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Abstract
We present a new model for prediction markets,
in which we use risk measures to model agents
and introduce a market maker to describe the
trading process. This specific choice of mod-
elling approach enables us to show that the whole
market approaches a global objective, despite the
fact that the market is designed such that each
agent only cares about its own goal. In addi-
tion, the market dynamic provides a sensible al-
gorithm for optimising the global objective. An
intimate connection between machine learning
and our markets is thus established, such that
we could 1) analyse a market by applying ma-
chine learning methods to the global objective;
and 2) solve machine learning problems by set-
ting up and running certain markets.

1. Introduction
Following the mainstream interest in “big data”, one valu-
able direction of machine learning is towards building up
distributed, scalable and self-incentivised systems which
could organise for solving large scale problems. Recently,
prediction markets (Wolfers and Zitzewitz, 2004) show
promise of being an abstract framework for machine learn-
ers to design these systems. As one type of markets, predic-
tion markets naturally introduce the concepts such as self-
incentivised computation and distributed environment. Ad-
ditionally, the close relationship between prediction mar-
kets and probabilities sheds light on a new way of achieving
probabilistic modelling (Storkey, 2011).

Since Pennock and Wellman (1996), researchers have spent
decades on building connections between machine learning
and prediction markets. However there is still much scope
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for research in this area. One reason is that the frame-
work of prediction markets still leaves open many design
decisions, and in order to analyse the markets for machine
learning goals one has to first specify a market model to
describe the prediction markets. The other reason is that
given a market model, we may still not know what the mar-
ket is doing, even if we understand agent behaviours and
market mechanisms. As distinct from most machine learn-
ing methods which explicitly define and optimise certain
objectives, markets only introduce local objectives for each
individual agent. To interpret a market as a machine learn-
ing method, we have to find the global objective that the
market aims to optimise. This idea motivates our work.

Instead of just focusing on market mechanisms (Chen and
Wortman Vaughan, 2010), we would like to incorporate the
agents and analyse our market as a whole. This setting is
similar to Storkey (2011); Frongillo et al. (2012); Barbu
and Lay (2012); but unlike Barbu and Lay (2012), we will
build a model on agent behaviours; and unlike Storkey
(2011) and Frongillo et al. (2012), we model agents using
risk measures, which provides analytical advantages.

The novel results of this paper include:

• a simple model for whole markets, which includes
models of both the market mechanism and agents, and
is easy to analyse.

• the analysis of the model which shows that there is a
global objective that the market aims to optimise as
a whole, and that the market trading process forms a
sequential optimisation of it;

• a primal-dual relation that exists between the market
and a class of machine learning problems, such that
we could leverage one to solve the other.

2. A General Prediction Market Setup
Let Ω be the space of all possible future states. We say
a prediction market is built on Ω if it trades securities as-
sociated with the future state ω ∈ Ω. Specifically, secu-
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rities are defined as a set of random variables {ξk(·)} =
{ξ1(·), ξ2(·) . . . , ξK(·)}. Each ξk(·) : Ω → R is a pay-
ment function, that is, one unit of this security will pay to
the holder ξk(ω) if ω turns out to be the future state. This
definition is quite general, and securities defined in this
way are also referred to as complex securities (Abernethy
et al., 2013). We require that all securities {ξk(·)} (col-
lected into the vector ξ(·)) are linearly independent, that
is, for a ∈ RK , we have a · ξ(·) = 0 only if a = 0. If
they are not, then we can always pick a subset {ξk′(·)} of
linearly independent securities from {ξk(·)} such that all
the other securities in {ξk(·)} can be represented by the
linear combination of {ξk′(·)} (Kreyszig, 2007). There-
fore it is redundant to consider {ξk(·)} that are not linearly
independent. As an example, the Arrow-Debreu security
is a special case of complex securities. When the sam-
ple space Ω is discrete and contains only finite number of
states, Arrow-Debreu securities are a set of K = |Ω| secu-
rities, in which the k-th one pays one unit if the k-th state
is true: ξk(ω) = 1(ω = k). Note that in general cases
K < |Ω|, e.g. when the value of ω is continuous, there will
be infinite number of states but we always have a finite K
for practice.

Agents can only trade these predefined securities. The
behaviour of an agent is characterised by its portfolio
{w, sk} = {w, s1, s2, . . . , sK}, where w is the amount of
money that the agent has, and sk is the amount of shares
the agent holds in security k. We collect all sk into vector
s. If an agent has a portfolio {w, sk}, the total payment of
the securities is

X(·) = s · ξ(·), (1)

whereX(·) : Ω→ R is in essence a random variable on Ω.
We call X(·) the risky asset because of its uncertainty and
w the risk-free asset. The gross payment is thus

X̂(·) = w + s · ξ(·) = w +X(·), (2)

which is also a random variable. We call X̂(·) the (gross)
asset. Denote X the set of all X(·) that are accessible for
an agent, and similarly X̂ the set of all X̂(·). Notice that
since {ξk(·)} are linearly independent, there exists a unique
map (bijection) between X(·) and s via (1). Therefore a
portfolio could also be represented by {w,X(·)}. In our
setting X ⊆ span(ξ1(·), ξ2(·) . . . , ξK(·)), but it is possible
to makeX more abstract, which is not a space spanned by a
prefixed number of securities but allows new security types
to be added on the fly. This discussion is beyond our scope.

A market consists of two processes, that 1) each agent
chooses a portfolio {w,X(·)} it would like to hold, and
2) agents try to move to their preferred portfolio by trad-
ing. To describe the decision making process we need a
model of portfolio selection, while to describe trading we
need to specify a market mechanism. These two parts will
be discussed in Section 3 and 4.

Later in this paper, when the context is clear we will omit
parentheses and write a random variable in an uppercase
letter, e.g. X (except the securities, which are denoted by
ξ), and use the lowercase of the same letter for the value of
it, e.g. x. We will also write functionals in letters without
any parentheses.

3. Preferences on Assets
Agents select assets based on their preferences. An agent’s
preference order of two assets is measured by a functional
f : X̂ → R, such that the agent prefers one asset X̂ than
the other asset Ŷ if and only if f(X̂) > f(Ŷ ), and that
the agent is indifferent between X and Y if and only if
f(X̂) = f(Ŷ ). There are plenty of theories on choosing
and analysing a specific form of f . These includes ex-
pected utility theory (EUT) (Von Neumann and Morgen-
stern, 2007), dual utility theory (Yaari, 1987), risk mea-
sures (Artzner et al., 1999), etc. EUT is perhaps the most
popular theories in economics and game theory, while risk
measures are commonly seen in finance literature. We
choose to use risk measures to model agent behaviours. We
introduce risk measures in this section, while putting the
detailed justification of using risk measures and its relation
to EUT in Section 6.

3.1. Risk measures

As is indicated by their name, risk measures assign higher
scores to assets that are more “risky”. They can also be
understood as measures of the potential loss of choosing
certain asset. A (monetary) risk measure is defined as a
functional ρ : X → R such that ρ(0) is finite and ρ satisfies
the following conditions (Artzner et al., 1999):

Translation invariance If X ∈ X and m ∈ R, then

ρ(X +m) = ρ(X)−m. (3)

Monotonicity If X,Y ∈ X and X ≤ Y , then

ρ(X) ≥ ρ(Y ). (4)

Here X ≤ Y should be understood as P (x ≤ y) = 1, that
is, with the probability of one that X will generate a lower
return than Y . Thus monotonicity indicates that an asset
with a better return deserves a lower risk. Due to transla-
tion invariance, a risk measure maps any risk-free asset to
itself, and is additive w.r.t. any risk-free asset. Therefore,
the output of a risk measure has the same unit with a risk-
free asset, and can be calculated like an asset.

The domains of risk measures and the preference functional
f are different, as risk measures are defined on X while the
space of assets that agent can hold is X̂ . Fortunately, we
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could easily extend the definition of risk measures to the
domain X̂ by applying translation invariance (3)

ρ(X̂) = ρ(X + w) = ρ(X)− w, ∀X̂ ∈ X̂ . (5)

A corresponding f can thus be obtained by f = −ρ.

Risk measures are very generic. In our discussion we will
use both risk measures and a specific class of them, the
convex risk measures (Föllmer and Schied, 2002). A risk
measure is convex if ∀X1, X2 ∈ X and λ ∈ [0, 1]

ρ(λX1 + (1− λ)X2) ≤ λρ(X1) + (1− λ)ρ(X2). (6)

It says that the risk of a combination of two assets should
not be higher than holding them separately. In other words,
convex risk measures encourage diversification, which is a
natural condition on risk measures.

Examples of risk measures A famous non-convex risk
measure is the Value at Risk (VaR) (Linsmeier and Pear-
son, 2000), which outputs a threshold loss l such that the
probability of −X exceeding l is smaller than a predefined
level

VaRα(X) ≡ inf{l ∈ R | P (−X > l) ≤ 1− α}. (7)

A famous convex risk measure is the Entropic risk measure
(Föllmer and Schied, 2004)

ρE =
1

θ
logMX(−θ) = sup

Q∈P
EQ[−X]− 1

θ
D[Q||P ]. (8)

Here MX(t) ≡ EP [etX ] is the moment-generating func-
tion, and D[·||·] is the KL-divergence (and this is where
“entropic” comes in). We mention that the second repre-
sentation of ρE holds for all convex risk measures, and this
representation becomes the key to connecting the markets
to machine learning (cf. Section 5).

3.2. Rational Choices

Recall that a portfolio that leads to a higher value of f(X̂)
is preferred. Thus the favourite portfolio of an agent
should be the one that maximises f , which we denote by
{w,X}opt. The behaviour of choosing {w,X}opt is called
the rational choice, and an agent is rational if it always
chooses {w,X}opt as its trading goal. Since in our frame-
work f = −ρ, a rational agent will choose will {w,X}opt
under the rule of

min
{w,X}

ρ(X̂) = min
{w,X}

ρ(w +X). (9)

In a market an agent only cares about its own goal (9). It
seems like this property prevents us from linking markets
to machine learning methods, as the latter always aim to
achieve certain global objectives. However, with a care-
ful design, we can let our markets implicitly define global
objectives and make an agent contribute to the global ob-
jective at the same time as it achieves its own goal.

4. Multi-period Trading Markets
In this section we will build our market, a multi-period
trading market whose trades are driven by a market maker.
“Multi-period” is used to indicate that the prices of the se-
curities are allowed to vary at different time steps, and that
agents can trade with the market maker at multiple times
(Föllmer and Schied, 2004). The market maker is intro-
duced to simplify the market mechanism and to make the
market run efficiently.

It is difficult to characterise the trading process in the mar-
kets with unspecified mechanisms, and those markets may
not run efficiently. For example, there may not exist a con-
sistent agreement among agents on how much should be
paid to buy/sell one share of a security. Moreover, one
agent who wants to sell a certain amount of shares may
not find any buyers (Chen and Pennock, 2007). One way
to simplify the trading process is by introducing a market
maker (Hanson, 2007). A market maker is a special agent.
It is a price maker, who defines the price for trading each
security. All agents are only allowed to trade with the mar-
ket maker. They can, however, make a trade at any time as
long as they agree to pay under the market maker’s pric-
ing. The pricing rule of a market maker at time step t is a
functional ct : X → R. At different time steps the cost
for purchasing an asset may be different, i.e. it may happen
that ct(X) 6= ct′(X) when t 6= t′.

Suppose that an agent has a portfolio {wt−1, Xt−1} at time
t− 1 and it would like to buy ∆Xt from the market maker
at t. The agent cannot propose an arbitrary price ∆wt for
∆Xt but has to accept the price provided by the market
maker ∆wt = −ct(∆Xt). The updated portfolio is thus
restricted to {wt−1− ct(∆Xt), Xt−1 + ∆Xt}, and the up-
dated asset is restricted to X̂t = Xt−1 + wt−1 + ∆Xt −
ct(∆Xt). Now a rational agent only cares about choosing
its optimal purchase amount ∆Xt such that ρ(X̂t) is min-
imised:

min
{wt,Xt}

ρ(X̂t)

= min
∆Xt∈X

ρ(Xt−1 + ∆Xt + wt−1 − ct(∆Xt)). (10)

This portfolio selection procedure leads to Algorithm 1.

Algorithm 1 Select({wt−1, Xt−1}, ρ(·), ct(·)): portfolio
selection of a rational agent
Input: portfolio {wt−1, Xt−1}, risk measure ρ(·), pricing

rule ct(·)
Choose the ∆Xt that minimise (10)

Output: {∆Xt,−ct(∆Xt)}

We now consider a multi-period market which involves a
set A = {1, 2, . . . , N} of agents and a market maker. As-
sume that at each round t there is only one agent at ∈ A
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that trades with the market maker. This assumption indi-
cates that each agent trades with the market maker sepa-
rately, and they do not cooperate to make a joint purchase.
{a1, a2, . . . , aT } is thus the trading queue of the market.
Since there are multiple agents, we use an extra subscript
to distinguish the portfolios of different agents. For exam-
ple, an agent n ∈ A’s portfolio at time t is {wn,t, Xn,t}.
The initial values are denoted with the subscript t = 0. We
collect all wn,t, Xn,t, X̂n,t into vectors wt,Xt and X̂t, re-
spectively. We assume that agents do not bring in any risky
asset at the beginning, which is a natural assumption since
only the market maker can issue securities. This assump-
tion means we have X0 = 0 and so X̂0 = w0.

At time t, only the agent at updates its portfolio by trading
with the market maker while all the other agents keep the
same portfolios as at t−1. Suppose the asset that the agent
at would like to purchase is ∆Xat,t, then for all n ∈ A

Xn,t = Xn,t−1 + 1(n = at)∆Xat,t, (11a)
wn,t = wn,t−1 − 1(n = at)ct(∆Xat,t). (11b)

Algorithm 2 runs a multi-period trading market.

Algorithm 2 A multi-period market with a set A of agents
and a market maker
Input: initial portfolios {w,X0}, risk measures {ρn(·)},

pricing rule ct(·), time period T
for t = 1 to T do

for each agent n ∈ A do
propose {∆Xn,t,−ct(∆Xt)} using Algorithm 1

end for
trade happens between the market maker and at
for each agent n ∈ A do

update their portfolios using (11)
end for

end for

We can also split Algorithm 2 into the market maker rou-
tine and the agent routine (details in supp.). We do this
to emphasise the fact that each agent has its own objective
(achieving the optimal portfolio based on its unique prefer-
ence), plus a communication with the market maker.

4.1. Appropriate choice of the pricing rule ct(·)
There has been plenty of work on studying the pricing rule
ct(·) of a market maker (Brahma et al., 2012; Pennock,
2004). A popular class of mechanisms is Hanson’s mar-
ket scoring rules (Hanson, 2007). It is later formalised by
Abernethy et al. (2013), who use a set of reasonable axioms
to characterise the pricing mechanism. We apply their re-
sult to our framework.

Let ∆Xt ≡ ∆Xat,t be the trade with the market maker
at time t. Consider two situations: 1) a trade happens

with the market maker in ∆X; and 2) a trade happens with
the market maker in ∆X ′ and is followed by another trade
∆X ′′, where ∆X = ∆X ′ + ∆X ′′. A natural require-
ment is that the cost of purchasing ∆X should be equal
to the total cost of purchasing ∆X ′ and ∆X ′′. Under this
condition, Abernethy et al. (2013) show that there exists a
functional c : X → R which has the form

ct(∆Xt) = c(∆X1 + · · ·+ ∆Xt−1 + ∆Xt)

− c(∆X1 + · · ·+ ∆Xt−1). (12)

We say a pricing rule ct is path-independent if it has the
form of (12), and reload the notation c to represent ct.

5. The Machine Learning Objective of the
Multi-period Trading Markets

The primary goal of this paper is to establish an intimate
connection between machine learning and our new predic-
tion market model. Before we start to analyse the multi-
period trading markets, we introduce the machine learn-
ing context for which we want our markets to be utilised.
Many machine learning tasks could be interpreted under
the following generic framework: given a set of data sam-
pled from a space Ω, and a hypothesis space P which con-
tains a class of accessible probabilities on Ω, we would like
to find a probability from P that can best describe the data.
Usually we use a functional F : P → R to characterise the
“best” performance, such that the best probability is the one
that minimises F . Formally, this involves an optimisation
problem

min
P∈P

F (P ) (13)

For specific problems in which the information comes from
different parts of the data or the models, F has a form
of F =

∑
n Fn, the sum of a set of functionals which

share the same domain P (see examples in Section 7 for
details). We will show that a multi-period market effec-
tively defines and optimises a machine learning task whose
F =

∑
n Fn(P ).

The connection is established in two steps: first we show
that the market does have a global objective, and then show
that under mild conditions the market optimises the dual of
a machine learning problem minP∈P

∑
n Fn.

5.1. The global objective of a market

We show that a multi-period trading market minimises a
global objective. The optimisation is done sequentially via
the market trading dynamics, that is, an agent will con-
tribute to minimising this global objective as long as it
makes a trade with the market maker. This argument is
formalised in the following
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Proposition 1 (The global objective of a market). A multi-
period market (Algorithm 2) with a path-independent pric-
ing rule market maker aims to minimise the global objec-
tive

L = c(Y ) +
∑
n∈A

ρn(Xn), Y =
∑
n∈A

Xn, (14)

by performing a sequential optimisation algorithm, which
is implemented by the market trading process (cf. (10) and
(11)): define ϕat(∆X

′
t) ≡ ρat(Xat,t−1+∆X ′t+wat,t−1−

ct(∆X
′
t)) and for each time t

∆Xt = arg min∆X′t
ϕat(∆X

′
t), (15a)

Xn,t = Xn,t−1 + 1(n = at)∆Xt, (15b)
wn,t = wn,t−1 − 1(n = at)ct(∆Xt), (15c)
Yt = Yt−1 + ∆Xt, (15d)

If the algorithm converges at time t′, i.e. ∆Xt = 0 for all
t > t′, then {Xn,t′}, Yt′ achieves a local minimum of the
objective L in (14).

Proof. Outline (details in supp.): recall that at time t only
agent at will trade with the market maker, so ∆Xt =
∆Xat,t and ∆Xn,t = 0, ∀n 6= at. At time t, for any agent
n all quantities calculated before t can be treated as con-
stants as they could no longer be modified. Therefore, the
functional that is minimised in (15a) has the same optimal
point as the following functional

lt(∆X
′
t) = ρat(Xat,t−1 + ∆X ′t + wat,t−1 − ct(∆X ′t))

− ρat(Xat,t−1 + wat,t−1). (16)

Define LT =
∑T
t=1 lt and use the translation invariance

of a risk measure and the path-independence of the pricing
rule. We will end up with

min
{∆Xt}

LT = min
{∆Xt}

c(YT ) +
∑
n∈A

ρn(Xn,T )− C, (17)

where Yt =
∑t
τ=1 ∆Xτ =

∑
n∈AXn,t holds for ∀t >

0, and C is a constant. (17) is a sequential minimisation
scheme for minL. Finally, if the market converges at time
T , we have Xn = Xn,T and Y = YT , leading to a local
minimal point of L.

Proposition 1 is the key to understanding the market mech-
anism. Despite the fact that the market is set up to let agents
behave under their own preferences, the market mechanism
ensures that a global objective is established, and that the
agent will contribute to optimising the global objective at
the same time as it optimise its own goal. The trading pro-
cess thus provides a sensible algorithm for achieving this
global objective.

5.2. A primal-dual representation via convex analysis

One concern is that (14) is not commonly seen in ma-
chine learning problems1. A different view of this objective
should somehow be introduced. In fact, under mild require-
ments on the form of risk measures and pricing rules, the
global objective forms the dual of the optimisation problem
minP∈P

∑
n Fn(P ). The requirement for the risk mea-

sures is convexity (6). The requirement for the pricing rules
is that it is duality-based (Abernethy et al., 2013).

5.2.1. MORE ON CONVEX RISK MEASURES

Artzner et al. (1999) and Föllmer and Schied (2002) show
that a convex risk measure has a form

ρ(X) = sup
Q∈P

(EQ[−X]− α(Q)) , (18)

where P is a set of probabilities on (Ω,F) such that Q is
absolutely continuous w.r.t. P and EQ[X] is well defined.
The risk measure decreases as EQ[X] increases but this ef-
fect is penalised by a functional α. (18) is in essence a
Legendre-Fenchel transform with a slight change on signs
(Boyd and Vandenberghe, 2004).

5.2.2. DUALITY-BASED PRICING RULES

We keep following the idea of Abernethy et al. (2013) and
apply their duality-based pricing rules to our problem. The
authors point out that duality-based pricing rules are well
motivated as they meet some natural conditions such as no-
arbitrage. A duality-based pricing rule is path-independent
and has a form2

c(X) ≡ sup
Q∈P

(EQ[X]−R(Q)) = R∗(X), (19)

where R∗ denotes the Legendre-Fenchel transform of R.
Note that in their work R is required to be convex, but this
condition could be relaxed since for any R we could define
R′ ≡ (R∗)∗ = c∗ to replace R, as R′ is always convex (as
it is a conjugate dual) and c = (R′)∗ = R∗.

5.2.3. THE PRIMAL PROBLEM

Now we are ready to show
Proposition 2 (The primal problem). For a multi-period
market which involves agents who use convex risk measures
in (18) and a duality-based pricing rule market maker in
(19), its global objective is a weak dual of

min
P∈P

N∑
n=0

Fn(P ), (20)

1However, to complete our discussion, we show one example
that uses (14) in Section 7

2Abernethy et al. (2013) represent markets in securities {ξk}
and shares {sk}. To be consistent with our framework we change
the representation to assets X (cf. Section 2).
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where F0 and Fn are functionals that share the same do-
main P . Specifically, F0 = R in (19), and Fn = αn where
αn is the penalty functional of agent n.

Proof. We use the generalised Fenchel’s duality (Shalev-
Shwartz and Singer, 2007) to derive the Lagrange dual
problem of (20). Under the generalised Fenchel’s duality,
the dual problem (weak duality) is

− min
{Xn}∈X

F ∗0 (Y )+

N∑
n=1

F ∗n(−Xn), Y =

N∑
n=1

Xn, (21)

where F ∗n denotes the Legendre-Fenchel transform.

We construct the convex risk measure for each agent n. use
(18) and choose α = Fn

ρn(X) = sup
Q∈P

(EQ[−X]− Fn(Q)) = F ∗n(−X). (22)

For the pricing rule (19) we choose R = F0 and obtain
c = F ∗0 . Substitute them back to the dual problem (21) and
we end up with

− min
{Xn}

L = − min
{Xn}∈X

c(Y ) +

N∑
n=1

ρn(Xn). (23)

This matches the global objective L (cf. (14)) with a dif-
ferent sign. The negation sign is necessary because the La-
grange dual lower bounds the primal in general

− min
{Xn}

L ≤ min
P∈P

N∑
n=0

Fn(X). (24)

If strong duality holds (Boyd and Vandenberghe, 2004),
equality holds in (24) and the global objective is the equiv-
alent to the primal machine learning problem.

Proposition 2 gives us two ways of building the connection
between markets and machine learning: 1) If we model a
market using our framework, we could then figure out the
global objective of the market and then the primal prob-
lem, which can be solved using machine learning methods.
2) More interestingly, given a machine learning problem
of form (20), we could transform it to a market and solve
the problem by running the market, during which we could
take the advantage of some market properties, such as dis-
tributed environment and privacy, to gain extra benefits.

6. Related Work
The idea of building models for prediction markets and dis-
cussing their relation to optimisation is not novel, and sig-
nificant progress has been achieved in the past few years.
We will discuss the work that is closely related to ours.

In Chen and Wortman Vaughan (2010), the authors show
that scoring rule market makers perform online no-regret
learning. Their study focuses on the market makers while
agents are not directly modelled, which motivates a frame-
work for the whole market.

Storkey (2011) defines and analyses a type of prediction
markets based on definitions on the markets, securities, and
agents. Agents are modelled by as maximisers of expected
utility. By analysing the equilibrium status of the market
the author shows that the market can aggregate beliefs from
agents to output a probability distribution over the future
events. The author focuses on equilibria rather than precise
market mechanisms, and does not provide any global ob-
jective of the market, which makes it difficult to link these
markets to optimisation procedures.

Frongillo et al. (2012) apply market scoring rules as the
market mechanism to the framework of Storkey (2011).
The work shows that with a large population of agents
whose portfolios are drawn from a demand distribution, the
whole market implements stochastic mirror descent. One
concern is that they suggest using EUT to model agents
but they do not use it to solve the optimal portfolios for
the agents. This problem is partially solved by Premachan-
dra and Reid (2013), who derives the solution for a certain
type of expected utilities. A similar setting is also stud-
ied by Sethi and Wortman Vaughan (2013). They focus
more on the convergence of the market dynamics, and show
how markets can aggregate beliefs by using numerical evi-
dences.

6.1. Risk measures and EUT

Here we justify the choice of risk measures as the agent
decision rules. First, the output value of a risk measure
can be treated as a risk-free asset and standard linear oper-
ations are well defined for it. In comparison, an expected
utility outputs a number that only has abstract meaning, i.e.
to measure the degree of agent’s satisfaction. Additionally,
risk measures force translation invariance by definition, but
expected utility functions do not have this property in gen-
eral. With the help of translation invariance, the wealth w
can always be separated from the risky asset X , which im-
plies that the optimal portfolio does not depend on w. This
saves us from the trouble of associating w with the aggre-
gation weights, as the relationship between them is highly
inconsistent and varies dramatically under different utilities
(Storkey et al., 2012). Finally, we could always derive con-
vex a risk measure ρu from any expected utility (Föllmer
and Schied, 2004)

ρu(X) ≡ inf{m ∈ R | EP [u(X +m)] ≥ u0}, (25)

where P is the personal belief of the agent. In fact, the
output of this risk measure is the risk premium, the least
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amount of money that one would like to borrow in order
to accept this risky asset. Then a sensible decision rule
should be to find an asset that minimises the premium,
which leads to risk minimisation. For example, the entropic
risk measure in (8) can be given by the exponential utility
u = − exp(−ax), with θ = a (Föllmer and Schied, 2002).

7. Examples
In this section we use three examples to illustrate the con-
nections between the multi-period trading markets and ma-
chine learning.

Opinion Pooling The opinion pooling problem is a com-
mon setting for prediction market models (Barbu and Lay,
2012; Storkey et al., 2012). Garg et al. (2004) show that
the objective of an opinion pool is to minimise a weighted
sum of a set of divergences. Particularly, for logarithmic
opinion pool the objective is to

min
P∈P

∑
n

wnD[P ||Pn]. (26)

where D[·||·] is the KL-divergence and {wn} are weight
parameters.

Now consider an log-opinion pool of a set of A probabili-
ties on a finite discrete sample space Ω withK states. To set
up a market that matches the log-opinion pool, we first de-
fine a market on the same space Ω and introduce K Arrow-
Debreu securities. We introduce N agents, and assign a
unique probability Pn ∈ A to agent n as its personal belief.
According to (8), agent n’s risk measure has the form

ρn(sn) =
1

θn
log

K∑
k=1

pke
−θnsn,k , (27)

where we let θn match the weightwn by θ−1
n = wn. For the

sake of simplicity, we choose a logarithmic market scoring
rule market maker (Hanson, 2007)

c(s0) =
1

θ0
log

K∑
k=1

eθ0s0,k . (28)

The market can be run by using Algorithm 2. Two typical
simulation results are shown in Figure 1 and 2. The primal
problem of this market is (applying Proposition 1 and 2)

min
P∈P

1

θ0
D[P ||P0] +

∑
n∈A

1

θn
D[P ||Pn], (29)

where the domain P = ∆K is the probability simplex in
K dimensions and P0 = uniform(K) is the discrete uni-
form distribution in ∆K . In this case the optimal P can be
analytically solved. Recall that θ−1

n = wn and we have

P ∝
∏
n∈A

P
wn/(θ

−1
0 +

∑
n∈A wn)

n . (30)
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Figure 1. A market with Arrow-Debreu securities defined on a bi-
nary event ω. N = 10 agents are involved. All agents start with
a uniform prior on ω and each one builds its own posterior belief
after a private observation of 5 samples of ω. The market price
converges to a position which is close to the unbiased agent aggre-
gation, but with a small bias towards 0.5. The bias is introduced
by the market maker (cf. (30)).

Since we introduce the market maker, the aggregated belief
P is not a pure weighted product of agents’ beliefs, but
with a bias towards P0. However, when the population is
sufficiently large such that

∑
n θ
−1
n � θ−1

0 , the effect of
the market maker could be ignored and we will end up with
a pure aggregation of agent beliefs (Frongillo et al., 2012).

Bayesian Update We give our second example by first
setting up a market and then match a machine learning
problem to the market. Let us build a market on a con-
tinuous sample space Ω = R. We only define one security
ξ(ω) = ω, and so the asset X = sω. We introduce only
one agent. Again, the agent is characterised by an entropic
risk measures, with coefficient θ1 and P1 = N (µ1, σ

2
1) is

the normal distribution. The moment-generating function
in (8) is

MX(−θ1) = EP1
[e−θ1sω] = e−θ1sµ1+σ2

1θ
2
1s

2/2, (31)

and so the risk measure is ρ1(s) = −sµ1 + σ2
1θ1s

2/2. For
the market maker we use the quadratic market scoring rule
c(s) = θ0s

2/2. Now we could run this market using Algo-
rithm 2 with only one agent.

It can be shown that this market implements a Bayesian
maximum a posteriori (MAP) update for the Gaussian, in
which the prior is provided by the market maker and the
likelihood information is provided by the agent. The MAP
update in the primal form is

min
µ∈R

1

θ0

µ2

2
+

1

θ1

(µ− µ1)2

2σ2
1

, (32)
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Figure 2. A market which has the same setting with Figure 1 but
this time N = 100 agents are involved. After increasing the pop-
ulation, the market price does not show a sign of convergence
before t = 500. Comparatively, the average price quickly con-
verges to the aggregation belief. This is expected, as for a large
population the market should reproduce the results of Frongillo
et al. (2012).

while this update is done by the market in the dual space of
the space of the mean parameter µ (details in supp.).

Logistic Regression In the third example we discuss a
classical machine learning problem. Given a data set D =
{{xm,ym}|xm ∈ RK ,ym = {+1,−1},m = 1, . . . ,M},
we would like to build logistic regression model with l2-
regularisation. The objective is

L = min
w∈RK

1

M

M∑
m=1

log
(

1 + eym(w·xm)
)

+
λ

2
‖w‖2, (33)

where ‖ · ‖ is the l2 norm.

To convert this problem to a market we use (14) and Propo-
sition 1. Let the sample space be the space that generates
the data Ω ≡ RK ∪ {+1,−1} and each future state is
associated with a data in Ω, ω = {x, y}. Define K se-
curities, each of which is ξk(ω) = yxk. We introduce
N = K agents, such that the agent n = k is only inter-
ested in trading in the k-th security ξk. Thus the shares of
security k held by agent n is sn,k = 1(n = k)wk, and
the asset is Xn = sn · ξ = wnξn. The market inven-
tory is s0 =

∑
n sn = w. Let c(w) be the first term on

the RHS of (33) and define the risk measure of agent n as
ρn(sn) = λs2

n/2. We end up with

L = min
w

c(w) +

K∑
k=1

λ

2
w2
k = min

{sn}
c(s0) +

N∑
n=1

ρn(sn).

(34)

Now the market is ready to run under Algorithm 2. In
order to show a slightly deeper connection to a specific
learning method, we notice that the objective of agent n
at each round is min∆wk,t

c(wt−1 + ∆wk,t) + (wk,t−1 +
∆wk,t)

2/2. As the solution to this is not analytic, it is
costly to solve for the exactly minimum of this objective
at each time. To get rid of this problem, we could relax the
condition that agents behaviour is rationally optimal, and
let the agents accept a portfolio as long as it is better than
its current position ρn(ŝn,t) < ρn(ŝn,t−1). Specifically
agents can take steps towards the optimal solution. This
can be achieved by the following portfolio updating rule

∆wk,t = −a d

dwk

(
c(w) +

λ

2
w2
k

)∣∣∣∣
w=wt−1

, (35)

where a > 0 is adjusted such that ρn(ŝn,t) < ρn(ŝn,t−1).
In practice a could be chosen by backtracking line search
(Boyd and Vandenberghe, 2004). The market we designed
above effectively implements a coordinate descent algo-
rithm (Luo and Tseng, 1992).

Note that, instead of introducing N = K agents, we can
match the logistic regression problem by using only one
agent and allowing it to trade all securities. This will result
in a standard gradient descent method.

8. Conclusion
This paper establishes and discusses a new model for pre-
diction markets. We use risk measures instead of expected
utility to model agents, which results in an analytical mar-
ket framework. We show that our market as a whole op-
timises certain global objective through its market dynam-
ics. Based on this result, we make intimate connections
between machine learning and markets.

One area of future work would be conducting a detailed
analysis of this framework using the tools of convex op-
timisation. A particularly interesting topic is to find the
conditions under which the market will converge. As we
have observed, stochasticity plays a key part when a large
population of agents are involved, as is the case in most real
market settings (Frongillo et al., 2012).
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