monotonicity condition (M) in Crawford and Sobel (1982,

p.1444) which requires that, for given n, if we have two solutions a+ and a++ with a+0 = a
++
0 and

a+1 > a
++
1 , then a+j > a

++
j for all j = 2; 3; ::: In other words, (M) says that starting from a0, all

solutions to (6) must move up or down together. Solving (7) with respect to aj explicitly with

a0 = 0, we obtain21

aj =
1

2
+
a1 � 1 + n�

p
n(n� 1)

4
p
n(n� 1)

�
�1 + 2n

�
1 +

p
n(n� 1)

��j
�a1 � 1 + n+

p
n(n� 1)

4
p
n(n� 1)

�
�1 + 2n

�
1�

p
n(n� 1)

��j
(13)

Lemma 1 Any solution to (6) satis�es (M):

Proof. From (13) we have

daj
da1

=
1

4
p
n(n� 1)

��
�1 + 2n

�
1 +

p
n(n� 1)

��j
�
�
�1 + 2n

�
1�

p
n(n� 1)

��j�
> 0;

which implies (M).

In order to show that the players� expected utility is higher in an equilibrium with more

intervals, Crawford and Sobel (1982) deform the partition with J intervals to that with J + 1

intervals, by continuously increasing the player�s expected utility throughout the deformation.

We follow this method, but we need to proceed with a two-step deformation, rather than one,

because the deformation takes place towards the opposite directions for the right-hand and left-

hand sides of 1=2 on [0; 1]. Intuitively, as the number of interval increases, the each boundary

type on the left hand side of 1=2 move to the left (except for a0 = 0) while each boundary type of

the right hand side of 1=2 move to the right (except for aJ = 1). We need to perform a di¤erent

comparative statics for each case.

Let a(J) be the equilibrium partition of size J . We show that a(J) can be deformed to

a(J + 1) by two steps, continuously increasing the players�expected utility in each step. Let the

sub-partition of a(J) equal or below 1=2 be a(J) � (a0(J); a2(J); :::; aK(J)) where a0(J) = 0. In
other words, K satis�es ak(J) � 1=2 < ak+1(J). In the following we proceed in the following two
steps:

1. We �x aK(J) and make the sub-partition (aK(J); aK+1(J); :::; aJ(J)) deform continuously

to (aK(J); aK+1(J + 1); aK+2(J + 1); :::; aJ+1(J + 1)), increasing the expected utility.

21 (13) is used to obtain (8) and (9) in the main text.
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2. We make the sub-partition (a0(J); a1(J):::; aK(J)) deform continuously to (a0(J+1); a2(J+

1); :::; aK(J + 1)), increasing the expected utility.

Lemma 2 If a(J) and a(J + 1) are two equilibrium partitions for the same n, then aj�1(J) <

aj(J + 1) < aj(J):

Proof. See Lemma 3 in Crawford and Sobel (1982, p.1446). The proof follows directly from (M).

The �rst step of deformation is carried out as follows. Let (axK ; a
x
K+1; :::; a

x
j ; :::; a

x
J+1) be

the sub-partition that satis�es (6) for all j = K + 1;K + 2; :::; J with axK = aK(J), axJ = x

and axJ+1 = 1. If x = aJ�1(J) then axK+1 = axK = aK(J): If x = aJ(J + 1) then we have

(aK(J); aK+1(J + 1); :::; aJ(J + 1)), where (6) is satis�ed for all j = K + 2;K + 3; :::; J . We are

going show that, if x 2 [aJ�1(J); aJ(J + 1)], which is again a non-degenerate interval by Lemma
2, then the agent�s expected utility is strictly increasing in x.

In the second step, let (az0; a
z
1; :::; a

z
j ; :::; a

z
K) be the sub-partition that satis�es (6) for j =

1; 2; :::;K�1; with az0 = 0 and azK = z. If z = aK(J) then azj = aj(J) for all j = 0; 1; :::;K. If z =
aK(J+1) then azj = aj(J+1) for all j = 0; 1; :::;K:. We will show that when z 2 [aK(J+1); aK(J)],
which is again a non-degenerate interval by Lemma 2, the agent�s expected utility is strictly

decreasing in z.

Lemma 3 Suppose that (a0; a1; :::; aj ; :::; aJ) is a solution to (6). Then for all j = 1; 2; :::; J � 1
if aj > (<)1=2 then aj � aj�1 < aj+1 � aj (aj � aj�1 > aj+1 � aj). If aj = 1=2 then aj � aj�1 =
aj+1 � aj :

Proof. The sequences that satisfy (6) are described by (7). Rearranging (7) we have

(aj+1 � aj)� (aj � aj�1) = n
�
4aj +

2

n
� 2
�
� 4aj : (14)

The left hand side (aj+1 � aj)� (aj � aj�1) = 0 if

n

�
4aj +

2

n
� 2
�
� 4aj = 0)

aj =
1

2
:

Since the right hand side of (14) is increasing in aj , if aj > 1=2 then (aj+1�aj)� (aj�aj�1) > 0;
and if aj < 1=2 then (aj+1 � aj)� (aj � aj�1) < 0.

The above lemma says that an interval [aj+1; aj) is longer (shorter) than the previous interval

[aj�1; aj) when aj > (<)1=2. The intuition is captured in Figure 2. The following lemma is similar

but cannot be implied by Lemma 3. Since by de�nition axK and azK+1 are �xed throughout the

respective deformation, (6) is not satis�ed at aj = axK+1 or aj = a
z
K .

Lemma 4 axK+1 � axK < axK+2 � axK+1 and azK � azK�1 > azK+1 � azK .
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Proof. From Lemma 3 we have axK+1 � ~aK < axK+2 � axK+1 where ~aK is de�ned such that

faj�1 = ~aK ; aj = axK+1; aj+1 = axK+2g satis�es (7). Since aK(J + 1) < ~aK < aK(J) = axK from

Lemma 2, we have axK+1 � axK < axK+2 � axK+1. This proves the �rst part of the Lemma.
Similarly we have azK�azK�1 � �aK+1�azK where �aK+1 is de�ned such that faj�1 = azK�1; aj =

azK ; aj+1 = �aK+1g satis�es (7). Lemma 2 implies azK+1 = aK+1(J+1) < �aK+1 < aK+1(J). Hence
we have azK � azK�1 > azK+1 � azK .

Proof of Proposition 2.

� Agent

The decision maker�s action from an agent�s viewpoint is a random variable, and since the

utility functions are quadratic, we can separate the expected value terms and the variance terms.

Let yi(mi) be the decision maker�s (random) action from the agent�s viewpoint. The agent�s

utility in this separated form conditional of his report is given by

E
�
�(yi(mi)� �i)2 j mi

�
= �var(yi(mi))� (Eyi(mi))

2 + 2�iEyi(mi)� �i2

= �var(yi)� (Eyi(mi)� �i)2; (15)

where from (4)

Eyi(mi) � yA(mi) =
1

n
E [�i j mi] +

n� 1
n

� 1
2
:

The variance term is independent of the agent�s message since the randomness is caused by the

other agents�messages unobservable to the agent. Let agent i�s expected type given his message

be âi(aj ; aj+1). If a message is sent from �i 2 [aj ; aj+1), then

âi =
aj + aj+1

2
:

From (3) the decision maker�s action is the mean of all posterior expected types. Hence, from

agent i�s viewpoint

var(yi) = var

0@ 1
n

0@X
l 6=i
âl + âi

1A1A =
1

n2
var

0@X
l 6=i
âl + âi

1A =
n� 1
n2

var(âi);

where var(âi) is the variance of the expected type of an agent given his equilibrium strategy.

The last equality follows from independent type distributions and symmetric strategies. In what

follows we drop the subscript i.

The expected utility for the �rst part of deformation is given by

EUA � �
KX
j=1

Z axj

axj�1

�
aj�1 + aj
2n

+
n� 1
2n

� �
�2
d� �

J+1X
j=K+1

Z axj

axj�1

�
axj�1 + a

x
j

2n
+
n� 1
2n

� �
�2
d�

�n� 1
n2

24 KX
j=1

(aj � aj�1)
�
aj�1 + aj

2

�2
+

J+1X
j=K+1

(axj � axj�1)
�
axj�1 + a

x
j

2

�2
� 1
4

35 :
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It follows that

dEUA

dx
�

J+1X
j=K+1

daxj
dx

(
�
�
axj�1 + a

x
j

2n
+
n� 1
2n

� axj
�2
+

�
axj + a

x
j+1

2n
+
n� 1
2n

� axj
�2

� 1

n

"Z axj

axj�1

�
axj�1 + a

x
j

2n
+
n� 1
2n

� �
�
d� +

Z axj+1

axj

�
axj + a

x
j+1

2n
+
n� 1
2n

� �
�
d�

#

�
"
n� 1
2n2

(axj+1)
2 � (axj�1)2 +

(axj�1 + a
x
j )
2 � (axj + axj+1)2

2

#)
: (16)

For the �rst line we have22

�
�
axj�1 + a

x
j

2n
+
n� 1
2n

� axj
�2
+

�
axj + a

x
j+1

2n
+
n� 1
2n

� axj
�2

=
n� 1
2n2

(axj+1 � axj�1)(1� 2axj ) +
(axj+1 � axj�1)(axj�1 � 2axj + axj+1)

4n2
:

Also for the second line,

� 1
n

"Z axj

axj�1

�
axj�1 + a

x
j

2n
+
n� 1
2n

� �
�
d� +

Z axj

axj�1

�
axj + a

x
j+1

2n
+
n� 1
2n

� �
�
d�

#
=

n� 1
2n2

�
(axj+1)

2 � (axj�1)2 � (axj+1 � axj�1)
�
:

Hence, all terms in the curly brackets in (16) can be written

�
�
axj�1 + a

x
j

2n
+
n� 1
2n

� axj
�2
+

�
axj + a

x
j+1

2n
+
n� 1
2n

� axj
�2

� 1
n

"Z axj

axj�1

�
axj�1 + a

x
j

2n
+
n� 1
2n

� �
�
d� +

Z axj+1

axj

�
axj + a

x
j+1

2n
+
n� 1
2n

� �
�
d�

#

�n� 1
2n2

"
(axj+1)

2 � (axj�1)2 +
(axj�1 + a

x
j )
2 � (axj + axj+1)2

2

#

=
axj+1 � axj�1

2n

�
axj�1 � 2axj + axj+1

2

�
> 0:

The inequality follows because from Lemmas 3 and 4, we have aj � aj�1 < aj+1 � aj ) axj�1 �
2axj + a

x
j+1 > 0 for all j = K + 1;K + 2; :::; J . We have

daxj
dx > 0 by (M). It follows that

dEUA

dx
�

J+1X
j=K+1

daxj
dx

�
axj+1 � axj�1

2n

�
axj�1 � 2axj + axj+1

2

��
> 0:

22For j = K + 2;K + 3; :::; J � 1 we can use the fact that axj satis�es (6) or

�
�
axj�1 + a

x
j

2n
+
n� 1
2n

� axj
�2
+

�
axj + a

x
j+1

2n
+
n� 1
2n

� axj
�2

= 0

to simplify the calculation, alhtough later exposition will become more complex because this does not apply to

j = K.
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We have the second part of deformation as follows:

dEUA

dz
�

KX
j=1

dazj
dz

(
�
�
azj�1 + a

z
j

2n
+
n� 1
2n

� azj
�2
+

�
azj + a

z
j+1

2n
+
n� 1
2n

� azj
�2

� 1

n

"Z azj

azj�1

�
azj�1 + a

z
j

2n
+
n� 1
2n

� �
�
d� +

Z azj+1

azj

�
azj + a

z
j+1

2n
+
n� 1
2n

� �
�
d�

#

�n� 1
2n2

"
(azj+1)

2 � (azj�1)2 �
(azj�1 + a

z
j )
2 � (azj + azj+1)2

2

#)

=

KX
j=1

dazj
dz

�
azj+1 � azj�1

2n

�
azj�1 � 2azj + azj+1

2

��
< 0:

The inequality follows because
dazj
dz > 0 by (M), and from a0; a1; :::; aK � 1=2 and Lemmas 3 and

4 we have aj � aj�1 > aj+1 � aj ) azj�1 � 2azj + azj+1 < 0 for all j = 1; 2; :::;K.
Since we have completed the deformation from a(J) to a(J +1) in two steps while increasing

the expected utility, we conclude that the agent�s expected utility is higher in an equilibrium with

more intervals.

� Decision Maker

Since the decision maker�s utility is the sum of the agents�utilities, we can apply the above

result for an agent�s expected utility directly to show that the decision maker�s expected utility

is higher with an equilibrium with more intervals.

5.2 Proposition 4

Here we present the proof of Proposition 4, but we �rst develop a lemma for the proposition with

a slightly more general distributional assumption than in the main text, which we will use in

Appendix II. However, throughout the appendices we keep the assumption in Section 3 that all

agents�types are drawn from the same realized distribution.

Let Gi(y j �i 2 [a; a)) be the distribution function of the decision maker�s action from agent i�s
viewpoint, conditional on the decision maker�s belief that �i 2 [a; a). In the equilibrium with two

intervals f[0; a); [a; 1]g, the agent chooses whether to induce Gi(y j �i 2 [0; a)) or Gi(y j �i 2 [a; 1])
by his message. Let k be the number of agents whose types belong to the lower interval [0; a).

Assumption 1 The expected type of agents in each interval conditional on k is non-increasing
in k.

In the Proof of Proposition 4 we show that the distribution we consider in Section 3 satis�es

this assumption. However, Assumption 1 should hold for a wider range of distributions. The

assumption is satis�ed for the distribution we have seen in Section 2 and any iid prior distribution.

Let ~y(k j a) denote the decision maker�s best response given that k agents�types are in the
lower interval [0; a).
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~y(k j a) = k

n

R a
0 �if(�i j k)d�R a
0 f(�i j k)d�

+
n� k
n

R 1
a �if(�i j k)d�R 1
a f(�i j k)d�

; (17)

where f(�i j k) is the posterior density of �i given the messages from all agents. Note that if the

distribution is not iid (as in Section 3), the decision maker updates her belief on the distribution

and infers the expected type of the agents in each interval. Assumption 1 guarantees that ~y(k j a)
is strictly decreasing in k.

De�ne

V (0; a; �i) � �
n�1X
k=0

(n� 1)!
k!(n� 1� k)! (F (a j �i))

k(1� F (a j �i))n�1�k � (~y(k + 1 j a)� �i)2 (18)

and

V (a; 1; �i) � �
n�1X
k=0

(n� 1)!
k!(n� 1� k)! (F (a j �i))

k(1� F (a j �i))n�1�k � (~y(k j a)� �i)2: (19)

V (0; a; �i) is the expected utility conditional on his type �i and Gi(y j �i 2 [0; a)). V (a; 1; �i) is
the expected utility conditional on his type �i and Gi(y j �i 2 [a; 1]). The cumulative conditional
distribution of ��i from agent i�s viewpoint is given by F (a j �i), i.e. the probability that ��i � a
conditional on �i.

Lemma 5 Suppose that Assumption 1 is satis�ed. If a� 2 [0; 1] satis�es V (0; a�; a�) = V (a�; 1; a�),
the partition f[0; a�); [a�; 1]g supports a perfect Bayesian equilibrium.

Proof. Assumption 1 implies ~y(k + 1 j a�) < ~y(k j a�) for any k. From (18) and (19)

@

@�i
V (0; a�; �i) <

@

@�i
V (a�; 1; �i):

Therefore if �i < a� the agent strictly prefers Gi(y j �i 2 [0; a�)), and if �i > a� the agent strictly
prefers Gi(y j �i 2 [a�; 1]). If �i = a� then the agent is indi¤erent. Hence we conclude that the
partition f[0; a�); [a�; 1]g supports a perfect Bayesian equilibrium.

Lemma 5 establishes that the informative equilibrium with two intervals is characterized by

the indi¤erence condition, as in the known iid setting we have studied in Section 2.

Proof of Proposition 4. We consider the decision maker�s inference problem as the estimation

of a binomial distribution. According to the messages the decision maker computes the posterior

distribution of p � 1=2��
� , the proportion of the realized distribution that belongs to the lower

interval [0; 1=2). Recall that k is the number of agents whose types belong to [0; 1=2). We can

think of p as the success probability of the Bernoulli distribution, for which k is a su¢ cient

statistic. To obtain the posterior of �i, the decision maker combines the posterior distribution

of p with the expected value of �i conditional on p. Since ex ante p is uniformly distributed on

[0; 1], the density of p conditional on k is given by23

f(p j k) = pk(1� p)n�k
B(k + 1; n� k + 1) ; (20)

23See DeGroot (1970, p.165), for example.
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where B(�; �) is the beta function. For a given p, � is uniformly distributed on [1�p2 ;
1
2), where

1�p
2 = � when � = 1=2 and 1

2 = � when � = 0. Hence the conditional expectation of �i is given

by

E[�i j p; �i 2 [0; 1=2)] =
Z 1

2

1�p
2

�+ 1=2

2

1
1
2 �

1�p
2

d� =
4� p
8
, (21)

where � is the lower bound of the realized distribution for given �. Similarly,

E[�i j p; �i 2 [1=2; 1]] =
Z 1

2

1�p
2

1=2 + 1=2��+�p
p

2

1
1
2 �

1�p
2

d� =
5� p
8
; (22)

where 1=2��+�p
p = � + � is the upper bound of the realized distribution for �. From (20) and

(21) we obtain

E[�i j k; �i 2 [0; 1=2)] =
Z 1

0

4� p
8

pk(1� p)n�k
B(k + 1; n� k + 1)dp =

4n� k + 7
8n+ 16

. (23)

Likewise, from (20) and (22)

E[�i j k; �i 2 [1=2; 1]] =
Z 1

0

5� p
8

pk(1� p)n�k
B(k + 1; n� k + 1)dp =

5n� k + 9
8n+ 16

: (24)

Clearly both E[�i j k; �i 2 [0; 1=2)] and E[�i j k; �i 2 [1=2; 1]] are decreasing in k, and therefore
the distribution of types in Section 3 satis�es Assumption 1. Using (23) and (24), the decision

maker�s action given k is written

~y(k j a = 1=2) = 1

n

�
k
4n� k + 7
8n+ 16

+ (n� k)5n� k + 9
8n+ 16

�
: (25)

Now let us consider an agent�s binary strategy. Suppose �i = 1=2. Then the conditional

density of ��i from agent i�s viewpoint is symmetric with respect to 1=2. Thus apart from i, the

expected number of the agents whose types belong to [0; 1=2) and that of the agents whose types

belong to (1=2; 1] are the same, n�12 . By substituting k =
n�1
2 +1 into (25) the expected reaction

from agent i�s viewpoint for Gi(y j �i 2 [0; 1=2)) is

�yA (0; 1=2) =
4n2 + 7n� 1
8n2 + 16n

:

Also by substituting k = n�1
2 into (25) we have the expected reaction from agent i�s viewpoint

for Gi(y j �i 2 [1=2; 1])

�yA (1=2; 1) =
4n2 + 9n+ 1

8n2 + 16n
.

It is easy to check that j�yA (0; 1=2)� 1=2j = j�yA (1=2; 1)� 1=2j = n�1
16n2+8n

. That is, the expected

distance from the ideal action (�i = y = 1=2) and the induced action is the same for Gi(y j
�i 2 [0; 1=2)) and Gi(y j �i 2 [1=2; 1]). Symmetry implies that both distributions have the same
variance. Hence the agent is indi¤erent between Gi(y j �i 2 [0; 1=2)) and Gi(y j �i 2 [1=2; 1]).
From this and Lemma 5 we conclude that the partition f[0; 1=2); [1=2; 1]g supports a perfect
Bayesian equilibrium.
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6 Appendix II: General Distributions

In this Appendix we consider the existence of binary communication equilibrium with more

general settings. The utility functions are given by (1) and (2), where bi = 0. All agents

adopt the same strategy. In addition to Assumption 1 in Appendix I we introduce the following

distributional assumption:

Assumption 2 The prior density of �i is positive and continuous on [0; 1]. Any posterior density
of �i is also positive and continuous on its support.

Clearly both assumptions are satis�ed for the models we have seen in Sections 2 and 3. The

following proposition extends the observations we have made in Example 1 and Proposition 4.

Proposition 5 Suppose Assumptions 1 and 2 hold. Then there exists an equilibrium with two

intervals.

Proof. Recall the de�nition of V (�; �; �) in (18) and (19). For notational convenience let us de�ne

D(a) � V (0; a; a)� V (a; 1; a):

D(a) is the di¤erence between the expected utilities of the agent with the boundary type a

(�i = a) when he induces Gi(y j �i 2 [0; a)) and Gi(y j �i 2 [a; 1]), respectively.
The rest of the proof proceeds as follows. We �rst show that D(0) > 0 and then D(1) < 0.

Since D(a) is continuous on [0; 1], by the intermediate value theorem there exists a� 2 (0; 1) such
that D(a�) = 0. Then from Lemma 5, a� supports an equilibrium.

Suppose that a = 0 and �i = a = 0. Recall that ~y(k j a = 0) is the decision maker�s best

response when k agents� type is �i = 0. Since the agents� types are drawn from a continuous

density function, almost surely all the other agents types are in (0; 1]; or k = 0. That is, if the

agent induces Gi(y j �i = 0), the decision maker�s action is, almost surely, ~y(1 j a = 0); and if he
induces Gi(y j �i 2 (0; 1]) the decision maker�s action is, almost surely, ~y(0 j a = 0). Hence

V (0; 0; 0) = �(~y(1 j a = 0)� 0)2

and

V (0; 1; 0) = �(~y(0 j a = 0)� 0)2:

Since ~y(k j a) is decreasing in k,

~y(1 j a = 0) < ~y(0 j a = 0): (26)

By strict concavity of the utility function, the agent is strictly prefers ~y(1 j a = 0) to ~y(0 j a = 0).
Therefore, D(0) = V (0; 0; 0)� V (0; 1; 0) > 0.

Suppose on the contrary that �i = a = 1. If the agent induces Gi(y j �i = 1), then the decision
maker�s action is, almost surely, ~y(n�1 j a = 1); if he induces Gi(y j �i 2 [0; 1)) then the decision
maker�s action is, almost surely, ~y(n j a = 1). Hence we have

V (0; 1; 1) = �(~y(n j a = 1)� 1)2 < �(~y(n� 1 j a = 1)� 1)2 = V (1; 1; 1):
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Therefore D(1) = V (0; 1; 1)� V (1; 1; 1) < 0.
Since the utility functions and the prior and posterior densities of �i are assumed to be

continuous, ~y(a j k) and consequently D(a) are continuous on a 2 [0; 1]. Therefore, by the

intermediate value theorem there exists a� 2 (0; 1) such that D(a�) = 0. From Lemma 5 in

Appendix I, f[0; a�); [a�; 1]g supports a perfect Bayesian equilibrium.
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