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Social Learning in Social Dilemmas

James A Best∗
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Abstract

In this paper, I look at the interaction between social learning and coopera-
tive behavior. I model this using a social dilemma game with publicly observed
sequential actions and asymmetric information about payoffs. I find that some
informed agents in this model act, individually and without collusion, to con-
ceal the privately optimal action. Because the privately optimal action is socially
costly the behavior of informed agents can lead to a Pareto improvement in a so-
cial dilemma. In my model I show that it is possible to get cooperative behavior
if information is restricted to a small but non-zero proportion of the population.
Moreover, such cooperative behavior occurs in a finite setting where it is public
knowledge which agent will act last. The proportion of cooperative agents within
the population can be made arbitrarily close to 1 by increasing the finite number
of agents playing the game. Finally, I show that under a broad set of conditions
that it is a Pareto improvement on a corner value, in the ex-ante welfare sense,
for an interior proportion of the population to be informed. JEL Codes: C72,
D62, D82, D83.
Keywords: Asymmetric information, cooperation, efficiency, social learning,
social dilemmas.
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1 Introduction

Social learning allows agents to infer information about the payoffs to actions by ob-
serving the actions of other agents. In standard models of social learning agents do not
care about whether their action reveals information to others or not.1 However, when
there is social learning within a social dilemma agents do care about what information
their actions reveal to others. In social dilemmas the privately optimal action is not
the socially optimal action: either because it has negative externalities or because some
other action has positive externalities. In which case there is a potential cost to choos-
ing the privately optimal action: doing so reveals information that causes others to
choose the privately optimal action. Hence, there is an incentive for agents to forgo the
privately optimal action. This suggests two possibilities when there is social learning
within the context of a social dilemma; 1) if actions have externalities agents will act to
purposefully influence other agents’ information sets; 2) agents may be able to induce
other agents to act cooperatively in social dilemmas if there is observational learning.

In this paper I examine these two possibilities using a model that I call an ‘Example
Setting Game’. In an Example Setting Game a finite number of agents act sequentially
in a social dilemma with asymmetric information about the payoffs of actions. A pro-
portion of the population, informed agents, have perfect information about the payoffs
to actions. The rest, uninformed agents, do not know which actions yield which payoffs.
In the action set there are two actions which correspond to cooperate and defect in a
Prisoners’ Dilemma: it is individually optimal, under perfect information, to defect but
it is a Pareto improvement if everyone cooperates. There are other actions in the action
set which yield a lower individual payoff than cooperate and defect. Uninformed agents
risk getting one of these lower payoffs if they act without the guidance of the informed
agents’ actions. Hence, the uninformed observe the actions of the informed agents in
order that they can avoid getting these lower payoffs. The informed agents know that
their actions influence the behavior of the uninformed. Therefore, the informed have an
incentive to forgo the higher private payoff from defect : to conceal from the uninformed
which action corresponds to defect.

Using the Example Setting Game I show three main results. First, in social dilem-
mas with social learning, better informed agents may choose socially optimal actions
to influence the information of other agents. This behavior can cause the majority of
uninformed agents in the population to never learn which action corresponds to the
privately optimal action. Moreover, it can induce cooperative behavior in the majority
of the population: the proportion of agents cooperating can be made arbitrarily close
to one by choosing a large enough population. Second, if too many agents, not nec-
essarily all, have better information they will choose the privately optimal action and
the uninformed agents will learn what this action is. This results in no one behaving
cooperatively. Finally, information being held by an interior proportion of the popu-

1This is the issue of informational externalities that play a central role in Banerjee (1992) and
Bikhchandani et al. (1992). Agents copy the actions of others too much, from a social welfare per-
spective, because they don’t consider the effect of their action on the information of other agents.
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lation can be ex-ante Pareto superior to both corner cases where all or no agents are
informed.

When an informed agent defects this may reveal information about payoffs that
causes a portion of the population to play defect. Consequently, the informed agent
bears some proportion of the social cost of the action: exactly that proportion of the
population that defects as a result of the informed agent’s action. Informed agents then
internalize the social cost of an action to the extent which they expect it to cause other
agents to defect who would have not defected otherwise. Informed agents then, weigh
the difference in the private payoffs of cooperate and defect against their relative effect
on the externalities generated by the actions of other agents. If they internalize a large
enough proportion of the social cost relative to the difference in private payoffs then
they will cooperate rather than defect. The informed agents cooperate in order that
they may influence the information of uninformed agents, this is the intuition behind
the first result. In some cases nearly all the Leaders will cooperate: implying nearly all
of the population cooperates.

The intuition behind the second result is that, if the proportion of informed is
high then each informed agent expects to influence the actions of fewer agents; because
uninformed agents have the opportunity to observe the actions of many informed agents.
Hence, the more informed agents there are the less they internalize the social cost of
an action: because they crowd out each others influence. When all agents are informed
they don’t internalize any of the social cost of an action and they all defect. However,
it is also the case that when a positive proportion are uninformed the influence of each
individual informed agent can still be too small to make them cooperate.

The third result follows because there are two determinants of welfare that are
determined by the proportion of informed agents. Aggregate welfare is determined by
both the externalities and the private payoffs that actions generate. A higher proportion
of informed agents leads to a higher number of agents defecting in expectation: causing
lower welfare to accrue from externalities. However, a higher proportion of informed
agents leads to fewer uninformed agents acting without guidance. This implies a smaller
number of agents choosing a strictly dominated action, an action other than cooperate
or defect, thus reducing the welfare that accrues from private payoffs.

The informed agent in my paper plays a comparable role to the Leader in Hermalin
(1998) and Andreoni (2005). In these papers there is a single Leader with information
about the value of contributing to a public good. The Leader acts before his Followers
who do not have this information. The Leader signals, to the Followers, the true value
of contribution to the public good through the Leader’s own contribution. There is
a unique equilibrium where the Leader contributes more than the second-best level
to the public good while all Followers contribute at the second-best level. The total
contribution to the public good is higher than in a perfect information game.

The informed agents in my paper are different from the Leader in Hermalin (1998)
in four ways. First, there is no signalling in my paper. The informed agents may pay
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a cost to conceal certain information from uninformed agents: they do not pay a cost
to give credibility to some private information that they wish to reveal. Second, the
equilibrium action of informed agents does not reveal all information about payoffs to
the uninformed agents: as is the case in the signalling equilibrium of Hermalin (1998)
and Andreoni (2005). This second result implies that the uninformed agents choose
the socially optimal action in my paper: in a signalling framework it is the Leader
alone who contributes above second best. Third, there are many informed agents with
a stochastic order of action: implying informed agents are uncertain about the effect
of their action on overall externalities. Fourth, informed agents do not necessarily act
first. Therefore, there is a partially positive welfare effect from increasing the number
of informed agents as noted above. If an informed agent acts first, like the Leader in
the Hermalin and Andreoni papers, there are no positive welfare effect from increasing
the number of informed agents.

This paper uses a framework similar to that expounded in the social learning models
of Banerjee (1992) and Bikchandani et al. (1992). However, in my model the informa-
tion of the informed is perfect. Hence, I do not examine the main concerns of social
learning literature: the aggregation of imperfect information by groups and the issue of
informational externalities. I abstract away from these issues in order that the effect
of social learning on the generation of non-informational externalities can be examined
with greater clarity. Therefore, the only learning in my model is the process of the
uninformed learning from the informed. 2

This paper also differs from other social learning literature by having externalities to
the particular actions of agents. There are two other papers, (Dasgupta, 1999; Bhalla,
2007), that examine non-informational externalities in social learning models. The
results in these papers pertain to the effect on social learning of coordination external-
ities. In contrast my paper examines a different kind of externality. The actions in my
model are good or bad for society in themselves; irrespective of how many other agents
choose the action. Moreover, I focus on the effect of social learning on the externalities
generated rather than the effect of non-informational externalities on informational ex-
ternalities. The only effect of externalities on the learning process that I examine is the
manner in which the externalities can cause the informed to manipulate the information
sets of the uninformed.

The folk theorem states that cooperative behavior can be supported in a subgame
perfect equilibrium of an infinitely repeated prisoner’s dilemma. Likewise, cooperative
behavior can be supported in a subgame perfect equilibrium of a prisoner’s dilemma
where agents play sequentially and the population is infinite. In finite games, however,
these equilibria break down. The mechanism in this paper for generating cooperative
behavior with a finite population is dependent on asymmetric information. This has
some similarity to Kreps et al. (1982) where asymmetric information over an agent’s

2Preliminary work on a model with imperfect precision of information suggests that cooperative
equilibria are still sustainable but that sometimes agents will herd on the wrong action: one that
is believed to be cooperative but is in fact Pareto dominated by cooperate. Moreover, the welfare
optimizing proportion of informed agents will be greater the higher the imprecision of the information.
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type can yield partial cooperation in a finitely repeated prisoner’s dilemma. In my
model it is learning and the uncertainty about payoffs, not the fact that a game is
repeated, that induces the possibility of cooperative behavior. Furthermore, the results
in my paper are driven by uncertainty over other agents’ information sets rather than
uncertainty about other agents’ rationality.

Finally, this paper implies that it may be desirable to restrict the public availability
of information. There is other work that finds gains from restricting information such as
Morris and Shin (2002). However, their welfare results are driven by public information
leading to inferior decision-making. This is not the driving factor in my paper.

The structure of this paper is as follows. Section 2 gives a simplified description
of how the Example Setting Game works that illustrates some of the main results.
Section 3 sets up a model of an Example Setting Game with a specific payoff structure.
Section 4 analyzes the nature of the equilibria in the Example Setting Game described
in Section 3. Section 5 looks at how the proportion of informed agents determines
the extent of cooperation in an Example Setting Game. Section 6 looks at welfare: I
give conditions under which it is optimal, in the ex-ante welfare sense, to have a small
non-zero proportion of the population informed. Section 7 describes a much larger set
of payoff, externality and information structures under which the equilibrium results of
Sections 4 and 5 still hold. Section 8 summarizes the results and discusses some issues
not dealt with in the formal model. All proofs are left to the appendix.

2 A Simple Illustration

There is a tribe of islanders just beginning to interact with a globalized world. The
children of the tribe inherit their own portion of beach-front property when they turn
twenty-one. When they inherit their land they must decide what to do with it immedi-
ately. There are three options for their beach; training in traditional fishing; letting a
consortium build a large hotel; or building low impact eco-resorts . Letting the consor-
tium build a large hotel will be the most profitable should no one else do so. However,
if everybody builds hotels they will all be worse off than if they build eco-resorts be-
cause an ugly coast line caused by everyone building big hotels will drive away tourism.
Fishing is a very bad option: the payoff from fishing has the lowest individual payoff.
Moreover, choosing Fishing when no one has chosen Hotel is worse than choosing Hotel
when everyone has chosen Hotel.

Only one of the islanders, the Chief’s son, knows which actions yield which payoffs.
The other islanders only know that there is an individually worst action; an individually
optimal action that is socially costly; and there is an action with no social cost and
an intermediate individual payoff. These other islanders do not know, however, which
action corresponds to which payoff. It is common knowledge that the Chief’s son has
this information. The islanders do not care about the well being of the others: each
would like to choose the most individually profitable action.
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It so happens that the Chief’s son turns twenty-one before the rest of the islanders:
he makes his investment decision first. The other islanders can infer that the son will not
choose the individually worst option. Moreover, because they fear choosing the worst
option3 they will copy him, even if they know he has not chosen the most privately
profitable action. The Chief’s son knows all this and chooses to build the eco-resort
rather than the hotel. He does this because he doesn’t want to suffer the negative
externalities generated by all the islanders that will copy him. Hence, the Chief’s son
sets a good example because he has internalized the social cost of his action; and the
islanders get the first best outcome.4

However, there is an alternative scenario where the son has a sister with exactly the
same information as himself.5 It is common knowledge that she has this information.
She turns twenty-one after exactly half of the islanders have turned twenty-one. The
payoffs from building a hotel when only half of the islanders have built a hotel is larger
than the payoffs of building an eco-resort when no islander has built a hotel. The worst
that can happen to the sister if she builds the hotel will be if all the islanders after
her build a hotel. This is better than building an eco-resort: therefore she will build a
hotel. The islanders after her will all copy her; because they know that her action will
be at least as selfish as her brothers. Hence, in equilibrium, the sister and the younger
half of the islanders will all choose to build a hotel.

The effect of the sister on the equilibrium outcome causes more damage than just
inducing the younger half of the islanders to build a hotel. In this equilibrium the son
knows that only half of the islanders will copy him if he builds an eco-resort. However,
as with his sister, determining half of the islanders actions is not a large enough incentive
to make him build an eco-resort instead of a hotel. Consequently, the son decides to
build a hotel; as does everybody else in the village, yielding a worse outcome for all.
The future bad influence of his sister crowds out the influence of the son; and with it his
incentive to set a good example. If only the first person were informed they would all
be better off. When there are too many potential informed agents the informed agents
will not attempt to set good examples and the outcome is not first best.

In this example all the villagers would prefer the sister to have no information. This
is because when the informed agent always acts first no welfare benefits accrue from
subsequent informed agents. Extra informed agents provide no extra information and
crowd out the first informed agent’s incentive to set a good example. However, it is not

3Which, from their perspective, could be either of the two options that the Chief’s son has not
chosen. Note, this requires that the intermediate payoff is greater than the average of the other two
payoffs.

4The fact that the Chief’s son’s action is the action that will be chosen by all implies that it is
rational, unlike in the perfect information case, for the Chief’s son to act according to Kant’s categorical
imperative.

5This illustration captures some of the key elements of the model proper. However, it differs in that
I have assumed that agents know when subsequent informed agents will act. In the model developed
later in the paper agents do not know when subsequent informed agents will act. In this illustration
equilibrium play is determined, in part, by this precise knowledge of when future informed agents act.
In the model proper it will be based upon expectations of when future informed agents act.
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necessarily the case that the Chief’s son would turn twenty-one first. If he didn’t then,
without his action to guide them, the islanders may choose fishing: a worse outcome
than everyone choosing to build a hotel. Thus, an advantage of more islanders being
informed is that there is a greater probability that an informed child acts early. If
an informed islander acts early then less people act without ‘guidance’; meaning less
people risk choosing the very bad option of fishing. Hence, the proportion of informed
agents has two welfare effects, cutting in opposite directions, when there is a stochastic
component to the order of action. The social benefit of more information is that less
agents choose very poor actions with low individual payoffs. The social cost is that
more agents will be uncooperative in expectation.

3 The Example Setting Game

An Example Setting Game is a sequentially played social dilemma with asymmetric
information about payoffs. A finite population of n agents are drawn sequentially from
an infinite general population N . Each agent acts after being drawn from the general
population and before the next agent is drawn. The action of agent i is ai and is
chosen from the action space A = [0, 1]. The profile of all actions up to and including
ai is denoted as Ai. Two elements c, d ∈ [0, 1] are chosen by ‘Nature’ with uniform
probability before the first agent is drawn. c and d are the only elements in the action
space with positive instant payoffs. The instant payoff from d is larger than the instant
payoff from c. However, there is a negative externality generated by d. After the nth
agent has acted all agents receive a negative ‘externality payoff’ proportional to the
number of agents who have chosen d. 6 This gives the payoff to agent i as a function
of the action profile of the population, An, as:

Ui(An) = u(ai)−
n∑
j=1

�j (1)

where the instant payoff from action ai is given by:

u (ai) =

⎧⎨⎩
z if ai = c

v if ai = d

0 if ai /∈ {c, d}
(2)

and :

6The pertinent equilibrium results also hold for finite action sets of three or more actions and for
richer distributions of instant payoffs and externalities. This is examined further in the penultimate
section ‘Alternative Payoff and Externality Distributions’.
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�j =

{
� > 0 if aj = d

0 if aj ∕= d
(3)

and the following conditions on the payoffs hold:

v − z > � > 0 (4)

(v − �)− z = Δ > 0 (5)

L = n ⋅ �− v + z > 0 (6)

� is the negative payoff to other agents from playing d and will be referred to as an
externality. ‘Own-action payoff’ of action ai is used to refer to the instant payoff less
any negative end of game payoff to i from action ai. The own-action payoff is equal
to an action’s instant payoff for all actions except d. d has an own-action payoff of
v− �.7 Condition (5) implies that this is larger than the own action payoff of choosing
c. The difference between the two own-action payoffs of c and d, Δ, is referred to as
the ‘defection incentive’. Hence, c and d are akin to cooperate and defect in a prisoners’
dilemma. 8 Throughout this paper c and d shall be referred to as ‘cooperate’ and
‘defect ’. The difference in the instant payoffs to c and d must be less than the product
of the externality and the population size for the game to be a social dilemma. Hence,
condition (6) implies the game is a social dilemma. L denotes the magnitude of the
Pareto loss from the population choosing an all defect rather than an all cooperate
action profile. L can be thought of as a measure of the size of the social dilemma that
the population faces. Consequently, cooperate is always Pareto superior to all defect.

Information in the game is asymmetric. There are two types of agents: Informed
and Uninformed. Proportion � of the general population are Informed and proportion
1− � are Uninformed where 0 ≤ � ≤ 1. Informed agents observe Nature’s move at the
beginning of the game and Uninformed agents do not. Therefore, only the Informed
have direct knowledge of the own action payoffs to all actions: crucially which actions
correspond to c and d. The type of agents and their actions are public knowledge
subsequent to having chosen an action9. Note, that Uninformed agents only observe
the value of the action that Informed agents choose and do not observe whether this
number corresponds to c, d or neither. Thus the information set ℎi of agent i contains
the action profile Ai−1 and the types of all agents up to and including i. There is a set
of Uninformed agents that act before the first Informed agent: I call these Uninformed
agents ‘the Ignorant’. They are called Ignorant because this set of Uninformed agents
have not even had the opportunity to learn about payoffs through observing the action

7It makes for easier exposition to have the externality from choosing d also affect the agent who
chooses d. It makes no difference to the results as d is still individually optimal.

8To see this consider the game where n = 2. In this case a1 = a2 = c is Pareto superior to
a1 = a2 = d but d is the dominant strategy under perfect information.

9It is not necessary for agent types to be known for a cooperative equilibrium to be sustained but
it does make for a simpler proof.
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of an Informed agent. All agents know the value of � and the payoffs attached to an
agent correctly choosing c or d. However, agents do not know the exact number of
Informed or Uninformed agents that will succeed them.

4 Equilibrium Play

Agents’ payoffs are determined by the own-action payoff to their action and the exter-
nalities generated by other agents. An agent’s choice of action affects the expectation of
the end of game externality payoff in two ways. The first way is the externality gener-
ated by their action. The second way is the effect of the agent’s action on the actions of
subsequent agents. To examine this second effect on the end of game externality payoff
I introduce the concept of an actions’ ‘externality impact’. The externality impact of
some action ai is the number of agents subsequent to i that play d, given that choice of
ai, multiplied by �.

The externality impact of an action is determined by the order of the types of
subsequent agents. Agents do not know if subsequent agents will be Informed agents
or Uninformed agents. Consequently, agent i’s choice is determined by an expectation
of the externality impact of action ai. The expected externality impact of ai is the
expectation, conditional on ℎi, of externalities generated by all agents subsequent to i
given the particular choice of ai. For example, let i compare two actions; ai = c and
ai = d. If i expects more subsequent agents to play d when ai = d than when ai = c
then ai = d has a larger expected externality impact than ai = c. Agent i’s decision
problem is to choose ai such that it maximizes the expectation of own-action payoff net
of the externality impact of ai. In this model these expectations and actions will be
determined within a perfect Bayesian equilibrium; all uses of ‘equilibrium’ in this paper
refer to perfect Bayesian equilibrium.

Equilibrium play is examined in four parts. The first part defines and discusses
an Informed agent’s ‘Following’. In the second part I examine the game with perfect
information. I show that on the equilibrium path all agents play d if � = 1. I use
equilibrium play in the perfect information case to introduce a proposition that I call
the ‘Pandora Effect’: if it is a pure strategy equilibrium for an agent to play d then all
subsequent agents play d for all values of �. The third part establishes the conditions
under which Informed agents will definitely play d, or definitely not play d, for a given
set of parameters. It is found that Informed agents will defect within a finite distance
from the end of the game in all equilibria. They will never defect before this point
in any pure strategy equilibria. Finally, a pure strategy equilibrium will be shown to
exist in which Informed agents and their Followings cooperate up to a point and defect
thereafter.
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4.1 The Following

Agents maximize their own-action payoff net of its externality impact. In the equilib-
ria discussed in this paper I use the concept of a ‘Following’ to analyze the expected
externality impact of an Informed agent’s action. I define a ‘Following’ below.

Definition 1 (Following) Let k be the first Informed agent to act subsequent to agent
i: then the Following of agent i is all the Uninformed agents acting after i and before
k.

Note, if Uninformed agent j acts after i and before k then j is in i’s Following
irrespective of the action chosen by j. 10

The Following of i have all seen the same Informed agents act. Also, the actions of
other Uninformed agents contain no information. Hence, all the Uninformed agents in
i’s Following will have, in equilibrium, the same beliefs about payoffs. These beliefs will
be determined by the actions of all previous Informed agents including Informed agent
i. An Informed agent’s action will affect the beliefs of agents in their Following but
not of subsequent Informed agents, because Informed agents have perfect information
about payoffs.

The expected effect of an Informed agent’s choice of action on the actions and be-
liefs of their own Following is different from the expected effect on subsequent Informed
agents’ Followings. The Informed agent knows all the actions of previous Informed
agents and therefore knows the exact information set available to their Following. Where
as, an Informed agent does not know how subsequent Informed agents will act. There-
fore, an Informed agent can choose an action conditioned on exact knowledge of their
Followings information sets; but cannot choose an action conditioned on exact knowl-
edge of the information sets of subsequent Informed agents’ Followings. This implies
that Informed agent i knows the effect of their action on the actions of their Following;
but they do not necessarily know the effect on the actions of later Informed agents’
Followings.

In this paper there will ultimately be two factors that determine the expected exter-
nality impact of an Informed agent’s action. The first is the expectations that Informed
agents have about the effect of their actions on the actions of their Followings. In
the equilibria examined in this paper the actions of an Informed agent’s Following are
uniquely determined by the Informed agent’s action. The second factor is the expected
number of agents in their Following. Lemma 1 gives agent i’s expectation of the size of
i’s Following.

10A further note, I generally only talk about Informed agents’ Followings as Uninformed agents’
actions do not have an equilibrium effect on beliefs. I would have restricted the concept of a Following
to Informed agents if not for the fact that to do so complicates later notation.
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Lemma 1 Agent i’s expectation of the size of i’s Following is:

E[Fi] =
(1− �)− (1− �)n+1−i

�
. (7)

4.2 The Pandora Effect

I now examine a game with perfect information; � = 1. Where � = 1 all agents play
d. This follows from backwards induction. The expected difference in the externality
impacts of any two actions is 0 for the nth agent: because there are no agents acting
after the nth agent. Therefore, an = d independently of history as it maximizes own-
action payoff. Consequently, the expected difference in the externality impacts of any
two actions is 0 for agent n− 1: because n will choose an = d for any action of n− 1.
Therefore, an−1 = d independently of history also. The same argument then applies for
n − 2 and so on back to the first agent. This outcome is Pareto inferior to all agents
choosing c.

In general, where � ∈ [0, 1], equilibrium play will not be same as for � = 1. However,
if it is revealed by agent i to all subsequent agents that some particular action is d then
the equilibrium of the subgame, beginning at agent i+1, will be for all agents to play d.
This follows from the same backward induction argument used to establish equilibrium
play in the case of � = 1. This implies the Proposition below, which I call ‘The Pandora
Effect’.

Proposition 1 (The Pandora Effect) If ai = d for Informed agent i in any pure
strategy equilibrium then all subsequent agents will play aj = ai = d ∀j > i.

If an action is played in a pure strategy equilibrium then everybody knows what
that action is. Consequently, an Informed agent reveals which action corresponds to d
when they play d as a pure strategy. The revelation of this information is irreversible on
the equilibrium path. Hence, all subsequent agents will defect after an Informed agent
has defected as part of their pure strategy on the equilibrium path. This is because all
subsequent agents know how to defect: the knowledge of how to do bad cannot be put
back in the box.

4.3 Defection

Informed agent i will play defect when own-action payoff net of expected externality
impact is greater for d than c or some ai /∈ {c, d}. I will show that this is the case
for i in any equilibrium where the following inequality holds: i’s expected Following is
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smaller than the ratio of the defection incentive11 to the magnitude of the externality.
I define the ‘defection condition’, D, as holding for agent i where this inequality weakly
holds. D strictly holds when this inequality strictly holds. More formally:

D holds if and only if E[Fi] ≤
Δ

�
.

D strictly holds if and only if E[Fi] <
Δ

�
.12

One property of the ‘defection condition’, which will be useful later on, is that if D
holds for agent i then it also holds for agent i+ 1. If D doesn’t hold for agent i then it
doesn’t hold for agent i − 1. Therefore, if the number of agents for which D holds in
the population is Ψ there is a critical agent � = n−Ψ for which the following Lemma
holds:13

Lemma 2 D holds for an agent i if and only if i > � = n−Ψ.

Further intuition about what condition D implies can be gained from considering
the case where an Informed agent’s action is copied by their Following and only their
Following. If their expected Following is large enough they will not choose d because the
externalities generated by their Following will be large in expectation: this is the case
when D does not hold. If, however, their expected Following is very small the Informed
agent will choose to play d: because the benefit from the higher own-action payoff
dominates the externalities that will be generated by the Informed agent’s expected
Following. The higher own-action payoff strictly dominates the externalities when D
strictly holds.

I show that in all equilibria the action of any Informed agent i > � will never affect
the actions of agents outside their Following. Hence, we can treat agents i > � as if
they only need to think about their expected Following. Using this consideration, and
condition D, I am able to derive Proposition 2 below. Proposition 2 gives sufficient
conditions for defection by Informed agents and Uninformed agents in all equilibria.

Proposition 2 On the equilibrium path in all equilibria each of the following are suf-
ficient conditions to imply aj = d:

11Recall that the defection incentive is the difference in the own-action payoffs of cooperate and
defect. Which is the difference in payoffs of the two actions should these actions not affect the actions
of any other agent.

12Recall that E[Fi], the expected Following of i, is the expected number of Uninformed agents acting
after i but before the next Informed agent. Therefore, a more intuitive way of arranging this inequality
may be � ⋅E[Fi] < Δ. The expected externality generated by i’s Following, if they all choose d, is less
than the difference in the own-action payoffs of c and d. Which implies that the Informed agent i’s
expected payoff from d is greater than c if condition D strictly holds and only i’s Following is influenced
by i’s action.

13It may be the case that � = 0.
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1. j is an Informed agent for whom D strictly holds.

2. j is subsequent to some i who is an Informed agent for whom D strictly holds.

This proposition states that in all equilibria the first Informed agent for which D
strictly holds will play d and so will all subsequent agents. To see why this holds,
suppose the first Informed agent i > � plays c instead and all subsequent Informed
agents continue playing d. In this case the first Informed agent could only stop their
Following, at best, from playing d; not a sufficient incentive to play c instead of d
when D strictly holds. Hence, the first Informed agent for which D holds will forgo
playing d only if doing so causes the next Informed agent, at least, to forgo playing d
too. However, the subsequent Informed agent will also require that the Informed agent
subsequent to them is influenced by their action too, and so on. This chain of Informed
agent to Informed agent influence cannot go on indefinitely: because n will always play
d if n is an Informed agent. Hence, an Informed agent just before n can only expect
to influence their own Following. Backwards induction then reveals that any Informed
agent i > � can only ever expect to influence their own Following. Which, given the
implications of the Defection condition, implies that the first Informed agent i > � will
always play d as a pure strategy. All subsequent agents then play d by the Pandora
Effect.

The first Informed agent for which D holds and those agents acting subsequently are
referred to hereafter as ‘Defectors’. This is because they are the only agents which will
defect in a pure strategy equilibrium. For illustration purposes, suppose a pure strategy
equilibrium existed where all Informed agents played d; including those for which D did
not hold. This couldn’t be an equilibrium because the first Informed agent for which D
did not hold would have an incentive to cooperate. The Following of the first Informed
agent would all cooperate if the first Informed agent cooperated: as they would all
believe the Informed agent had played defect. However, by the fact that D does not
hold, the lower externality impact of playing c would dominate the difference in the
own-action payoffs. So the first Informed agent would never play d as a pure strategy
if D didn’t hold. Its straightforward to extend this to all the other Informed agents
subsequent to the first for which D does not hold. This is summarized in Proposition
3 below.

Proposition 3 There is no pure strategy equilibrium where some Informed agent, for
whom D does not hold, plays d on the equilibrium path.

4.4 An Equilibrium

There is an equilibrium where Informed agents up to and including the critical agent �
cooperate and then defect thereafter. In this equilibrium each Informed agent is copied
by their Following. This is formalised in the proposition below.
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Proposition 4 There is a pure strategy equilibrium consisting of the following strate-
gies and out of equilibrium beliefs.

Informed agent i’s strategy is:

ai =

{
c if i ≤ �

d if i > �.
(8)

Uninformed agent j’s strategy is to play aj = ai if they are in the Following of
Informed agent i and to play aj = 0 if there is no Informed agent i < j.

Off the equilibrium path beliefs are:

1. All Uninformed agents in Informed agent i’s Following believe that ai = d regard-
less of the actions of previous Informed agents.

2. All Uninformed agents who deviate from the equilibrium path are believed to be
uninformed.

This equilibrium follows in a straightforward fashion from Proposition 1 through 3.
Informed agent i > � can never affect the actions of more agents than their Following in
this equilibrium. Hence, it is optimal for any Informed agent i > � to play d. Informed
agent i ≤ � will cause at least their Following to play d if i plays d: this is sufficient to
make c optimal for i ≤ �. From the Pandora Effect it is optimal for the Following of
Informed agent i > � to copy i > �. The expected payoff for agents in the Following of
i ≤ � if they don’t copy is 0. Hence, it is optimal for the Following of i ≤ � to copy i.

I have shown in Proposition 2 that all equilibria will imply the same ex-ante play
after agent � as in the equilibrium above. I have not shown that all equilibria imply
all Informed agents cooperate before and up to agent �. There are two putative sets of
equilibria that would not imply such equilibrium play. The first set are pure strategy
equilibria in which Informed agent i ≤ � plays ai /∈ {c, d}. This may be sustained if an
Informed agent prior to � is punished by subsequent agents for playing c. It is conceiv-
able that some set of off the equilibrium path beliefs make such a punishment strategy
incentive compatible. Such equilibria would be Pareto inferior to the equilibrium above
as expected externalities are the same but average own-action payoffs are lower. The
second set are possible equilibria in which Informed agents up to and including � play
mixed strategies. In this paper I do not show whether these putative equilibria exist or
not.
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5 The Conditions for Cooperation

In this section I look at what conditions on the parameters imply that a given game
is expected to yield cooperative behavior. Moreover, I look at how much cooperative
behavior can exist in such a game. I find two main results for the equilibrium defined
above. The first is that there exists a critical proportion of informed agents above which
there will be no cooperative agents in a population of any size. The second result, is
that below this critical level the number of agents that will choose to defect has an
upper bound that holds for any population size.

Theorem 1 In the equilibrium defined in Proposition 4 there will be no cooperative
agents for finite n if the proportion of informed agents is at or above a critical level �̄,
where:

�̄ =
�

�+ Δ
(9)

This result follows from the fact that the expected Following of i is the sum of a
geometric series that converges to 0. Hence, the expected Following of i as a function of
n− i is bounded above by some finite number for all values of n− i. This upper bound
monotonically decreases in the value of �: as � tends to 1 the expected Following tends
to 0 for any population size. Hence, when too large a proportion of agents are informed
i’s expected Following is always too small to dominate the defection incentive 14, no
matter how many agents are acting subsequent to i.

Note that Theorem 1 does not imply that � < �̄ is a sufficient condition for some
agent to cooperate. � < �̄ implies only that there exists a finite upper bound on the
total number of potential Defectors, Ψ, that holds for all values of n. Recall that the
Defectors, are the first Informed agent for which D holds and the set of all subsequent
agents. This is summarized in Theorem 2 below.

Theorem 2 If 0 < � < �̄ then the number of Defectors, Ψ, is bounded above: for large
enough n there is some agent for which D does not hold.

For example, there is some � < �̄ for which there can never be more than twenty
defectors. This holds whether the population size is ten or ten thousand. This upper
bound only binds when the population size, n, is larger than the upper bound. So,
given � < �̄, there will be some agents prepared to cooperate if n is large enough.
Moreover, Theorem 2 implies that as n becomes very large the expected number of
agents who choose to defect remains constant. Therefore, the proportion of agents who
are Defectors will tend to 0 as n tends to infinity. This yields the following corollary to
Theorem 2.

14Recall that the defection incentive is the difference in own-action payoffs
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Corollary 1 If 0 < � < �̄ then as n → ∞ the expected proportion of the population
that cooperates tends to one.

6 Welfare and the Proportion of Informed Agents

I show in this section that it can be better, in the ex-ante welfare sense, to have neither
perfect information nor complete ignorance. There are sufficient conditions that imply
expected welfare is greater when the proportion of informed agents, �, has an interior
value rather than a corner value.

Lemma 3 below gives the average expected welfare.

Lemma 3 The expected average welfare as a function of � is:

E[W (�)] = P
z

n
(n−Ψ− E[I�−1 + F�]) + (

v

n
− �)(Ψ− E[F�]) (10)

P = 1 − (1 − �)� is the probability of some agent being an Informed agent who is
not a Defector. E[I�−1] is the expected number of Ignorant agents conditional on some
agent being an Informed agent who is not a Defector.

The expected average welfare in the corner cases of � = 0 and � = 1, E[W (0)] and
E[W (1)], are:

E[W (0)] = 0 (11)

E[W (1)] = v − � ⋅ n (12)

The relative sizes of v, � and n determine whether expected welfare is higher in the
case of perfect information or of complete ignorance. Expected welfare is higher in a
game of complete ignorance than a game of perfect information where v − � ⋅ n < 0.
Expected welfare is higher in a game of perfect information than a game of complete
ignorance where v − � ⋅ n > 0. In the first case, the loss due to externalities dominates
the private gain from agents being able to choose d. In the second case, the loss of
positive private payoffs from having no information dominates the cost of externalities
generated by agents choosing d. These two cases are called ‘externality dominated
games’ and ‘information dominated games’ respectively. There are sufficient conditions
for an interior � to yield higher ex-ante expected welfare in both externality dominated
games and information dominated games.
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In an externality dominated game the cost to society of some agent defecting is very
high. This cost will be incurred with positive probability if some portion of the general
population is informed as some agent will defect with positive probability. However,
a small number of Informed agents may still induce a better outcome through their
good example, c, than no Informed agents at all. For this to be the case, the expected
cost of externalities generated by defectors must be dominated by the welfare gains
from the majority being able to get a positive instant payoff of z. Proposition 5 gives
sufficient conditions for an interior � to yield greater welfare than a corner solution in
an externality dominated game.

Proposition 5 There is always some � ∈ (0, 1) for which E[W (�)] > E[W (0)] >
E[W (1)] when:

v − � ⋅ n < 0 (13)

and condition (14) holds:

z > ((n− 1)�−Δ)E

[
X − Fn−X

P (n−X − In−X−1 + Fn−X) +X − Fn−X

]
(14)

There always exists a large finite n∗ such that condition (14) holds when condition
(15) holds:

n > n∗ and z > �. (15)

The right hand side of condition (14) in Proposition 5 is always finite for small
enough � > 0. This implies that if the payoff from cooperate is sufficiently large,
relative to the extent that the externality dominates the defection incentive, then I
prefer to have some informed agents in the population. The private payoff z can be
attained by Informed agents without causing negative externalities. Therefore, z can be
seen as the pure benefit of information. It is that component which can be realised in
an individuals payoff without causing lower payoffs for others. While L = (n−1)�−Δ,
the size of the social dilemma, can be interpreted as the cost of information. If the pure
benefit of information is large enough, that is if z is large relative to L, then having
some information in the population is always preferred to having none. Condition (15)
implies that this is always the case in a large population when the externality inflicted
on society by one person playing defect is less than the value of all agents being able to
choose cooperate.

Now I consider the case of an information dominated game. The relevant point of
comparison for an information dominated game is the case of perfect information where
the whole population is informed, � = 1. In this case a reduction in the proportion
of informed agents implies a positive expected number of Ignorant agents who will not
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choose d. This, relative to the case of a fully informed population, yields an average
loss of v−� ⋅n > 0 for each Ignorant agent. Take the case where the reduction is small
enough that condition D still holds for all agents. In this case expected average welfare
is strictly lower. However, if D no longer holds for some agents then the the loss from
the Ignorant has some compensation. The loss if offset by gains from agents playing
cooperate where they would have previously played defect. Each agent who plays c
instead of d implies a gain of (n− 1)�+ Δ = L > 0.

The overall effect of reducing � to a level that induces some cooperation is ambigu-
ous. I would like a general solution for when this will be welfare improving or not; such
a solution has been elusive. I only look at the specific case where the proportion of
informed agents is such that D holds with equality for the second agent. In this case
D does not hold for the first agent who, if an Informed agent, will play cooperate. The
proportion of informed agents that implies D holds with equality for the second agent
is defined as �n−1. I am able to derive the following proposition for the case where
� = �n−1.

Proposition 6 Where v − � ⋅ n > 0 there is some 0 < � < 1 for which E[W (�)] >
E[W (1)] > E[W (0)] if the following inequality holds:

L− 1− �n−1z > 0 (16)

where �n−1 is decreasing in L.

Hence, the larger the size of the social dilemma, L, the larger the value of z that
implies imperfect information is preferred to perfect information. As noted earlier z
can be seen as a measure of the value of information net of externalities. Therefore,
the larger this value of information the larger the social dilemma needs to be to imply
that I would rather not have all members of the population informed in an information
dominated game.

7 Alternative Action Spaces, Payoff Distributions

and Externalities

The action set, instant payoff distribution and the nature of the externalities in the
model outlined above make for easy exposition of the equilibrium results but are restric-
tive. In this section I show that the equilibrium results hold for a much less restrictive
set of assumptions. I do not relax any other aspect of the game: the number of agents,
the proportion of Informed agents in the general population, the order of action and
the information sets of agents remain the same.

In the model above I have the action set A, the instant payoff function u(.) and the
externality function �(.). Here, I replace them with A′, u′(.) and �′(.) respectively. Let

18



the action set A′ be any measurable subset of the real line. In the action set there are
still two singletons c and d analogous to cooperate and defect. I now allow the instant
payoffs given by u′(.) and the externalities given by �′(.) to be such that actions in A′

other than c or d can have non-zero payoffs and/or have externalities. Also, I now allow
the externalities given by �′(.) for c and d to be positive or negative.15 Informed agents
still know the exact mapping from the action space to the payoff and externality space
while Uninformed agents do not. Uninformed agents still know what the instant payoffs
and externalities are even though they do not know the mapping. It may be the case
that the instant payoff or externality of an action is correlated, in a non-trivial sense,
with the instant payoffs or externalities of other actions. This allows Uninformed agents
to learn more from the actions of Informed agents than they were previously able16.

In the following proposition I outline sufficient conditions on A′, u′(.) and �′(.) under
which the equilibrium results of the paper still hold.

Proposition 7 Propositions 1 to 4 and Theorems 1 and 1 hold for any action set A′,
instant payoff function u′(.) and externality function �′(.) if all the following conditions
hold:

Ej[u
′(aj = a)− �′(aj = a)∣ℎj, ai = c] < u′(c)− �′(c) ∀a ∈ A′−c, ∀i ≤ � and ∀j ∈ Fi,

(17)

u′(d)− �′(d) > u′(a)− �′(a) ∀a ∈ A′, (18)

u′(c)− �′(c) ≥ u′(a)− �′(a) ∀a ∈ A′−d, (19)

�′(c) < �′(a) ∀ a ∈ A′. (20)

Condition (17) states that the expected own-action payoff of an action other than
c is strictly less than the own-action payoff of c for any Uninformed agent who has
played subsequent to Informed agents who have only played c. For condition (17)to
hold it must be the case that the action set must admit a minimum of three possible
actions. Moreover, their must be at least one action that yields a worse payoff than

15Note that in the set up that a positive value given by �′(.) implies a negative externality and a
negative value given by �′(.) implies a positive externality.

16For example, with the action set A′ = {1, 2, 3} an Uninformed agent may believe that 1 is d with
probability p if 3 = c and believe it is d with probability q ∕= p if 2 = c. The Uninformed agent would
be able to infer which element was c from equilibrium play and therefore update his expectations for
the payoffs to playing a = 1 accordingly.
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cooperate. Furthermore, it also implies that the payoff function cannot be invertible
from equilibrium play and Informed agents’ strategy functions.

Conditions (18) and (19) imply that defect and cooperate still have the first and
second highest own action payoffs. The first of these conditions is a matter of definition.
If d does not yield the highest own-action payoff then agents, in a perfect information
case, will want to choose some action other than d. I would then wish to call this
other action d instead. Conditions (18) and (19) also imply that the difference in own-
action payoffs for cooperate and defect is positive. This implies there is an incentive to
play defect, the defection incentive, which is equivalent to Δ in the standard model.
Consequently, the relevant consideration for Informed agents deciding whether to play
cooperate or defect, conditional on being copied by just their Following, is still the
Defection Condition. Condition (20) states that cooperate generates the most positive
externality of all actions and is therefore the socially optimal action 17.

Finally, the combination of conditions (19) and (20) warrants further discussion.
In conjunction they imply that the socially best action is necessarily the individually
second best. This does not allow for cases where the actions that have the second to
nth best own-action payoffs are socially worse than c. It seems reasonable to expect a
spectrum of actions socially worse than c that yield higher own-action payoffs. If both
(19) and (20) must hold for the equilibrium results to go through then the results seem a
little uninteresting as they will rarely apply to any particular social dilemma. However,
in such cases I still ought to get results which are very much in line with the nature of
the results derived for the standard model above. This is not shown here formally but
it is easy to intuitively see why the results will be much the same.

Consider the case where there is a set of actions {d1, d2, ..., dn} such that the own-
action payoffs are monotonically increasing in the index on d but all have a higher
own-action payoff than c. Also, the externality generated by these actions is worse
than the externality generated by c and monotonically increasing in the index on d.18

Instead of Informed agents’ strategies being to jump from c to dn immediately after
some cut-off point they gradually progress from c to d1 and upwards through the index
to dn instead. This is because the lower indexed ds have a lower externality impact
and own-action payoffs than the higher indexed ds. Thus, by exactly the same logic as
with c and d in the standard model I can see that in this case the agents will cooperate
till a point and then cooperate a bit less; and then a bit less; and so on. This is a
slow deterioration in cooperative behavior rather than an instant collapse. However, it
is still the case that completely cooperative behavior will exist up to a finite distance
from the end and that the population will tend towards being completely cooperative

17In order for this to be a social dilemma it also needs to be the case that the following condition
holds:

u′(d)− u′(c) < n(�′(d)− �′(c)). (21)

18I only consider the case where the externalities and the own-action payoffs are both monotonically
increasing because there is never any reason to choose an action with a lower own-action payoff and
larger externality.
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for arbitrarily large populations.

8 Summary and Implications

In social dilemmas with risky action sets the opportunity for good leadership exists
if information is restricted to a small proportion of the population. This can induce
results, in expectation, that are arbitrarily close to Pareto efficient. Under perfect
information the outcome is inefficient. This cooperative behavior happens within the
context of a finite game: distinguishing these results from cooperation in infinitely
repeated games. Moreover, if too many agents have access to information, the incentive
for informed agents to choose socially optimal actions is crowded out and the population
fails to improve on the second-best outcome.

In this model the order of action is exogenous. This reflects a stochastic element
in the factors that govern when an agent has to make any decision. However, it is
reasonable to suppose that the type of agents will affect when they want to act. While
this model does not endogenize the order of action it does allow the examination of
agents’ preferences over when to act, given the order of everyone else’s action and
perfectly patient agents. When the social dilemma is caused by negative externalities
everybody wants to act last. Informed agents can choose the privately optimal action
and not be followed. Uninformed agents have the chance of copying a late Informed
agent and getting the higher private payoff.

When the dilemma is due to positive externalities the positive externalities only
accrue if an Informed agent shows Uninformed agents what to do. Consequently, if
there is an Informed agent acting early in the game all the other Informed agents prefer
to act last. The Informed agents acting last accrue the gains from the contributions of
others while choosing to play defect themselves. However, if all the Informed agents are
acting late then each Informed agent prefers to act at the beginning of the game rather
than the end. Acting early initiates cooperative behavior and allows the Informed agent
to benefit from the positive externalities generated by subsequent Uninformed agents.
Obviously, each Informed agent prefers it if some other Informed agent acts First while
they wait till the end and play defect. Finally, uninformed agents always prefer to act
after some Informed agent has acted, as they get a low expected payoff when acting
without the guidance of an Informed agent. Moreover, the Uninformed agents prefer to
act after an Informed agent who has played defect.

One prediction of this model is that cooperative behavior occurs more frequently
amongst particular kinds of groups. Namely, groups where there are a few clearly well
informed people and a large number of poorly informed people who fear the conse-
quences of independent action.19 Therefore, it may be desirable to restrict information

19For example, it might imply that large groups of children with a few adults ought to demonstrate
more cooperative behavior than large groups of adults with a few children. I think that the relative
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to a small number of agents and introduce greater uncertainty about the payoffs to
particular actions.

Such policies may improve social outcomes in my model but only on the assumptions
of perfect knowledge amongst Informed agents and a degree of homogeneity in agents
utility functions. This constrains Informed agents’ choices to be both accurate and,
when setting a good example, in line with the interests of everyone else. Whether
this is an accurate characterization of the game would be, in general, very difficult
for Uninformed agents to verify. Hence, Uninformed agents without this information
ought to be sceptical of policies of information restriction grounded on the results of
this model. 20

A further implication of this model is that Informed agents may want to hide their
actions or hide the fact that they are an Informed agent. When there are negative
externalities all Informed agents would pay a premium to choose the bad action and
hide their action from subsequent agents. For example, a manager may go to great
lengths to shirk in a fashion that cannot be observed by his employees. In a game with
positive externalities, all but the first Informed agent would pay to choose the privately
optimal action and hide it from subsequent agents.

When Informed agents are able to hide their identity a good example setting equi-
libria still exists. This equilibria is almost identical to that in Proposition 4. This
equilibrium is maintained by the beliefs of Uninformed agents about the ‘true’ iden-
tity of Uninformed agents who do not copy the action of prior agents on and off the
equilibrium path. The equilibrium path belief is that any agent not copying the agent
immediately preceding them is an Informed agent. This belief results in an equilibrium
where the first Informed agents to play cooperate and defect are recognized as Informed
agents. Between the first cooperating and first defecting Informed agent all agents will
cooperate. All the agents after the first defecting Informed agent will defect. Hence, the
Uninformed agents and Informed agents in these two groups will be indistinguishable.
Off the equilibrium path beliefs are such that the last agent to act differently from the
previous agent is considered an Informed agent playing defect. This belief insures that
Informed agents never have an incentive to play off the equilibrium path by the same
logic as in the proof of Proposition 4.

ignorance of children makes them good subjects for examining this model as the strategies that adults
use to deal with social circumstances are often adopted by children and these strategies have a great
deal of persistence into later life. Hence, adults when being observed by children may think it wise to
ensure that these children learn strategies that are beneficial to the adults. Practising honesty, fairness
and concern for the elderly may be wise if this is a strategy that will be imitated by those younger
than yourself when you are elderly.

20Arguments are often had over the extent to which information available to departments of govern-
ment is available to the general public. A common defence is that this information is kept secret for
the good of the people. A common complaint against this argument is that the people do not know
that the government has their best interests at heart or are competent at dealing with this information.
The argument for secrecy here is different to my own but the argument against secrecy is similar to
the one outlined above.
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Appendix

PROOF of Lemma 1:

The expected number of agents in an Informed agent’s Following is given by:

E[Fi] = (1− �)x+1(x+ 1) + �

x∑
j=1

j(1− �)j (22)

where
n− (i+ 1) = x

The summation term on the right hand side of (22) gives:

x∑
j=1

j(1− �)j = (1− �) + 2(1− �)2 + ....+ x(1− �)x

=
x−1∑
j=0

(1− �)x−j +
x−2∑
j=0

(1− �)x−j + ...+
x−k∑
j=0

(1− �)x−j + ...+
0∑
j=0

(1− �)x−j

=
x∑
k=1

x−k∑
j=0

(1− �)x−j

=
x∑
k=1

(
(1− �)k − (1− �)x+1

�

)
=

(1− �)1 − (1− �)x+1

�
+

(1− �)2 − (1− �)x+1

�
+ ...+

(1− �)x − (1− �)x+1

�

=

∑x
j=1(1− �)j − x(1− �)x+1

�

Substituting this back into (22) gives:
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E[Fi] = (1− �)x+1(x+ 1) + �

(∑x
j=1(1− �)j − x(1− �)x+1

�

)

= (1− �)x+1(x+ 1) +
x∑
j=1

(1− �)j − x(1− �)x+1�

= (1− �)x+1 +
x∑
j=1

(1− �)j

=
x+1∑
j=1

(1− �)j =
n−i∑
j=1

(1− �)j

□

PROOF of Proposition 1:

In any perfect Bayesian equilibrium, agents beliefs on the equilibrium path are de-
termined by Bayes’ rule and the players ’ equilibrium strategies. Let it be the case that
ai = d is a pure strategy on the equilibrium path of a perfect Bayesian equilibrium.
Informed agent i plays d as a pure strategy; this implies that i plays ai = d with prob-
ability 1. From Bayes’ rule subsequent agents on the equilibrium path, both Followers
and Informed agents, believe ai = d with probability 1.

The expected externality impact of the nth agents’ action is always 0 as n is the
last agent to act. Therefore, maximizing n’s own-action payoff trivially maximizes n’s
expected own-action payoff net of externality impact. On the equilibrium path, whether
n is an Informed agent or a Follower, n believes ai = d and plays an = ai = d. On the
equilibrium path the action of n−1 cannot change n’s true belief that, with probability
1, ai = d. 21 Therefore, the externality impact of an−1 is also 0 as an = d independent
of an−1. n − 1 maximizes own-action payoff and plays an−1 = ai = d whether n − 1
is an Informed agent or a Follower. The same argument holds for agent n − 2 and by
backwards induction for all agents back to the i+ 1th agent. □

PROOF of Proposition 2:

In the following proof of Proposition 2 any statement about the actions of Informed
agents is conditioned on D strictly holding for that Informed agent.

Consider an equilibrium where Informed agents’ actions can only affect the actions
of their own Following. Let j be the first Informed agent subsequent to Informed agent
i. The Pandora effect implies all agents subsequent to j will play aj = ai = d if ai = d
is a pure strategy for i. In such an equilibrium the maximum difference in the expected

21The only case in which n − 1’s action could affect n’s beliefs such that n believes ai ∕= d with
positive probability is if an−1 is off the equilibrium path.
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payoffs of defect and cooperate for i is if all i’s Following copy and play ai. This would
yield an expected difference in utility of:

E[Ui(d)− Ui(c)] = Δ− � ⋅ E[Fi] (23)

This is strictly positive where D strictly holds. Therefore if D strictly holds for i
in such an equilibrium then i would prefer d to c and, a fortiori, all other actions. In
equilibria where j’s strategy is the same but the Following of i have a strategy other
than play ai then the value of equation (23) will be even larger and the reason to play
defect will be greater. This result can now be used to derive Proposition 2.

If the last agent is an Informed agent then an = d is the optimal action for n in
all equilibria for any history of actions. Therefore, from the above argument, if n − 1
is an Informed agent and D holds then an−1 = d in all equilibria. From the Pandora
effect this implies an = an−1 = d in all equilibria where n− 1 is an Informed agent for
which D strictly holds. By backward induction this holds for n− 2 if D strictly holds
and so on till the first Informed agent for which D strictly holds. Thus, if D strictly
holds for Informed agent i on the equilibrium path of any equilibrium then ai = d. The
Pandora effect then implies that aj = ai = d for all j > i. This concludes the proof of
Proposition 2. □

PROOF of Proposition 3 If it is a pure strategy for the first Informed agent, i, to play
d then the Pandora Effect implies that all subsequent agents play d on the equilibrium
path. If i chooses an action other than d then i’s Following still play ai as they are
unaware that they are off the equilibrium path. In such a case the minimum that i gains
from playing c is if only i’s Following copy ai and all subsequent agents play d. In this
case the minimum expected gain from cooperating instead of defecting is � ⋅E[Fi]−Δ.
If condition D doesn’t hold for i this gain is larger than zero. Therefore it cannot be
an equilibrium for the first Informed agent to play d if D doesn’t hold. If it is a pure
strategy for the second Informed agent, j, to play d then j has a minimum expected
gain of �.E[Fi] − Δ from playing c. This follows as Informed agent j’s Following will
not play d because they will not know which option is d on the equilibrium path as the
first Informed agent can’t have played d either. Proposition 3 then follows from forward
induction. □

PROOF of Proposition 4 The off-path beliefs of Followers about Informed agents
implies that it is rational for Followers to copy the last Informed agent off the equilibrium
path. Therefore, in this equilibrium, Informed agent i’s action will affect the actions of
i’s Following alone. Therefore, where D holds it will be optimal to defect and where D
does not hold it will be optimal to cooperate. Thus the decision rules in Proposition
4 maximize Informed agents expected utility. The equilibrium play by the Informed
agents implies that the actions of Followers subsequent to the first Informed agent
maximizes expected own-action payoff as agents acting before the first Informed agent
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subsequent to � cannot choose d. Those acting after the first Informed agent subsequent
to � play d from the Pandora Effect; which is what adopting the above strategy entails.

Off the equilibrium path beliefs imply that any deviation by a Follower will not
change the number of other agents playing d. Therefore the expected externality im-
pact is at the same as when they play the equilibrium strategy. Therefore copying
the previous Informed agent’s action maximizes their expected utility as it maximizes
their own action payoff. Before the first Informed agent acts then Uninformed agent’s
expected own action payoffs will be 0 from any action. Deviation from the equilibrium
path will not change the expected externalities. Therefore, choosing action 0 is weakly
preferred to any other action by Followers acting prior to the first Informed agent. This
concludes the proof of Proposition 4. □

PROOF of Theorem 1:

If D holds for the first agent then D holds for all subsequent agents. D holds for
the first agent if:

E[F1] =
(1− �)− (1− �)n

�
<

Δ

�
(24)

E[F1] is monotonic and increasing in n which gives the unclosed upper bound of

E[F1] as
1− �
�

. Therefore, there is no finite population size for which D will hold for

any agent when the following equation holds.

1− �
�
≤ Δ

�
(25)

Which always holds where � ≥ �̄. □

PROOF of Theorem 2 � < �̄ implies that
1− �
�

>
Δ

�
. Therefore, there exists some

finite integer X such that:

E[F1] =
(1− �)− (1− �)n

�
≤ Δ

�
for n = X (26)

and

E[F1] =
(1− �)− (1− �)n

�
>

Δ

�
for n = X + 1. (27)

If n = X + 1 condition D does not hold for the first agent. Ψ is bounded above by
finite X. If n > X then there exists some agent for which D does not hold.

□
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PROOF of Corollary 1 There are two sets of agents that will not choose cooperate:
the Ignorant22 and the Defectors. The Defectors are the set of agents for which D holds
and are either an Informed agent or acting subsequent to an Informed agent for which
D holds.

The expected size of the first set, the Ignorant, is bounded above by the expected
size of the Following of the first agent in a with a population size of n + 1. This is

increasing in n and bounded above by
1− �
�

which is finite for 1 > � > 0.

The number of defectors is bounded above by finite X.

Hence, the expected proportion of agents playing c in equilibrium is bounded below
by:

n− (X +
1− �
�

)

n
(28)

The upper bounds for the Ignorant and the Defectors are invariant in n: equation
(28) tends to one as n→∞. □

PROOF of Lemma 3:

There are two mutually exclusive and exhaustive sets of possible outcomes. The
first set is where some agent i ≤ � is an Informed agent. The second set is where all
i ≤ � are Followers. The first set happens with probability P = 1 − (1 − �)� and the
second set with probability 1− P = (1− �)�.

In the first set of outcomes the expected number of agents acting before an Informed
agent or the expected number of Ignorant agents, E[I�−1], is given by:

E[I�−1] ≡ E[F �−1
0 ] =

�−1∑
i=1

(1− �)i =
(1− �)− (1− �)�

�
(29)

Where F �−1
0 is the Following of the zeroth (hypothetical) agent in an Example

Setting Game where n = �− 1. The expected number of agents acting subsequent to �
who choose c and not d due to acting before the first uncooperative Informed agent is
the Following of � will be23:

E[F�] =
Ψ∑
i=1

(1− �)i =
(1− �)− (1− �)Ψ+1

�
(30)

22Recall that these are the agents acting before the first Informed agent.
23Of course � may not be an Informed agent in which case it is the hypothetical Following of �.
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The expectation of the total externality generated is the product of the externality
and the number of uncooperative agents less the expected number of uncooperative
agents acting before the first Informed agent. This is the same in both sets of worlds
and is given by:

�(Ψ− E[F�]) (31)

Therefore the expected average welfare conditional on the first set of outcomes is:

z

n
(n−Ψ− E[I�−1 − F�]) + (

v

n
− �)(Ψ− E[F�]) (32)

Conditional on the second set of outcomes expected average welfare is:

(
v

n
− �)(Ψ− E[F�]) (33)

This gives an unconditional expected average welfare of:

W e = P
z

n
(n−Ψ− E[I�−1 − F�]) + (

v

n
− �)(Ψ− E[F�]) (34)

□

PROOF of Proposition 5:

Define X as the number of agents in the population for which D holds when � = 0.
In which case D doesn’t hold for agent n − X and does hold for agent n + 1 − X. In
the case of � = 0 the expected Following of agent i is n − i. As D holds for agent
n+ 1−X then E[Fn+1−X ∣� = 0] = (X − 1)� ≤ Δ. As D doesn’t hold for agent n−X
then E[Fn−X ∣� = 0] = X� > Δ. Therefore, there must be some � = � > 0 for which:

� ⋅ E[Fn−X ∣� = �] = �

(
(1− �)− (1− �)X+1

�

)
= Δ (35)

This implies that if � ∈ [0, �) if X ∈ [
Δ

�
,
Δ + �

�
]. Hence, expected welfare is greater

for � ∈ (0, �) than � = 0 when the following inequality holds.

(E[W (�)∣� ∈ (0, �)] = P
z

n
(n−X−E[In−X−1−Fn−X ])+(

v

n
−�)(X−E[Fn−X ]) > 0 (36)

This rearranges to give:
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z

n
> (�− v

n
)E

[
(X − Fn−X)

P (n−X − In−X−1 + Fn−X)

]
(37)

Let:

K = E

[
X − Fn−X

P (n−X − In−X−1 + Fn−X)

]
(38)

Inserting this into equation (37) and using the fact that v = z + Δ + � I get:

z

n
> (�− z + Δ + �

n
)K (39)

Which rearranges to give:

z > ((n− 1)�−Δ)
K

1 +K
(40)

which yields condition (14) in Proposition 5.

The Following of agent n−X is invariant in the size of n for n > X. The expected

number of Ignorant agents is bounded above by the finite value
1− �
�

. Also, as n→∞
then P → 1. Hence, as n becomes arbitrarily large condition (14) becomes:

z > � (41)

This yields condition (15) in Proposition 5. □

PROOF of Proposition 6:

The welfare of a game with � = �n−1 is:

E[W (�n−1)] = �n−1
z

n
(1 + E[F1]) + (

v

n
− �)(n− 1− E[F1]) (42)

Welfare for �n−1 is greater than for perfect information when E[W (�n−1)]−E[W (1)] >
0. This gives us:
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E[W (�n−1)]− E[W (1)] = �n−1
z

n
(1 + E[F1]) + (

v

n
− �)(n− 1− E[F1])− (

v

n
− �)n > 0(43)

�n−1
z

n
(1 + E[F1])− (

v

n
− �)(1 + E[F1]) > 0(44)

�n−1z(1 + E[F1])− (v − n�)(1 + E[F1]) > 0(45)

�n−1z − (z + �+ Δ− n�) > 0(46)

�n−1z − (z + Δ− (n− 1)�) > 0(47)

(n− 1)�−Δ− 1− �n−1z = L− 1− �n−1z > 0(48)

This is the inequality in equation (16).

The relationship between �n−1 and L: if � = �n−1 then E[F2] =
∑n−1

i=1 (1−�n−1)i =
Δ

�
. If n is held constant

�

Δ
increases then L increases and

Δ

�
decreases. This implies

that �n−1 increases to maintain the above equality. Likewise, if
�

Δ
is held constant and

n increases then �n−1 increases to maintain the above equality and L increases. Hence,
if L increases �n−1 increases. □

PROOF of Proposition 7:

The argument in the proof of The Pandora Effect relies only on d yielding the highest
own-action payoff of all actions in A. Hence, Proposition 1 holds if condition (18) holds.

The argument in the proof of Proposition 2 relies on the relationship between the
own-action payoffs of c and d defined in condition (5). Condition (5) states only that the
own-action payoff from d is greater than the own-action payoff of c: this is equivalent
to conditions (18) and (19). It also relies on the expected Following size of an Informed
agent; this is independent of A′, u′(.) and �′(.). Finally, it relies on the Pandora Effect
which has been shown to hold under condition (18). Therefore, Proposition 1 holds
when conditions (18) and (19) hold.

The arguments in the proofs of Propositions 3 and 4 rely on Informed agents’ Fol-
lowings copying their Informed agents. This occurs in equilibrium where copying yields
the highest expected own-action payoff for Followers. This is necessarily the case for
Followers in the Following of an Informed agent playing defect. It is also the case for
Followers in the Following of an Informed agent playing cooperate as a pure strategy
if condition (17) holds. Conditions (18), (19) and (20) imply it cannot be optimal for
Informed agents to play any action other than c or d. Therefore, it must be optimal,
conditional on being copied by their Following, for Informed agents for whom D does
not hold to play c. Hence, Propositions 3 and 4 hold if conditions (17), (18), (19) and
(20) hold.

Finally, the arguments for Theorems 1 and 1 depend only on Propositions 1 to 4.
Hence, Theorems 1 and 1 hold where conditions (17), (18), (19) and (20) hold. □
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