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Abstract

Gaussian processes are a limit extension of
neural networks. Standard Gaussian pro-
cess techniques use a squared exponential
covariance function. Here, the use of trun-
cated covariances is proposed. Such cov-
ariances have compact support. Their use
speeds up matrix inversion and increases
precision. Furthermore they allow the use
of speedy, memory efficient Toeplitz inver-
sion for high dimensional grid based Gaus-
sian process predictors.

1 Introduction

Gaussian process methods are a natural
extension of Bayesian neural network ap-
proaches. However Gaussian processes suf-
fer from the need to invert an n x n matrix,
where n is the number of data points. This
takes o(n?) floating point operations.

For many real life problems, there is some
control over how data is collected, and this
data often takes a regular form. For example
data can be collected at regular time inter-
vals or at points on a grid (e.g. video pic-
tures). Often this structure can be used to
ensure covariance matrices have a specific
form. If this form happens to be Toeplitz,
then the covariance inversion can be per-
formed exactly in o(n?) flops. Furthermore
the covariance storage requirements are re-
duced. Here it is shown that using truncated
forms of covariance allow Toeplitz methods
to be used with dataspace topologies not im-
mediately amenable to this approach.

*This work was done while the author was at the
Neural Systems Group, Imperial College.

2 Gaussian Processes

Let the set of points {x;}, denote the points
in input space at which we will later re-
ceive data {x;} ¢ = 1,2,...,n and the
points {x;} i =n+1,2,...,m at which we
will be making predictions. A superscript
D (for DATA) denotes an m-vector trun-
cated to the elements i = 1,2,...,n, and
a superscript P (for PREDICTION) to de-
note an m-vector truncated to the elements
i=n+1,...,m.

An unknown function f(x) generates
datum f; at point x;, which is subject to
Gaussian measurement noise r; with vari-
ance 0. We combine our data (targets) and
predictions (output) together into one vec-
tor y;.

y; is defined by

Yi = fi i=n+1,...,m

So y; combines the possible values of the
data to be received (including measurement
noise) with the possible values of the pre-
dictions (without measurement noise). Now
Yy = (Y1,Y2,-..,Ym) contains all the values
of interest, and so we wish to find some prior
distribution over y.

If we assume that the function f takes
the form of some Gaussian process, then
the prior over f = (fi, fo,..., fm) can be
expressed as a multivariate Gaussian with
covariance C' Then f and 7 are independ-
ent Gaussian random variables, and so y is
a sum of independent Gaussian distributed
random variables, and therefore has a prior
distribution of
P(y|H) = %exp (—%(y -w)'Q (y - u))
where () is the sum of the process covariance
C and a noise covariance over the data (but
not prediction) points.



For future use, we partition Q into the
form
QDD QDP
< QPD QPP >
where QPP is n x n and QFF is (m —n) x
(m —n). Note that QPP = (QPF)T.

Suppose we have now received data at
points x” given by y” = y*. Then we ob-
tain the posterior distribution P(yf|y? =
y*, H) =

1 1 P _\Tg-1(vP _

e (307 955" - 9)
where S = (QPP _ QPD(QDD)leDP) and
v =QFP(QPP) 1yP 4+ u. ZF is the relev-
ant normalisation constant.

Note that we only need to invert matrices
QPP which is n x n. We tend only to be
interested in the diagonal of S, which gives
us the error bars. There is no need to invert
any m X m matrices such as Q.

We have said nothing yet of the form of
the covariance function C. In fact C is used
to represent some prior information about
the smoothness of the function. It must
be positive semidefinite, and C;; must de-
pend on variables x; and x;, and no other
xj. Furthermore the mean u; = u(x;) must
be specified, and is usually taken to be zero
(any known trend can be removed from the
data).

Given a set of scaling hyperparameters
01,60>,7;, a common choice for C' is

C(x,xj;H) =61 exp <—%d(x,~,xj)2> + 65

(1)
where d = Y, p (2} — 2%)?/r} is a Eu-
clidean distance (in D-dimensional space).
This corresponds to saying that the closer
points are in input space, the more correl-
ated their function values will be, and that
the function is smooth.

3 Problems

One of the biggest difficulties with Gaus-
sian processes is inverting the covariance
matrices. These matrices have n? elements
where n is the sample size. Furthermore
general matrix inversion is an o(n3) pro-
cess. Hence for large sample sizes, the use
of Gaussian processes becomes very slow,
and the memory storage requirements can
be large.

Here fast inversion methods are intro-
duced for a certain class of applications,
namely those where there is some control
over the data selection procedure, and where
regular sampling structures are natural (e.g.
time series, images, grid detectors). In
these circumstances, the benefits of Toeplitz
matrices can be used.

4 Toeplitz matrices

A Toeplitz matrix is a matrix A;; of the form
Aij = Ai+1,j+1 for all Z,J In other words it
is constant along all diagonals.

Toeplitz matrices can be inverted in
13n%/4 floating point operations using
Trench’s algorithm [1], [2, p199]. There are
other approximate schemes which will in-
vert Toeplitz matrices in o(nInn) flops: see
[3, 4]. Furthermore storage requirements are
at most n? /4 for the Toeplitz inverse.

5 Suitable topologies

In this section, we examine what topolo-
gies and data structures might be amenable
for generating Toeplitz covariance matrices,
and give examples of practical applications.

It is straightforward to generate Toeplitz
covariance matrices on the real line using
(1), given regularly spaced readings. Given
a metric space and a form of covariance
matrix, we call an ordered set of points
which generate a Toeplitz covariance matrix
a Toeplitz ordering. We call the unordered
set of such points a Toeplitz set.

We call the covariance matrix metric pre-
serving if each element is an invertible func-
tion of the distance between the relevant
points. If the covariance matrix is of this
form, then a Toeplitz ordering is independ-
ent of the choice of covariance function.

A set A induces an e-cover of a space if
the set of e-balls around each point of A is
a cover of the space.

We say that a family of Toeplitz sets
provides a cover for a space if Ve > 0, there
is a Toeplitz set in the family which induces
an e cover of the space. We use the short-
hand ‘Toeplitz covering’ for such a family.



6 2D systems: problems

In (R2, Euclidean) with a metric preserving
covariance function we cannot generate a
family of Toeplitz orderings which provide
a cover for the space.

Proof We generate a Toeplitz ordering.
Choose z¢ and z1 to be any two points in
R?. Then z3 must be such that d(z3,z2) =
d(z2,z1). In other words z3 must lie on a
circle of radius d(z2,z1) about z5. Choose
x3 accordingly. Now x4 must be on a circle
of radius d(x3,z2) about z3 and also on a
circle of d(z3,z1) about x2. There are at
most two such points. From z5 on, each
point is fully constrained by the previous
choices. The result is either all the points
lying on a circle in R? (corresponding to
one choice of z4) or (z1,z3,...) lying on
one straight line and (z2,z4,...) lying on
another (for the other choice of z4). Hence
all possible Toeplitz orderings lie on lines or
circles of R?, implying that there is some fi-
nite € for which no Toeplitz ordering induces
an ¢ cover (there is always some point in the
space which is further than € away from the
line or circle on which the Toeplitz ordering
lies). O

In fact covariance matrices on a grid based
system take a Block-Toeplitz Toeplitz-Block
(BTTB) structure. There is no equivalent
of the Trench algorithm for BTTB systems,
although some improvements can be made
using conjugate gradient methods.

6.1 The surface of a cylinder

On the surface of a cylinder, (R X
S, Euclidean), things are slightly different.
Toeplitz orderings will cover this space.

In order to show this, define a set of points
x, of a spiral on R x S parametrically by
(h,0) = (an,2nfn) forn =1,2,3,.... Then
it is straightforward to see that this is a
Toeplitz ordering in this space. We have
d*(zi,z;) = a®(n—m)?+ 2 —2cos(2wfB(n —
m)) which is a function of n —m, and there-
fore generates Toeplitz metric-preserving co-
variance matrices.

If we choose a set of orderings correspond-
ing to different a and /3, then we can see that
this set covers the space, because the smaller
«a and G get the denser the points get.

Hence we have a useful space within which
it is possible to generate Toeplitz covariance
matrices.

7 Truncated covariances

The problem with the standard types of cov-
ariance functions used in Gaussian processes
is that they tend to have an infinite range.
This means that the value of the process at
one point is affected (albeit only a little)
by points which are a huge distance away.
There is another class of covariance matrices
which do not have this property. They are
covariance functions with compact support.
Here these have been called truncated co-
variances, because the covariance between
two points is zero if they are greater than a
certain threshold distance apart.

The first thing to note is that truncated
covariance functions cannot simply be pro-
duced by cutting the tails of another type of
covariance function: this would not generate
positive semi-definite covariance matrices.
Instead we have to go back to square one.

We can generate covariances functions
(which are positive semidefinite) by con-
volving any symmetric kernel with itself,
and so we can choose some more suitable
kernels. Mackay [5] mentions the use of a
top hat kernel (K (z,r) = 1if |z — 7| < 1,
zero elsewhere) to generate the covariance

[ 1-Jz—ylfor|z—yl <1

Cla,y) = { 0 elsewhere

Clearly this covariance function is of the
type we are interested in. It is zero out-
side the region |z — y| < 1. But it does
not really satisfy all the requirements. It
produces Gaussian processes which are far
from smooth. This might be useful in some
situations, but in general smoothness pri-
ors are more common. It would be good
to find some covariance function with the
same truncation properties, but which is
also smooth and usable in higher dimen-
sions.

There are a number of possibilities, but
the one which will be introduced here is in-
teresting because it is also generated from
bell shaped kernels, and looks very similar
to the squared exponential covariance. How-
ever it is also a truncated covariance. Con-
sider the kernel

_f 1+ecos(z) —m<z<m
K(z) = { 0 otherwise

Then, when this is convolved with itself, we



Truncated and Gaussian—shaped Covariance

——  truncated
Gaussian-shaped | 1

Figure 1: Comparing a Truncated covari-
ance with a squared exponential

get the covariance function C(z,y) =
3
[(27r—|d|)(1+cos|d|/2)+§ sin |d|]/(37) (2)

between —27 < x < 27 and zero outside,
where d is the Euclidean or Manhattan dis-
tance d(z,y) between x and y. This satisfies
the required properties. It is zero outside
+27.

Figure 1 illustrates this covariance func-
tion, and compares it with the standard
squared-exponential (Gaussian shaped) co-
variance function.

For higher dimensions we can define

C(x,y) = C(z1,91)C(22,92) - .. C(zp, YD)

Of course not all situations are suited to
covariance functions which are zero outside
a certain region. However some of those
with larger distance correlations can be ex-
presses as

02(117,?/) = C(Q?,y) ta

where C is a truncated covariance. All of
the benefits of truncated covariances are still
available in these situations. This is be-
cause a generates a rank 1 contribution to
the resulting covariance matrix. Then the
Bartlett-Sherman-Morrison-Woodbury for-
mula can be used to express the inverse of
C5 in terms of that of C.

7.1 Benefits

Truncated covariances have many benefits.
They speed up calculations, and increase ac-
curacy. Because truncated covariances have
zeros where other covariances might have
small values, many of the multiplications in-
volved in matrix inversion and calculation of

the predictive mean and variances become
trivial, error free, multiplications by zero.
The end result is a much faster implement-
ation of Gaussian process methods, which
is subject to less rounding error. For fur-
ther details of numerical methods which use
the structure of covariances with compact
support, see [6] chapter 11 and references
therein.

Having dealt with truncated covariances
in a more general setting, it would be good
to focus more on the topic at hand: how can
truncated covariances help generate Toep-
litz covariance matrices in situations where
they are not normally found?

In most modelling situations, we are deal-
ing with bounded spaces. Consider for ex-
ample a rectangular region of (R2, Euc-
lidean). This region can be mapped onto
the surface of a large cylinder (R x S, Eu-
clidean). We know that in the limit of the
cylinder becoming infinitely wide, the met-
ric properties of the rectangular region are
preserved. For large but finite cylinders, the
metric properties will be slightly but insig-
nificantly distorted.

Now consider what we gain through the
use of truncated covariances. The contribu-
tion to the value of the Gaussian process at a
given point comes only from those points in
the immediate neighbourhood. Hence any
distortion of the metric at large distances
is immaterial to the results. Therefore the
region of interest can be mapped onto the
whole cylinder, by 'wrapping it around’. Be-
cause the covariance is of truncated form,
there is little distortion of the covariance
between any two points in the space: the
larger, more distorted, distances do not con-
tribute to the covariance. The only signific-
ant distortion will come from the edge ef-
fects, where one side of the region is joined
to the other.

Suppose for now that the whole region of
interest is mapped around the cylinder. We
can then choose a set of measurement points
around the cylinder which produces a Toep-
litz covariance matrix (see section 6.1). This
set of points corresponds to an actual set of
measurement points in the original space.
Given the (noisy) values of these measure-
ment points, we can the calculate the Toep-
litz covariance matrix using the truncated
covariance function in the cylindrical space.
This can be used to infer the values at other



points in the space.

8 An example and details

Suppose we are interested in a 2 dimensional
region. We map the whole region around the
surface of a cylinder. Now we can choose the
set of sampling points already mentioned in
section 6.1: define a set of points z, of a
spiral on R x S parametrically by (h,6) =
(an,2nfn) for n = 1,2,3,.... We can map
these points back onto the original rectangle
to get the required sample points in the ori-
ginal space. We build the covariance matrix
and invert it using Toeplitz techniques.

The set of sample points which this
method produces is not exactly a grid, but
without much loss of accuracy we can use a
grid based system. Rather than transform-
ing the rectangle onto the cylinder surface
by mapping the vertical component to the
vertical component of the cylinder, and the
horizontal component to the horizontal com-
ponent of the cylinder, we can skew the rect-
angle slightly, so that after mapping onto
the cylinder the end of the first line meets
the beginning of the second. Then the grid
system in the original space becomes a Toep-
litz set in the new space. This will amount
in a little loss of accuracy.

The following example illustrates this
point. The top picture of figure 3 illustrates
a two dimensional surface. The next gives a
(11 x 11) grid based sample of that surface.
When measurement noise is added we get
the third picture.

Toeplitz Gaussian process methods were
used with this noisy data to try to recon-
struct the original, using a prior based on
the covariance given in (2). The results are
given in the figure 3.

All of the work done up to this point
has assumed that the hyperparameters are
already known. We need to look at how the
hyperparameters can be determined.

9 Hyperparameters

The method of determining the hyperpara-
meters of the Gaussian process is very much
the same as usual [7]. The main problem is
that there will be an unwanted contribution
to the likelihood from the artificial join of
the two edges round the cylinder. This will
bias the hyperparameters away from longer
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Figure 2: The posterior distribution of the
the two x-length scales.

length scales. These edge contributions are
likely to be relatively small compared with
the overall likelihood. Figure 2 gives a plot
of the posterior distribution of our example
(figure 3). The peak at the true length scales
is unnoticably affected by the edge effects.
The peak in the distribution is found for the
values h = 1, § = 2.5, which are in fact the
values used to plot figure 3.

However if edge effects are thought to be
a problem, we can overcome this by adding
a strip of width k& between the two edges
to be joined. Then we set k to be equal to
twice the width of the covariance given the
current hyperparameter. In this situation
the mapping of the rectangular space to the
cylinder will change as the hyperparameter
width changes. When the hyperparameters
correspond to larger scaling factors, then the
region will be mapped to a larger cylinder.
This is not a problem; In fact the effect will
be beneficial in ensuring that there is a sim-
ilarly low level of distortion from the flat
space covariance for all hyperparameter val-
ues. The covariance matrix for all the points
except those along the strip must be formed
from the Toeplitz covariance matrix by us-
ing the partitioned inverse equations. This
will not be too costly for small strip widths.

10 Higher dimensions

All these methods can also be used in higher
dimensional spaces in the same ways. Toep-
litz orderings can be found on spaces R x .S*
for all s. For example in four dimensions we
choose the points

for some a, 3,7, 9.



In three dimensions this can be visual-
ised as a spiral winding round a torus, while
the third component moves steadily along a
straight line.

This method relies on the use of regular
sampling points. In very high dimensions
this can be problematic, as the number of
sample points required to cover the space to
a given accuracy increases exponentially as
the sample size increases.

11 Conclusions

Truncated covariances can be used with
Gaussian processes to represent smoothness
priors, where large distance correlations are
considered unlikely. Furthermore they are
also the starting point for a number of effi-
cient modelling methods. Not only do they
automatically increase speed and reduce in-
accuracies by increasing the number of zero
multiplications, but they also enable the use
of Toeplitz matrix inversion techniques with
grid-based systems. The key to this ap-
proach is to provide low distortion mappings
from spaces in which Toeplitz coverings can-
not be found to ones where they can.
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Figure 3: An example of using Toeplitz
Gaussian process methods to model two di-
mensional systems



