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Abstract

This paper describes the Position-Encoding Dynamic Tree (PEDT). The PEDT

is a probabilistic model for images which improves on the Dynamic Tree by allowing

the positions of objects to play a part in the model. This increases the flexibility of

the model over the Dynamic Tree and allows the positions of objects to be located

and manipulated.

The paper motivates and defines this form of probabilistic model using the belief

network formalism. A structured variational approach for inference and learning in

the PEDT is developed, and the resulting variational updates are obtained, along

with additional implementation considerations which ensure the computational cost

scales linearly in the number of nodes of the belief network. The PEDT model is

demonstrated and compared with the dynamic tree and fixed tree. The structured

variational learning method is compared with mean field approaches.

Keywords: dynamic trees, variational inference, belief networks, bayesian net-

works, image segmentation, structured image models, tree structured networks.
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1 Introduction

Consider an observer who is presented with a road-scene image. She is likely to be

interested primarily in “what is in the image”, which can be taken to mean identifying

components such as trees, cars, road, sky and clouds. This can be thought of as finding

a label for every pixel such that there is a coherent interpretation of the scene.

Taking a Bayesian view of this problem, we can separate it into two parts, a scene

model and a pixel model. The scene model defines a distribution over label fields; this

model should incorporate information about properties such as the spatial coherence of

objects and their likely locations in the image. The pixel model relates the scene model

to the observed image data. The labelling problem thus becomes one of inference, i.e.

to infer the posterior distribution over label fields given an observed image, or some

summary of this distribution, such as the maximum a posteriori (MAP) configuration.

There are many possible models for label fields. Some examples include Markov

random fields (MRFs) and and tree-structured belief networks with a fixed structure. See

section 2 for further discussion of these models. In this paper we discuss an alternative

hierarchical model which we term the Position Encoding Dynamic Tree (PEDT). This is

based on the idea that labelling an image is a two dimensional analogue of creating a parse-

tree for a sentence, so that the tree-structure must reflect the underlying image structure;

this does not happen with fixed-structure tree-structured belief networks (TSBNs). The

hierarchical structure of the PEDT also provides the capacity to represent part—sub-part

relationships.

This paper makes a number of contributions. First, we present a dynamic tree hierar-

chical image model which configures itself in response to a given image, where the nodes

in the hierarchical model have both positional and state information. Second, we show

how the model parameters can be learnt for a particular set of segment labels and set of

images. Third, we discuss inference in such a network and derive a structured variational

approximation. Finally we give demonstrations on a number of image sets, and provide

comparisons with related methods.
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The structure of the remainder of the paper is as follows: Section 2 discusses work

related to the topic of this paper. Section 3 gives a motivation for the position encoding

dynamic tree, which is introduced and defined in section 4. A discussion of methods for

inference in the PEDT model is the topic of section 5, leading to the inferential updates

of section 6. Learning the parameters of the model is discussed in section 7. The model is

demonstrated and tested on various datasets in section 8, before conclusions are drawn.

The appendices give the calculation of the update equations, and methods for comparing

dynamic trees and position encoding dynamic trees.

2 Related work

We first describe related work which follows a Bayesian formulation of the problem, and

then discuss other related work.

Within the Bayesian framework there are a number of popular models for label images,

the most popular of which are the MRF and TSBN models. In the statistical image

modelling community these two types of model are known as non-causal and causal MRF

models respectively. They are respectively undirected and directed graphical models [17].

Early work on Bayesian image modelling concentrated on non-causal MRFs, see. e.g.

[4, 12]. Note that these models typically have a “flat”, non-hierarchical structure. They

also suffer from high computational complexity, for example the problem of finding the

maximum a posteriori (MAP) interpretation given an image is (in general) NP-hard.

The alternative causal MRF formulation uses a directed graph, and the most com-

monly used form of these models is a tree-structured belief network. In contrast to

MRFs, TSBNs provide a hierarchical multiscale model for an image. They also have

efficient inference algorithms which run in time linear in the number of nodes in the

tree. In the graphical models literature this inference procedure is known as Pearl’s

message passing scheme [22]. This algorithm is also known as the upward-downward or

inside-outside algorithm [24, 18], being a generalisation to trees of the standard Baum-

Welch forward-backward algorithm for HMMs. TSBNs with discrete-valued nodes have
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been used for image segmentation tasks [5, 23]. TSBN models have also been used for

continuously-valued Gaussian processes in one and two dimensions, see for example the

work of Willsky’s group at MIT [3, 20, 19].

Despite these attractive properties, TSBNs are not the ultimate image model. Run

generatively, fixed-structure TSBNs give rise to “blocky” images which reflect the struc-

ture of the underlying tree. One idea to move beyond TSBNs is to remove the tree-

structured constraint, so that a child node depends on more than one parent. Exploration

of this idea includes the work of Bouman and Shapiro [5] on a cross-linked architecture,

and Dayan et al. [8] on the Helmholtz machine. One problem is that exact inference

has a considerably higher time complexity in non-tree structures (one needs to use the

junction tree algorithm, see e.g. [17]).

An alternative view is that the problem with TSBNs is not the tree structure, but

the fact that it is a fixed tree. It is reasonable that for opaque objects each object-part

belongs to at most one object, so that there is a “single-parent constraint” (see [15] for

discussion of this point). This suggests that a model should provide a distribution over

tree structures, reminiscent of parse-trees obtained with context-free grammars (see e.g.

[6]). Our work builds on that of Adams and Williams on “dynamic trees” [29, 1] and

Hinton et al. [15] on “credibility networks”.

TSBN and Dynamic Tree models are hierarchical multiscale models, as are wavelet

models. For example Crouse [7] have used a multiscale TSBN to model wavelet coeffi-

cients, and DeBonet and Viola [9] have used an interesting tree-structured network for

image synthesis using non-Gaussian densities. However, note that as we require a prior

over class-label images, we cannot use the additive combination of contributions from

different levels used in wavelet modelling.

A general probabilistic view of the labelling problem can be found in [16]; the key point

is that the labelling predictions are not independent at every pixel, so it is a contextual

classification problem.

We would like to point out some relationships to other work which is not expressed
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in the probabilistic modelling framework. Von der Malsburg [27, 28] has discussed the

Dynamic Link Architecture, whereby the network architecture changes dynamically in

response to the input. This parallels the inference process in DT architectures, where

posterior tree structures are effectively selected in accordance with how well they fit

the image structure. We also note that Montanvert et al [21] have discussed irregular

tree-structured networks, where the tree-structure is image dependent.

We would also like to mention the similarities and differences of the labelling problem

with the image segmentation problem. Image segmentation techniques aim to divide up

images into homogeneous regions; they are often based on region-growing or edge-based

techniques, or combinations of both. Note that the key difference between the labelling

and segmentation problems is that segmentation is essentially an unsupervised learning

problem (e.g. a spatially coherent clustering of image features) while image labelling is

based on a supervised learning problem (learning image labels from features).

The formalism described here can also be described in terms of multinets [11] which are

a generalisation of Bayesian networks to include context sensitive dependency structures.

In multinets, different belief network structures for a set of random variables X are

allowed depending of the value of some context variable Z.

3 Motivation

Any form of image analysis must use, implicitly or explicitly, prior information about

how images are formed. However sometimes this prior information is used in an ad-hoc

way. The Bayesian approach aims to make the prior information explicit through the

use of representative models and probability distributions over those models. To follow a

Bayesian approach for image segmentation a good probabilistic framework for the prior

knowledge must be found. Then the Bayesian machinery will provide consistent inference.

What sort of prior information can be used about the images? Usually an image con-

tains a number of regions corresponding to different objects (used in a broad sense of the

term). The existence of these objects provides significant prior information. Furthermore
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each object is made of different parts, which can each be seen as objects at another scale

(for example a face is made of eyes, nose mouth etc.). A natural way of modelling objects

would involve a hierarchical representation, where the objects lower in the hierarchy are

related in some way to those immediately above. This is the approach which is followed

in the development of position encoding dynamic trees.

The model developed here takes its impetus from a generative approach. Instead

of primarily looking for features or characteristics within an image, and then trying to

use this information for segmentation, recognition or some other purpose, a generative

approach starts with asking what is known about how the image came about. This gives

some prior knowledge of what might be expected to be seen in an image. This prior

knowledge is used to build what is called a generative model. The perceived image is then

used to refine that prior knowledge to provide a reasonable model (or set of models) for

that particular image.

Given that images can be seen as being constructed from many different objects, each

with subcomponents and further substructures, it would appear sensible to model objects

hierarchically. But a simple deterministic model will not capture the variability in object

structure between different images or parts of images. The same object type might have

significant variation between different images, in terms of position, colour, lighting etc,

but also in terms of the subcomponents it might have. It seems then that a probabilistic

model is more appropriate to capture this variation and the magnitude of the variation.

Using a tree structured directed graph is one way to define a hierarchical probabilistic

model. In such a structure, nodes are used to represent the different variables, and the

probability of a node being in some state is given in terms of the possible states of its

parent (each directed edge of the graph goes from a parent node to a child node). In

other words whether the parent is in a certain state or not affects the state probability of

the child node. This seems reasonable and is related to the way that parse tree structure

is often used for the one dimensional problem of sentence modelling. Any dependence

between objects would only occur through the component-subcomponent relationship.
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Hence distinct unrelated objects would be probabilistically independent in the model.

The problem with using a fixed tree structure is that the inherent organisation of

different object scenes would not be correctly represented by the same hierarchical rela-

tionships. It is important to be able to represent the variability in the subcomponents

an object might have. The dynamic tree framework [29, 2, 26] is a significant step in

that direction. Even so, there are problems associated with the dynamic tree structure.

Although there is no longer a restriction to a single tree structure, the model is still non-

stationarity. The same image shifted slightly could have significantly different maximum

posterior representations. Furthermore finding the location of an object is non-trivial,

and using the model in sequences is hard, as movement has to correspond to a change in

connectivity. The position-encoding dynamic tree model which is introduced here has a

richer representation which, it is argued, overcomes these deficits.

4 Position-encoding Dynamic Trees

An image can be thought of as containing a number of objects or regions each of which

we might choose to label in a way which relates to the nature of the object. For example

we might want to label all people in an image with the same label, all cars with another

label, all trees with another and so on. Or we might choose to label certain types of

surface or texture one way and other surfaces/textures other ways etc. These regions will

tend to be spatially contiguous in some way, and in defining models for object labels of

images this spatial structure should be taken into account. Labels will not contain all

the object information we need. For example we would wish to distinguish one person

from another person. We will see that the connectivity of the posterior PEDT is able to

do this.

The PEDT model uses a hierarchical tree structure of nodes. Each node has a label

denoting the type of object (or object part) which it is representing. It also has a

position which represents the spatial location of the object part being represented. These

labels could just be the labels we expect to get at the pixel level, but might also include
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additional latent labels used to represent higher level structures. Each node represents

an object or part of an object, and the position of the node gives an idea of the region

of the image the node is representing. Nodes further up the tree represent larger regions

of the image. This representation is not direct but is given by the influence that each

node has on the labels of its children, down to the lowest level of nodes which are taken

to correspond to individual pixel labels (or labels for specific groups of pixels). This

influence is defined in terms of a conditional probability of the label of the child node

given that we know the label of the parent node.

Each image will have a different tree structure associated with it, and a different set

of labels and positions for each node (in fact because of the uncertainty in what would

be the best tree structure, the PEDT approach will obtain a probability distribution

over the structure, positions and labels for each image). In order to generate these

different structures and labels for each image we need to specify and to learn what are

reasonable possible tree structures for images and reasonable labellings. To do this a

prior probability distribution is defined and the parameter values of that prior are learnt

from training images.

This PEDT model will give us a number of benefits. First of all it utilises a model

of image labels which will improve on any pixelwise labelling of an image by using the

spatial structure to tailor the label probabilities. Secondly it gives us a structural model

of the relationship between different parts of the image, and lastly it gives the positions

associated with the different parts or objects in an image which would then be useful for

use in sequence models. Lastly because of the choice of the form of the PEDT model,

highly efficient, significantly structured, variational methods can be used to perform

inference and learn parameters [26, 13]. This makes (approximate) inference in the PEDT

model reasonably efficient.
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4.1 The Position-encoding dynamic tree model

We are now in a position to give the overall generative model for the position-encoding

dynamic tree. There are four fundamental parts to it, the network nodes, the dynamic

structure, the node classes and the node positions. Here we will introduce the basic

structure, but other variables can be introduced if wanted without major modification.

The model will be described using the belief network formalism. The graphical model

will have a number of layers of nodes which will be used to describe objects or object

parts, each layer representing object parts of similar sizes. The ‘lower’ nodes will represent

smaller components and the ‘higher’ nodes larger ones.

The set N of n network nodes is denoted by {1, 2, . . . , n}. The nodes are organised

into layers {1, 2, . . . , H}, where 1 denotes the top layer. We use Lh to denote the set of

nodes in layer h. The network nodes are connected together in a way that represents

the structural relationships in the image. We generally use the superscript notation to

represent a set of random variables. For example XB represents the set {Xi|i ∈ B}. For

the state of all nodes we drop the N : XN = X. We will also use the shorthand X ′ to

denote XLB
where B = {1, 2, . . . , H − 1}. In other words X ′ represents the set of Xi

corresponding to all nodes i not in the bottom layer.

The network connectivity is denoted by a matrix Z of indicator variables zij. Setting

zij = 1 represents the existence of the connection between child i and parent j. We also

include the variable zi0, which is set to 1 if and only if i is a root node (i.e. it has no

parent). Because Z must be a tree structure, i can have at most one parent, and so

given i, zij = 1 for one and only one value of j and is zero otherwise. Furthermore, the

constraint that all nodes can only have parents in the layer above means zij can only

equal 1 if node j is in a layer one higher than node i (or j = 0).

The variable Z can represent all the possible tree structures which are of interest. It

is now possible to define a prior distribution over tree connectivity, which is taken to be
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of the form

P (Z) =
n∏

i=1,j=1

γ
zij

ij , (1)

where γij is the probability of i being the child of j (we will say i chooses parent j with

probability γij). Generally it is assumed that this probability is uniform across all parents

j 6= 0, expressing node interchangeability. Interchangeability is not a theoretical necessity

(and so a more general form of γij could be used). However, because we will allow each

node to take any position, interchangeability does make the later computational optimi-

sations easier as it introduces a symmetry which means that any one of the symmetric

optima can be found, rather than one particular optimum. The disconnection probability

γi0 needs to be specified apriori.

4.2 Positions

Each node has a value which represents the position of the centre of the object. The

position of each node is given relative to the position of the parent node, or if the node

has no parent the position is taken to be absolute. The prior distribution over each of

these nodes needs to be specified.

For the root nodes, we suppose the position is taken from a broad Gaussian distribu-

tion. Gaussian distributions are used to specify the centres of the child objects given the

parent. Formally1

P (ri|rj, zij = 1) =
1

(2π)d/2|Σij|1/2
exp(−1

2
(ri − rj)

T (Σij)
−1(ri − rj)), (2)

where d = 2 is the dimensionality of the space, and Σij is a covariance used to represent

the order of magnitude of the object size.

1It is also possible to include offests ρij within this formalism, so that P (ri|rj , zij = 1) takes the form
(2π)−d/2|Σij |−1/2 exp(− 1

2 (ri − rj − ρij)T (Σij)−1(ri − rj − ρij)). They are left out here for the sake of
simplicity.
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The overall distribution is given by

P (R|Z) =
∏

ij|zij=1

1

(2π)d/2|Σij|1/2
exp

(
−1

2
(ri − rj)

T (Σij)
−1(ri − rj)

)
. (3)

At the lowest level (layer H) we will need to connect the nodes up to the pixels. For

this reason we set the positions of the bottom layer of node to be given by the pixel

positions, and then use the distribution P (Z, R′|RLH
) as the prior over positions and

connectivity.

4.3 The node labels

The other remaining important concept is the class label of each of the nodes. This

represents the type of object or texture which the node is representing.

Suppose there are C possible classes which nodes can belong to. We denote the class

of a node i by Xi and use the indicator xk
i = 1 to represent the state that Xi is in class

k. We represent the probability of a node i being in state k given its parent j is in

state l by a conditional probability table P kl
ij . We make a simplifying assumption that

this conditional probability is independent of the positions of the parent and child nodes.

This is not entirely realistic, but is a useful first approximation. Hence P (X|Z) can be

written as

P (X|Z) =
∏

ijkl

(P kl
ij )xk

i xl
jzij . (4)

4.4 Pixel intensities

The intensity of each pixel will depend on the class label of the node it is connected

to. For each bottom layer node i there is a pixel in position ri. Let this pixel also be

enumerated by i, and assume its value is entirely dependent on the node state Xi through

the distribution P (Yi|Xi), where Yi denotes the pixel RGB intensity. The overall pixel
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model is

P (Y |X, R) =
∏

i∈LH

P (Yi|Xi). (5)

The simple form of pixel model used in the experiments in this paper represents P (Yi|Xi)

by the histogram of class conditional pixel intensities over all the pixels in the training

data.

4.5 All together

The full definition of the prior distribution is given by the following. First P (Z) is defined

using (1) and P (R|Z) using (3) to give us P (R, Z). We then impose the condition fixing

the bottom layer nodes to the pixel positions to get P (Z, R′|RLH
). Using equation (4)

gives P (X, R′, Z|RLH
) = P (Z,R′|RLh

)P (X|Z). Lastly P (Y |X) is of the form (5), giving

the final joint distribution P (Y,X,R′, Z|RLH
). This fully specifies a position encoding

dynamic tree model.

5 Variational inference

The position-encoding dynamic tree model gives the prior probability distribution for the

image through the use of a large hierarchical latent variable model. To use it, we need

to find out what the posterior probability distribution of the latent variables is given a

specific image. In other words we condition on the fact that we have pixels Y , and try to

discover the distribution over Z,X and R′ that results. This distribution will give us a

set of possible good interpretations of the connectivity, content and positioning of objects

in the image.

Finding the posterior of the PEDT model is non-trivial, and so some approach for

doing Bayesian inference is needed. Were this model a tree structured belief network,

we could use techniques such as belief propagation [22] to exactly calculate the required

posterior distribution P (X, R′, Z|Y, RLh
). However because the PEDT is not of this

form, and because other approaches such as the junction tree method are inappropriate

because of the large clique size of the triangulated network, exact calculations are not
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feasible. Instead the graphical structure of the distribution is used to develop variational

approximation methods to the posterior.

Variational methods are one of a number of approaches for approximate inference in

networks. Other approaches include Markov chain Monte-Carlo methods [14], where a

Markov chain is constructed which has the desired posterior as the limit distribution.

Samples from this Markov chain are used as an approximation for the posterior. Monte-

Carlo and annealing approaches for dynamic trees were investigated in [29]. Unfortunately

obtaining Monte-Carlo samples for a network of this size would take longer than is afford-

able. The variational approach, on the other hand, fits an approximating distribution to

the true posterior. The variational distribution must be chosen to be tractable to calcu-

late with and must allow a variational fit to the posterior to be obtained in a reasonable

time. At the same time the fit must be as good as possible so that the approximation is

not a poor one. This makes choosing the variational distribution a non-trivial exercise.

Further details of the variational method can be found in [25].

After an outline of the variational method and the form of variational distribution

which is used, the resulting update equations used to fit the distribution to the posterior

is given in section 6. The full calculations can be found in the appendix A.

The variational approach of this section develops and extends the approach used in [26]

to the new case of the position-encoding dynamic tree. This approach involves approx-

imating the posterior distribution with a factorising distribution of the form Q(Z)Q(R)

Q(X|Z), where Q(Z) is the approximating distribution over the Z variables, Q(X|Z) is

the approximating distribution over the states, and Q(R) is an approximating distribution

over the node positions.

To choose good forms for the Q’s the Kullback-Leibler divergence between the Q(Z)

Q(R)Q(X|Z) distribution and the true posterior should be minimised. In fact the ap-

proximate distributions which are used take the form of a dynamic tree model, and give

propagation rules which are efficient and local.
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The KL divergence between the approximation and the true posterior is of the form

∫
dR′ ∑

Z,X

Q(Z)Q(X|Z)Q(R′) log

(
Q(Z)Q(X|Z)Q(R′)
P (Z,R′, X|RLH , Y )

)
. (6)

The forms of each of the approximating distributions needs to be finalised. We use a

Q(Z) and Q(R′) of the form

Q(Z) =
∏
ij

α
zij

ij and Q(R′) =
∏

i∈N\LH

1

(2π)d/2|Ωi|1/2
exp

(
−1

2
(rT

i − µT
i )Ω−1

i (ri − µi)

)

(7)

where the α’s are probabilities and where µi and Ωi are position and covariance param-

eters respectively, all of which need to be optimised. In this paper Ωi is assumed to be

diagonal. Lastly the Q(X|Z) is a dynamic tree distribution of a form identical to that

used in [26]:

Q(X|Z) =
∏

ijkl

(Qkl
ij )

xk
i xl

jzij . (8)

Again Qkl
ij are parameters to be optimised.

This distribution is chosen because local update propagations can be obtained through

KL divergence minimisation. Hence the model can be tuned to the posterior efficiently.

Also the marginal values of this distribution can be obtained straightforwardly. In addi-

tion this variational form is guaranteed to give better approximations than simpler ones

such as a mean field approximation [26]. The difference between this approach and the

mean field approach stems from the fact that we allow dependence on Z in (8), and that

we also allow dependence of a node i on parent nodes rather than forcing Q(X|Z) to take

a factorised form. Because there are significant dependencies between child and parent in

the prior we would expect some dependence to remain in the posterior. The mean field

approach ignores that dependence, whereas this more structured approximating distribu-

tion allows some of those dependencies to be captured.
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6 Update Equations

We want to minimise the KL divergence (6), with the forms of approximate distribution

given in the last section. This must be done subject to the constraints that
∑

k Qkl
ij = 1

and
∑

j αij = 1 (probabilities sum to 1). We add to (6) a set of Lagrange multiplier

terms corresponding to these constraints, and set the derivatives to zero. Solving this

gives a set of update equations. The full derivations are given in appendix A. Below, the

update equations for the conditional probability tables, position and tree connectivity of

the variational distribution are given.

6.1 Class Labels

Minimising the KL divergence gives us a set of update equations. Given all the α’s, let

mk
i be given recursively from the top down by

mk
i =

∑

jl

αijQ
kl
ijm

l
j. (9)

Then mk
i is the marginal probability of node i being in class k under the variational

distribution. Again given the α’s we find that minimisation of the KL divergence gives

Qkl
ij =

P kl
ij λk

i∑
k′ P

k′l
ij λk′

i

where λk
i =

∏

c∈c(i)

[∑
g

P gk
ci λg

c

]αci

, (10)

where c(i) is used to denote the possible children of i, in other words the nodes in the

layer below that containing node i.

Hence given α all the Q’s can be updated by making a single pass up the tree to

calculate the λ values, and then calculating the Q’s.
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6.2 Positions

The update equations for the positions (again given the α’s) take the following forms

µi =
∑

k

αki(Σki)
−1µk +

∑
j

αij(Σij)
−1µj, (11)

(Ωi)pp =
1∑

j

(
αij(Σij)−1

pp + αji(Σji)−1
pp

) (12)

where we have assumed that both Σ and Ω are diagonal. The equations for µ involve a

sum across all possible parents and a sum across all possible children, and hence need to

be iterated until suitably converged.

6.3 Connectivity

Lastly the connectivity needs to be considered. For fixed parameters in Q(X|Z) and

Q(R′) of the forms given above, we obtain

αij ∝ γij exp(−Ψij) exp(−Φij)

where Ψij =
∑

l

ml
j[log

∑

k

P kl
ij λk

i ]

and Φij =
1

2
(µi − µj)

T Σ−1
ij (µi − µj) +

1

2
Tr(Σ−1

ij Ωi) +
1

2
Tr(Σ−1

ij Ωj). (13)

In the above the constant of proportionality is found by normalisation as
∑

j αij = 1.

6.3.1 Highest Variational Posterior Probability

The tree Z which maximises Q(Z) after the variational distributions have been optimised

is called the tree with the highest variational posterior probability (HVPP). It is effectively

the maximum a posteriori (MAP) tree under the variational approximation. Likewise we

can pick the HVVP solution for any set of random variables, such as the classification

labels or positions. This is useful for visualisation.
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6.4 Optimisation Process

The above equations give all the necessary update rules. The whole optimisation process

involves an outer loop optimising the Q(Z) values and an inner loop containing up and

down passes of the Q(X|Z) optimisation and a number of passes of the Q(R) optimisation.

The KL divergence can be calculated up to an additive constant, and so can be used as

an explicit objective function and be monitored accordingly. A termination criterion

based on the change in the KL divergence can be set. However the calculation of the KL

divergence itself is one of the most costly parts of the optimisation, so in the experiments

we used a fixed number of iterations, and only calculated the KL divergence at the end

of each inferential run. The whole optimisation takes the following form:

Initialise Q(R)

Optimise Q(Z) ignoring Q(X|Z) contribution

for outerloop=1 to numouterloop

Optimise Q(X|Z)

for innerloop=1 to numinnerloop

for qroptim=1 to numqroptim

Do one pass of the Q(R) optimisation

end

Optimise Q(Z)

end

end

In the experiments reported in section 8 we used 7 outer loop iterations, each containing

an optimisation of Q(X|Z) and 4 inner loop iterations of the optimisation of Q(Z) and

Q(R). The Q(R) optimisation itself involved 3 passes through all the nodes. Q(R) was

initialised using the quadtree-like structure described in appendix B. The first optimisa-

tion of Q(Z) initialises it to the best variational fit of Q(R)Q(Z) to P (Z, R′|RLH
).
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6.5 Efficiency issues

There are a few hidden problems in the optimisation. Most of the updates are inexpensive,

however there is the issue of summing over all possible children/parents. For each node,

a sum over all the nodes in the layer above is required. As this needs to be done for

every node, this is very expensive. Most of the elements of this sum will give negligible

contributions because their contribution contains a factor from the tail of a Gaussian

probability distribution.

To reduce this computational burden, for each layer l, we segment the image space

into a grid of boxes, where the length and width of each box is given by the standard

deviation of the prior Gaussian distribution P (ri|rPa(i)) of the nodes in layer l. Then

for each node i, we identify the box in the parental layer which the position of node i

falls within, and only consider prospective parents within the 3 × 3 subgroup of boxes

surrounding and including that box. Other nodes will have a negligible contribution to

any of the calculations needed. This is significantly more efficient than considering all

possible nodes, and only involves a small number of prospective parents for each node.

We thereby reduce the number of references to zij components which are irrelevant. This

keeps these computations down to a small constant times the number of nodes (about 9n

in a quadtree initialised PEDT for example).

Computing the KL divergence at every step is a computationally expensive procedure,

and so although it would be ideal to test the change in the KL divergence for suitable

convergence, it is generally more efficient to pre-estimate the number of loops generally

needed for suitable convergence, and either not test the KL divergence or test it at the

end.

7 Learning

As it stands, the position-encoding dynamic tree model presumes the knowledge of certain

parameters. For example it presumes the form of the conditional probability tables

P kl
ij , and the form of the covariance matrices Σij and the model P (Yi|Xj). Because
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the covariance matrices are effectively used to represent a priori object size, they can

be specified in a reasonable way to represent the sizes required at each level. In our

experiments these variances were set by hand to ensure that after conditioning on RLh

there was a non-negligible probability of each node connecting to a small (about 7-9)

number of parent nodes. The conditional probabilities, on the other hand, depend on the

inter-relationships of objects in scenes, and would be hard to specify accurately. Instead

we can choose to learn the conditional probabilities (and the root node probabilities)

using labelled image data. Likewise we can specify a form of model P (Yi|Xi), and learn

that from the labelled images. Because the variational method gives a lower bound to

the log likelihood, parameters can be learnt by maximising this lower bound.

7.1 Learning the conditional probability tables Pij

If a labelled segmented dataset of images is available, this can be used to learn the con-

ditional probability tables (CPTs). The simplest approach assumes that the conditional

probability tables are in fact all copies of one table. The theory for more flexible pos-

sibilities is straightforward. For example one could choose to use a layerwise approach;

that is to have different conditional probability tables (CPTs) for each scale (i.e. each

layer), as was used for the TSBN model in [30], and is used in section 8. We will outline

the theory for the single CPT model, and explain how the results differ for the layerwise

approach.

The process for learning the CPTs is as follows. First the conditional probabilities are

initialised. Then the variational inference is run for each image given the labels of the leaf

node positions. Introducing Θ to represent the conditional probability table parameters,

we define

Lvar(Y |Θ)
def
= −

∫
dR′ ∑

Z,X

Q(Z)Q(R′)Q(X|Z) log
Q(Z)Q(R′)Q(X|Z)

P (Z,R, X, Y |Θ)

=−KLθ(Q||P ) + log P (Y |RLH

, Θ) + log P (RLH

) (14)
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and use the fact P (Z, R, X, Y |Θ) = P (Z|Θ)P (R|Z, Θ)P (X|Z, Θ)P (Y |X, Θ). Lvar(Y |Θ)

is called the variational log likelihood. The fact that the KL divergence KL(Q||P ) ≥ 0

implies the log likelihood log P (Y |RLH
, Θ) is lower bounded by the variational log like-

lihood minus the additive constant log P (RLH
). Repeatedly maximising the variational

log likelihood by adapting the Q distributions and then the parameters Θ, will maximise

a lower bound to the log probability.

In fact we have more than one image. Let the images be denoted by Y 1, Y 2, . . . , Y m.

Then we maximise a lower bound to the log likelihood by maximising
∑m

s=1 Lvar(Y
s |Θ)

which can be done by adapting the Q for each Y s and then adapting the parameters Θ

to maximise the sum of the variational log likelihoods for all the Y s:

m∑
s=1

Lvar(Y
s|Θ) = −

m∑
s=1

∫
dR′ ∑

Z,X

Qs(Z)Qs(R
′)Qs(X|Z) log

Qs(Z)Qs(R
′)Qs(X|Z)

P (Z, R, X, Y s|Θ)
.

(15)

Substituting in to (15) for all the terms and taking derivatives of the variational log

likelihood with respect to P kl (the kl entry of the shared CPTs) gives

P kl ∝
m∑

s=1

∑
ij

(αs)ij(Qs)
kl
ij , (ms)

j
j (16)

where the constant of proportionality is given by normalisation. In the case that the

CPTs are stored layerwise, the sum over ij in (16) is replaced by a sum over i in the

relevant layer, and over prospective parents j of nodes i.

7.2 Learning the pixel model

The pixel model can also be learnt from labelled images. The image provides the Yi

information, and the labels the corresponding Xi values. This can be used to train a

neural network [30], a class conditional model [5, 10] or some other suitable model. The

Yi can be pixels, groups of pixels or some region based preprocessing of the pixels. One

of the simplest forms of pixel model uses an empirically derived class-conditional model,

obtained through sectioning the RGB colour cube of pixel space into smaller regions
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and building class-conditional histograms of each of those regions; this approach is used

below.

8 Experiments

The PEDT model was tested on a number of artificial ray traced images using the class-

conditional histogram pixel model given in section 7.2. Ray traced images have the benefit

of being reasonably realistic, but at the same time making ground truth segmentations

easy to obtain. Different sets of images were used. The first (henceforth GEOM) was

a set of 50 training and 50 test colour images of size 160 by 120 pixels. Each image

consisted of a number of patterned 3D objects which are thickened 2D geometric shapes.

The shapes are coloured and textured (an example can be seen in figure 1). Ground

truth segmentations using 11 labels were provided. 9 of these labels referred to each of

the different shapes, one to the background and the remaining label to the side panel of

one of the shapes. A 4× 4× 4 image cube was used in the pixel model.

(a) (b)

Figure 1: Two images from the GEOM dataset. (a) gives an image from the training
set, while (b) gives the corresponding ground truth labels. Different object positions and
lighting were used between and within the test and training datasets.

The second artificial image set (henceforth SUNSET) consisted of sunset scenes with

labels for each of sky, water, sun, cloud, helicopter. There were 6 training images and 6

test images, again all were at 160 × 120 pixels. The training data consists of a number

of different lighting scenarios, angles and positions. Some of the images do not contain

any objects of certain classes. For example there might be no helicopter or no sea in the
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picture. A 4× 4× 4 image cube was used in the pixel model.

In subsection 8.1, the use of the model is demonstrated, illustrating the pixelwise

HVPP segmentations (that is the bottom layer labels where each label is chosen with the

highest variational posterior probability) obtained from the model at different scales, and

also giving some illustration of the HVPP tree structures which are obtained. The model

is compared quantitatively with both the structured variational dynamic tree and exact

fixed tree approaches in subsection 8.2. In subsection 8.3 the approximation methods are

compared with less structured mean field approaches.

The most obvious benefits of the PEDT model are qualitative: the mobility of the

nodes and the dynamic architecture allow the shapes to be fitted better than earlier

approaches, the blocky segmentation effects are gone, and curves are well approximated.

The positions also make temporal modelling possible. The tree structures give some

indication of the structural elements of the objects in the picture. As an indicator of the

run time, a PEDT inference run on one image of size 160 × 120, using 11 classes takes

about a minute on a 1Ghz PC.

8.1 Demonstrations

C++/MATLAB Position encoding dynamic tree software is available at http://www.anc.

ed.ac.uk/code/storkey/. The software takes training and test image sets in most formats

and outputs matlab files of the results. There is also an interactive graphical display

which allows the user to scroll through the images, network layers and to produce tree

slice projections for the vertical and horizontal lines through any chosen point.

Here we demonstrate the performance of the position-encoding dynamic tree on the

GEOM and SUNSET datasets. For each dataset, the PEDT was trained on the relevant

training set so as to learn the CPTs P (Xi|XPa(i)). The CPTs were assumed to be the

same for all nodes in a given layer. The standard deviations of the Gaussian distributions

for each layer of the Gaussian model P (R|Z) were set by hand to be of a suitable width:

one which generally gave a few (9 or so) possible choices of parent for a node with varying
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but non-negligible probabilities. The variational inference algorithm was run on the test

set and the results reported below.

When using the model in general the number of training examples needs to be chosen

to allow each class to be fairly represented in the different conditions which it might be

found in later test images.
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Figure 2: A test example. (a) The image, and (b) the ground truth labelling. (c) The
pixelwise labelling and (d) the positional dynamic tree labelling. (e) A slice projection
of the highest posterior dynamic tree (from down the middle of the image) and (f) the
positions and labels of the sixth layer of the tree. (g) gives the next image in the sequence,
while (h) gives shows where the nodes in the sixth layer move to in a subsequent image.

8.1.1 Description

Looking first at the SUNSET data, in figure 2a we have one test image along with the

ground truth segmentation (2b). The pixelwise segmentation without the use of the

dynamic positional tree can be seen in figure 2c. The picture in 2d gives the pixelwise

HVPP segmentation obtained using the variational approach on the dynamic positional

tree. This picture only gives a crude idea of the overall posterior distribution. Figure

2e gives a projection of a slice of the HVPP tree structure obtained (we actually have a

distribution over trees), while figure 2f gives a picture of the positions and labels of nodes

in the sixth layer from the root (out of nine) of the posterior dynamic positional tree.
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Given a second image (figure 2g) in sequence with the first, we can see what happens to

the node positions for a subsequent image in figure 2h.

8.1.2 Comparison with dynamic and fixed tree on the GEOM dataset

The segmentations produced by the PEDT were compared with the fixed tree and dy-

namic tree. Figure 3 shows the results. The dynamic tree was run using the approach

described in appendix B using the same initialisation as the PEDT. There are clear im-

provements for both the DT and the PEDT over the fixed tree. The improvement of

the PEDT over the DT is marginal. However looking at the classification probabilities

shows the PEDT is more certain of its classification than the DT in regions where it

is correct, and less certain in regions where it is wrong. This is evident if we calculate

pixelwise classification probabilities: the average over all test images and all pixels of the

log probability of the true pixel classification is −0.0344 for the fixed tree, −0.0281 for

the DT and is the highest for the PEDT at −0.0132. Using the mean field algorithm (for

inference only) instead of the structured variational method produces comparable results

(−0.0138), which is to be expected as the main benefit of the structured variational cal-

culation is the accuracy of the distribution over tree structures. In order to compare the

mean field and structured variational inference methods this calculation is carried out

using the conditional probabilities learned using the structured variational method.

The results above are equivalent to geometric average classification probabilities of

0.9662, 0.9723, 0.9869 and 0.9863 respectively. These figures are also related to the

average cost E(− log2 P (x)) of coding the pixel labels given the colour image2. This

coding cost is about 0.050 bits/pixel for the fixed tree, 0.041 bits/pixel for the dynamic

tree and 0.019 bits/pixel for the PEDT (0.020 with mean field inference).
2Here we have calculated the predicted pixelwise marginal probabilities of the labels given the colour

images and used them to code the label images. The true coding cost will be less than this as our
calculation ignores correlations between the predicted label probabilities.
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Figure 3: The segmentation using the (a) the fixed tree (b) the dynamic tree and (c) the
PEDT.

8.2 Comparison with other probabilistic tree-based methods:

labelling performance

The fixed quadtree approach [29][2], the dynamic tree approach [30, 10] and the position

encoding dynamic tree approach were compared in terms of their performance on the

GEOM image set, along with a simple pixelwise classification (labelled pixwise in figure

4). Again the dynamic tree was run using the approach described in appendix B using

the same initialisation as the PEDT. Also disconnection probabilities were set to zero in

all models to ensure a fair comparison. Each model was trained independently on the

fifty training images and tested on the fifty test images. Pixelwise labelling performance

comparisons were made between all these methods, and the simple approach of using

pixelwise prediction. The results are given in figure 4. We see that the position encoding

dynamic tree gives significant benefit over a fixed tree approach, and a slight benefit over

the dynamic tree. Because the major benefit of the position encoding dynamic tree lies in

the richness of the hidden layer representation, we would not expect a major improvement

in the labelling results between dynamic trees and the PEDT. Even so we see that some

benefit is gained. The benefits of all the methods over the straight pixelwise classification

approach is clear. In terms of average performance there are also some improvements.

The average percentage correct for the pixelwise approach was 35.7%. For the fixed tree

this rises to 87.1%. The dynamic tree and PEDT improve this further to 94.6% and

95.4% respectively.
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Figure 4: (a) Comparison of the pixelwise classification performance of all the methods
on the GEOM dataset. The PEDT performs better than the other approaches, although
the improvement over the straight dynamic tree is marginal. (b) gives an enlargement of
a portion of (a) showing the comparison between the DT and the PEDT. Points on the
straight lines indicate equal performance.

8.3 Comparison of approximation method

One of the developments described in this paper is the structured variational approach for

various forms of dynamic tree. Here the structured variational approach is compared with

with the mean field approach. Because the speed of the mean field calculations are much

slower than the structured variational method, it is infeasible to do a full comparison on

the datasets given. Furthermore the benefits are best illustrated in a one dimensional

situation.

Because the dynamic tree formalism is directly related to the discrete variables of the

PEDT approach (see appendix B for how the PEDT can be viewed as a generalised dy-

namic tree) we can focus on the dynamic tree and assess the benefits of the approximation

within that framework.

In order to compare the structured variational approach with the mean field method,

tests were done using a simple 6 layer, one dimensional dynamic tree, where we represent

two possible node states by the colours black and white. 150 cases of one dimensional

data were independently generated from a simple Markovian process, and independent
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noise was added. This enables us to do a test of how well the model deals with simple

locally correlated structures, even if the data might not be easily generated from the

prior. For data generated from the prior very similar results are obtained. Conditional

probability tables with 0.9 on the diagonal and 0.1 off the diagonal were used throughout.

The dynamic tree implementation structured the prior P (Z) so that each node has

a high probability of connecting to the nearest three parents, with a smaller probability

of connecting further afield. The implementation of the mean field method was similar

to that in [2] with 20 iterations of the Q(X) optimisation for each recalculation of Q(Z).

Here Q(X) is the mean field approximation over the class labels X. For the structured

variational approach, 5 passes were made through the update procedure. Because the

Q values can be calculated exactly in one pass given the α values, convergence of the

structured variational approach works out to be significantly faster than the mean field

(convergence was assumed if the variational log likelihood changed by less than 0.01 on

the current step).

To compare the mean field and structured variational methods, we compare the vari-

ational free energy (that is the negative variational log likelihood) found by each method

and the true distribution. A lower variational free energy implies a lower KL divergence,

and hence a better match to the true posterior. The results of this are shown in figure 5a

and indicate that the structured variational method gives a better approximation to the

posterior than the mean field approach. Note that the mean field result is a special case

of the structured variational approximation. If the structured distribution has Qkl
ij = mk

i

for all j, l, it is identical the mean field distribution. When the structured variational

approach is optimised, however, we find that the Q do not resemble this degenerate form.

Instead they tend to be highly diagonal, and are therefore incorporating some of the

conditional dependencies between the nodes.

It is interesting to see what types of structures are produced by the different methods.

Figure 5 gives an example of the highest variational posterior probability (HVPP) tree

under the approximating distributions for both the mean field and the structured varia-
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Figure 5: (a) Comparison of the variational free energy for the structured variational
and mean field approaches. Comparison of the highest probability trees found by the (b)
structured variational approximation, and (c) the mean field approximation.

tional approaches for an example input. Note the choice of HVPP tree is for illustration

purposes only. We have (and want) posterior distributions over trees.

The HVPP trees for the two methods are comparable, but not always identical. For

the mean field method there are problems with spontaneous symmetry breaking, which

cause the higher level nodes to polarise to one or other state. This has the appearance

of ‘flattening out’ the tree structures relating to the other state variables in the highest

posterior tree (see [2] for more details). This effect can be seen in figure 5c. The nodes

in the third layer from the top are all dominated by a single class. This prevents the tree

structures relating to the ’black’ nodes from utilising this layer. This effect is not apparent

for the structured variational approximation (figure 5b), and is a possible reason for fact

that higher posterior trees are found by it. We would therefore conclude that there are

both quantitative, qualitative and computational benefits in the use of the structured

variational method.

9 Discussion

The position-encoding dynamic tree is a further step along the road to generic models for

images. The model includes a flexible hierarchical representation of image structure, and

allows the position information of the structure to be obtained jointly with the class and
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structural information. The structured variational method proposed is a better and faster

posterior approximation than the mean field approach, giving conditional information for

the class labels. The fact that the method is also linear in the number of nodes means

that this and related approaches are practical for use with images.

The pixel labelling problem discussed above is germane to a number of real world

applications, for example land use classification from remote sensing images. As de-

scribed here the PEDT approach provides sophisticated methods for combining spatial

information with pixelwise class predictions, but the emphasis is still on obtaining class

predictions based on some combination of localised pixel features. However there are

limitations of any method which uses some local model to map pixels or regions to class

labels. For larger numbers of classes, predicting an object type from colour and textural

characteristics alone is difficult. In the PEDT framework hierarchical information can

help for compound objects, but is only useful if the lowest level labels produced by the

pixel model are reasonably accurate in the first place. In problematic situations it could

be more suitable to move to more unsupervised methods, using any ground truth labels

at a later stage of processing.

The PEDT framework could be adapted for unsupervised methods by allowing the

X variables to represent certain types of textural characteristics and building object

structures from there, or perhaps better still replacing class labels X with some real

valued texture and colour features X∗ and using some form of real-valued Gaussian

distribution P (X∗|Z) instead. This may also provide advantages in temporal models by

giving better clues for correspondence between nodes in two time frames.

The position-encoding dynamic tree formalism introduced here is flexible in that it

can include other discrete or real valued variables of interest. It can be used to represent

simple dynamic tree and fixed tree methods as well as the PEDT. It jointly deals with the

variables of interest to make sure the combined benefits of information from all domains

is used together. The PEDT should be seen as a step towards a structured hierarchical

object-based image model, where various object characteristics such as type, position,
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shape and component structure go to build a generative model for images.

Acknowledgements

This work is supported through EPSRC grant GR/L78161 Probabilistic Models for Se-

quences. We also thank British Aerospace for their support.

A Full derivation of structured variational method

We are interested in choosing Q(Z), Q(X|Z) and Q(R) of the forms (7) through to (8) to

minimise the KL divergence (6) (equivalent to maximising the variational log likelihood

Lvar defined in equation (14)). This is tackled in two stages. First we presume we are

given Q(Z), and look to optimise Q(R) and Q(X|Z). It turns out that the optimisation

of each of these can be done independently. Then given Q(X|Z) and Q(R), we optimise

Q(Z).

A.1 Optimisation of Q(X|Z)

The components of Lvar which depend on Q(X|Z) are given by

LX = −
∑
Z,X

Q(Z)Q(X|Z) log Q(X|Z) +
∑
Z,X

Q(Z)Q(X|Z) log P (X|Z)

+
∑
X,Z

Q(Z)Q(X|Z) log P (Y |X); (17)

all the other components sum out to a constant w.r.t Q(X|Z). Substituting in for Q(Z),

Q(X|Z), P (Y |X) and P (X|Z), and taking expectations over zij gives

LX = −
∑

ijkl

αijQ
kl
ijm

l
j(log Qkl

ij − log P kl
ij ) +

∑

i∈LH ,l

ml
i log P (Yi|xl

i = 1) (18)

where mk
i is the marginal probability that node i is in state k. This probability is fully

determined by all the Qkl
ij terms. To calculate the Qkl

ij which minimises this LX we use

∂LX

∂Qkl
ij

= − ∂Vij

∂Qkl
ij

−
∑

b

∂W b
i

∂mb
i

∂mb
i

∂Qkl
ij

(19)
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where

Vij(Qij, αij,mj) =
∑

kl

αij

[
Qkl

ijm
l
j log

Qkl
ij

P kl
ij

]
(20)

and

W k
i (mk

i , {αst, Qst|s ∈ d(i)}) =
∑

s∈d(i),t

∑

ab

αst[Q
ab
stm

b
t(log Qab

st − log P ab
st )]

−
∑

s∈LH ,l∈C

ml
s log P (Ys|xl

s = 1). (21)

Here d(i) denotes the set of nodes in layers below i (i.e. the possible descendants of i).

The mb
t terms are entirely dependent on the mk

i and the Q’s.

Most of the derivatives in (19) are straightforward to compute. The exception is
∂W b

i

∂mb
i
.

This can be obtained by propagating the derivatives from the layer below.

∂W b
i

∂mb
i

=
∑

c∈c(i)

(
∂Vci

∂mk
i

+
∑

p

∂W p
c

∂mp
c

∂mp
c

∂mk
i

)
(22)

where c(i) denotes the set of nodes in the layer immediately below i (i.e. possible children

of i). The Q’s are updated from the bottom layer to the top layer by first propagating

the derivatives (22):

T k
i =

∂W k
i

∂mk
i

=
∑

c∈c(i)

∑
g

αciQ
gk
ci (log

Qgk
ci

P gk
ci

+ T g
c ) (23)

defined for i ∈ N \ LH , and T k
i = log P (Yi|xk

i = 1) for i in LH . Then optimising ∂LX

∂Qab
st

with Lagrange multipliers to encode the probabilistic constraints on the Q’s gives

Qkl
ij =

P kl
ij exp(−T k

i )∑
a P kl

ij exp(−T k
i )

(24)

for all nodes i. Defining λk
i to be exp(−T k

i ), and substituting the above form for Q in to

(23), we obtain equation (10) for all i ∈ N \ LH . For i ∈ LH we have the initial values

λk
i = exp(−T k

i ) = P (Yi|xk
i = 1). Propagating these λ values up the network allows us
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to find all the conditional probabilities Qkl
ij . These in turn can be used to calculate the

marginal probabilities at each node giving mk
s =

∑
t αst

∑
l Q

kl
stm

l
t, which is equation (9)

If we write mk
s = κk

sπ
k
sλ

k
s , then we obtain from (24) the equation πk

s =
∑

tl µstP
kl
st π

l
tλ

l
t/λ

l
st

where λb
ij is given by κi

∑
k P kb

ij λk
i /κj.

This result is very similar to belief propagation in trees. The whole Q distribution

and marginals m (given the α values) can be calculated in two passes. The λ values

are propagated up the network and this gives the Q distribution. Then the means m

can be propagated down the network. In the special case of αij = 1 for only one value

of j, and αij = 0 otherwise (this defines a simple tree structured belief network) the

above algorithm reduces to Pearl belief propagation. This can be seen by noticing that

in Pearl propagation the constants of proportionality are given by κi = κj = P (Y ), the

probability of the evidential nodes, and by observing that with the above assumption

about α,

λb
ij =

∑

k

P kb
ij λk

i and λb
i =

∏
j

λb
ij, and hence πa

s =
∑

tb

P ab
ij πb

j

∏

k 6=j

λb
ik. (25)

These are the standard belief propagation rules for a tree-structured belief network.

A.2 Optimisation of Q(R′)

Once again, we need to maximize the variational log likelihood, this time with respect

to Q(R′). The terms in the variational log likelihood relevant to this optimisation are

denoted by LR and given by

LR = −〈log Q(R′)〉Q(R′) −
∑
ij

αij[〈(ri − rj)Σ
−1
ij (ri − rj)〉Q(R′)]. (26)

In order to move further we need to make more assumptions about the form of the

Q(R′) distribution. We choose to use a mean field approximation:

Q(R′) =
∏

i

1

(2π)d/2|Ωi|1/2
exp

(
−1

2
(rT

i − µT
i )Ω−1

i (ri − µi)

)
. (27)
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Substituting in to (26) and using the facts 〈(rk
i − µk

i )(r
l
i − µl

i)〉Q(R′) = (Ωi)kl and

〈(ri− rj)Σ
−1
ij (ri− rj)〉Q(R′) = 〈(ri−µi)

T Σ−1
ij (ri−µi)〉Q(R′) + 〈(rj−µi)

T Σ−1
ij (rj−µi)〉Q(R′)

we get

LR = −
∑
ij

αij

[
1

2
log

1

|Ωi| +
1

2
〈(rj − µ)T Σ−1

ij (rj − µi)〉Q(R′) +
1

2
Tr(Σ−1

ij Ωi)

]
. (28)

Performing the final expectation gives us

LR = −
∑
ij

αij

[
1

2
log

1

|Ωi| +
1

2
(µj − µi)

T Σ−1
ij (µj − µi) +

1

2
Tr(Σ−1

ij (Ωi + Ωj))

]
. (29)

First we differentiate this LR with respect to each element µk
i and equate to zero to get

µi =
∑

j

αji(Σji)
−1µj +

∑
j

αij(Σij)
−1µj. (30)

Next we need to optimise the elements of Ωi. This is less straightforward because these

elements occur in determinants and traces, and are subject to a constraint of positive

definiteness.

At this stage we will consider the case where both Σ and Ω are diagonal. Then when

we take derivatives with respect to (Ωi)pp we get

(Ωi)pp =
1∑

j αij(Σij)−1
pp + αji(Σji)−1

pp

. (31)

This gives us the last of the mean field equations, and so we can now perform the opti-

misation.

A.3 Optimisation of Q(Z)

The terms of the variational log likelihood relevant to this optimisation is given by

LZ = −
〈

log
Q(Z)

P (Z)

〉
Q(Z)

−
〈

log
Q(X|Z)

P (X|Z)

〉
Q(Z)Q(X|Z)

−
〈

log
Q(R′)

P (R|Z)

〉
Q(Z)Q(R′)

. (32)
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Using the approximation form Q(Z) =
∑

ij α
zij

ij , substituting in for Q(X|Z), Q(R), P (Z),

P (X|Z), P (R|Z) and taking expectations over X and R and Z gives

LZ = −
∑
ij

αij

[
log

αij

γij

+ Ψij + Φij

]
(33)

where Ψij =
∑

l

ml
j[log

∑

k

P kl
ij λk

i ] and

Φij =
1

2
(µi − µj)

T Σ−1
ij (µi − µj) +

1

2
Tr(Σ−1

ij Ωi) +
1

2
Tr(Σ−1

ij Ωj).

Differentiating with respect to αij (with Lagrange multipliers to encode the constraint
∑

j αij = 1) gives the required result αij ∝ γij exp(−Ψij) exp(−Φij) where the constant

of proportionality is given by normalisation.

B The dynamic tree within the PEDT formalism

It is possible to code and run the dynamic tree within the PEDT formalism. We show in

this section that the DT is equivalent to the PEDT with a fixed Q(R′) up to an additive

constant in the variational log likelihood. Suppose we choose a distribution Q(R′) to place

each node centre in a quadtree like position. Hence the top layer node will be centred on

the image, the four nodes in the next layer will be centred in each of the four quadrants

of the image, the sixteen nodes of the next layer in the quadrants of those quadrants

etc. For non-square images and other node numbers per layer a simple generalisation of

this approach can be used distributing nodes evenly across image space. Now we give a

variance to each node which will denote the affinities of the dynamic tree (see [29] for an

understanding of affinities). This is similar to the method for calculating affinities used

in [26]. Then we can set the prior P ∗(Z) over connectivity in the dynamic tree to be

given by

argminQ(Z)

∫
dR′ ∑

Z

Q(Z)Q(R′) log
Q(Z)Q(R′)

P (Z, R)
(34)
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where P (Z) and P (R) are the usual PEDT distributions and Q(Z) and Q(R′) take the

usual form. This gives

P ∗(Z) =
1

Λ
exp

(∫
dR′Q(R′) log

P (Z,R)

Q(R′)

)
. (35)

where Λ is a normalisation constant. This probability is highest if Z is such that the par-

ents of each node are the closest node from the layer above. Furthermore the distribution

P ∗(Z) factorises for each node because that is the required form of Q(Z).

The structured variational free energy for the dynamic tree can be used to obtain a

lower bound to the probability of the data

log P ∗(Y |Θ) ≥ LDT where LDT = −
∑
X,Z

Q(Z)Q(X|Z) log
Q(Z)Q(X|Z)

P ∗(Z)P (X|Z)
. (36)

Substituting in for the derived prior (35) gives

LDT = −
∫

dR′ ∑
X,Z

Q(Z)Q(R′)Q(X|Z) log
Q(Z)Q(X|Z)Q(R′)

P (Z)P (R|Z)P (X|Z)
− log Λ. (37)

The first term on the RHS is the variational log likelihood for the PEDT. The only

annoyance here is the log Λ, which is an ignorable constant. Hence we can optimise the

variational log likelihood of the dynamic tree by optimising the variational log likelihood

of the PEDT, but keeping Q(R) fixed.
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