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RAB18, RAB3GAP1, RAB3GAP2 and TBC1D20 are each mutated in Warburg

Micro syndrome, a rare autosomal recessive multisystem disorder. RAB3GAP1

and RAB3GAP2 form a binary ‘RAB3GAP’ complex that functions as a

guanine-nucleotide exchange factor (GEF) for RAB18, whereas TBC1D20

shows modest RAB18 GTPase-activating (GAP) activity in vitro. Here, we

show that in the absence of functional RAB3GAP or TBC1D20, the level, local-

ization and dynamics of cellular RAB18 is altered. In cell lines where TBC1D20

is absent from the endoplasmic reticulum (ER), RAB18 becomes more stably

ER-associated and less cytosolic than in control cells. These data suggest

that RAB18 is a physiological substrate of TBC1D20 and contribute to a

model in which a Rab-GAP can be essential for the activity of a target Rab.

Together with previous reports, this indicates that Warburg Micro syndrome

can be caused directly by loss of RAB18, or indirectly through loss of RAB18

regulators RAB3GAP or TBC1D20.
1. Background
Warburg Micro syndrome (MIM 600118, 614225, 615222, 615663) is a rare autoso-

mal recessive disorder characterized by severe eye and brain abnormalities [1,2]. It

can be caused by loss-of-function mutations in RAB18, RAB3GAP1, RAB3GAP2
or TBC1D20 [3–6]. Importantly, a mutation in any one of the known disease

genes produces a clinically indistinguishable condition [6,7]. Affected children

are born with cataracts and other eye abnormalities including microphthalmia,

microcornea and atonic pupils. They develop postnatal-onset microcephaly and

have cerebral malformations that include hypogenesis of the corpus callosum

and polymicrogyria. There is usually significant developmental delay and

affected individuals are normally unable to sit independently, walk or talk.

Rab proteins are small GTPases of the Ras superfamily (reviewed in [8]).

Proteins in this class are often referred to as molecular switches because they

adopt different conformations depending on whether they are bound to GDP or

GTP. It is thought that in a GDP-bound state they are largely inactive, whereas

in a GTP-bound state they are able to mediate downstream effects by interact-

ing with binding proteins referred to as effectors. The switching between these

states is governed by two classes of regulatory protein: the guanine-nucleotide

exchange factors (GEFs), which mediate the exchange of bound GDP for GTP,

and the GTPase-activating proteins (GAPs), which stimulate the GTP hydrolysis

activity of their substrate GTPase(s). Rab proteins also undergo cycles of membrane

association and dissociation that accompany their cycles of GTP binding and

hydrolysis. This is accomplished via GDP-dissociation inhibitor (GDI) proteins

that mediate the extraction of membrane-associated, GDP-bound Rabs into the

cytosol. The proper retargeting of cytosolic Rab proteins back onto cellular

membranes requires GDI and may also require a GDI-displacement factor (GDF).

http://crossmark.crossref.org/dialog/?doi=10.1098/rsob.150047&domain=pdf&date_stamp=2015-06-10
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RAB3GAP1 and RAB3GAP2 were characterized as form-

ing a complex with GAP activity towards Rab3 isoforms

before their involvement in Micro syndrome, or that of

RAB18, was known [9,10]. Recent work has now shown that

the complex also functions as a RAB18GEF [11]. Given that

the symptoms of individuals lacking a functional RAB3GAP1

or RAB3GAP2 mimic those of individuals lacking functional

RAB18, this implies that in the absence of cellular RAB18GEF

activity, RAB18 is unable to fulfil its cellular role.

The relationship between TBC1D20 and the other disease

gene products has not been explicitly explored. However,

multiple observations link its function to that of the

other proteins and suggest that, like RAB3GAP, it might

regulate RAB18. First, mice with a loss-of-function muta-

tion in Tbc1d20 show a highly similar ocular phenotype to

Rab18(2/2) mice, exhibiting nuclear cataracts [6,12,13]. Further,

at the cellular level, patient fibroblasts, TBC1D20 or RAB18-

deficient mouse fibroblasts, and Cos7 cells in which the disease

genes have been knocked down all show similarly altered lipid

droplet (LD) formation with respect to controls [6,11,12].

Finally, although characterized as a GAP for Rab1 and Rab2

isoforms, TBC1D20 shows modest in vitro GAP activity

towards RAB18 [14].

In this report, we show that RAB18 can be targeted from

the cytosol to the cis-Golgi in human fibroblasts, where it can

then be stabilized by RAB3GAP/RAB18GEF. Further, we

show that TBC1D20 functions to promote RAB18 dissociation

from the endoplasmic reticulum (ER) membrane into the

cytosol, probably though stimulating RAB18 GTP-hydrolysis.
2. Results and discussion
2.1. Loss of the RAB3GAP complex or TBC1D20 leads to

an increase in cellular levels of RAB18
We began quantitative PCR (qPCR) and western blot analysis

of a panel of control and patient-derived human skin

fibroblasts [6,11] to determine the effect of mutations in

RAB3GAP1, TBC1D20 and RAB18 on transcript and protein

levels of all of the known Micro syndrome disease genes

(figure 1). As expected, reduced levels of the cognate tran-

scripts resulted from the splicing mutation in RAB3GAP1,

RAB3GAP1(c.649-2A.G), and the nonsense mutation in

TBC1D20, TBC1D20(p.Gln98*), when compared with con-

trols (figure 1a). This is consistent with these mutations

introducing premature stop codons and thereby rendering

the transcripts susceptible to nonsense-mediated decay

(NMD). Consistent with this, no RAB3GAP1 or TBC1D20

protein was detectable by western blot in respective cell lines,

suggesting that the mutations completely abolish protein

expression (figure 1b). The missense mutation in RAB18,

RAB18(p.Leu24Gln), ablates nucleotide-binding [4] but did

not affect levels of RAB18 transcript.

Two apparent trans-acting post-transcriptional effects were

observed. First, we saw that RAB3GAP2 protein was almost

undetectable in RAB3GAP1(c.649-2A.G) cells (figure 1b).

This was not unexpected as a corresponding effect has been

reported in Rab3gap1(2/2) mice and in Cos7 and HeLa cells

in which RAB3GAP1 was knocked down [11,15]. A reasonable

explanation for this is that RAB3GAP1 and RAB3GAP2 func-

tion as a complex and that RAB3GAP1 is required to

maintain RAB3GAP2 stability [15]. Next, we observed that
levels of RAB18 were elevated in both RAB3GAP1(c.649-

2A.G) and TBC1D20(p.Gln98*) cells (figure 1b and the

electronic supplementary material, figure S1a). The levels of

RAB18 transcript were comparable between each cell line

and controls (figure 1c).

To further explore the effects of loss of TBC1D20 on levels

of RAB18, we compared immortalized mouse embryonic fibro-

blasts (mEFs) heterozygous and homozygous for the ‘blind-
sterile’ (bs) Tbc1d20 loss-of-function mutation TBC1D20

p.[Phe231Met; p.Arg232 _Val235del] [6]. As in the patient

fibroblasts, an increase in levels of RAB18 was observed

(figure 1b and the electronic supplementary material, figure

S1a). The levels of Rab18 transcript were comparable to those

in controls (figure 1c). Furthermore, when either the human

or mouse TBC1D20-deficient cells were treated with cyclohex-

imide to inhibit protein synthesis, the reduction in RAB18

levels over time was slowed compared with controls. This

suggests that RAB18 is less rapidly degraded in these cells

(electronic supplementary material, figure S1b,c). In treated

RAB3GAP1(c.649-2A.G) cells, reduction in RAB18 levels

occurred at a similar rate to that in controls (electronic supple-

mentary material, figure 1b). This suggests that any alteration

in RAB18 degradation in these cells is more subtle than in the

TBC1D20-deficient lines. Levels of the TBC1D20 substrate

RAB1A were unchanged in TBC1D20(p.Gln98*) cells and bs
mEFs when compared with controls (electronic supplementary

material, figure S1d).
2.2. The RAB3GAP complex stabilizes RAB18 at the
cis-Golgi in human fibroblasts

To further examine the relationship between the RAB3GAP

complex and RAB18, we first investigated the localization

of RAB3GAP1 in human control fibroblasts. We then com-

pared this with the localization of RAB18 in control and

RAB3GAP1(c.649-2A.G) cells. Endogenous RAB3GAP1 is

known to localize to punctae overlapping with ER tubules in

the cell periphery, with pronounced enrichment at a peri-

nuclear region of Cos7 and HeLa cells [11]. It has also been

reported to localize to the Golgi in human fibroblasts [16]. To

determine its localization in our patient fibroblasts, we com-

pared the pattern of staining produced by an antibody to

RAB3GAP1 in control cells with that in RAB3GAP1(c.649-

2A.G) cells in which the protein is absent (electronic

supplementary material, figure S2a). Although some back-

ground staining was evident, there was clear specific signal

in the perinuclear region in the control cells. RAB18 has been

reported to localize to the cis-Golgi membrane [17,18]. To test

if the ‘RAB3GAP1-specific’ signal corresponded to the cis-

Golgi, we co-stained cells with antibodies to RAB3GAP1

and GM130 and saw clear colocalization between signals

(figure 2a). This colocalization was not affected in either

RAB18(p.Leu24Gln) or TBC1D20(p.Gln98*) cells (electronic

supplementary material, figure S2b).

No specific signal could be identified using the available

RAB18 antibodies. However, the localization of GFP-RAB18

has been shown to mirror that of its endogenous counterpart

[18]. We therefore proceeded by transiently transfecting

cells to express this fusion protein and imaging only cells

expressing it at a relatively low level. In both control and

RAB3GAP1(c.649-2A.G) cells, RAB18 showed a character-

istic reticular localization pattern with enrichment at the

http://rsob.royalsocietypublishing.org/
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Figure 1. Loss-of-function mutations in TBC1D20 or RAB3GAP1 are associated with increased levels of RAB18 protein but not transcript. (a) Quantitative RT-PCR
(qPCR) shows that levels of TBC1D20 and RAB3GAP transcripts are reduced compared to controls in TBC1D20( p.Gln98*) and RAB3GAP1(c.649-2A.G) patient fibro-
blasts, respectively, but that levels of RAB18 transcript in RAB18( p.Leu24Gln) fibroblasts are comparable. (b) Western blotting shows levels of RAB3GAP1, RAB3GAP2,
TBC1D20 and RAB18 protein in control and patient fibroblasts and blind-sterile fibroblasts. Blotting for tubulin serves as a control. Each lane on the blots shown
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perinuclear region. This is consistent with previous studies

in which it was shown to localize to the ER membrane

as well as to the cis-Golgi [17,18]. To confirm the cis-Golgi

component of RAB18 fluorescence, we again co-stained

cells for GM130 (figure 2b). There was clear colocaliza-

tion between RAB18 and this marker in both control and

RAB3GAP1(c.649-2A.G) cells.

The RAB3GAP complex functions as a RAB18GEF capable

of ectopically targeting RAB18 to membranes. Knockdown of

the complex in Cos7 and HeLa cells leads to the redistribution

of RAB18 from cell membranes to the cytosol [11]. It was there-

fore surprising that in RAB3GAP1(c.649-2A.G) cells that lack
RAB3GAP, there was no change in RAB18 localization. Rab

proteins enter the cytosolic compartment when GDP-bound

and complexed to GDI. Rab-GEFs promote more stable mem-

brane association by reducing the proportion of GDP-bound

Rab. However, Rabs in the cytosolic compartment are initially

retargeted to ‘sample’ cellular membranes in a manner inde-

pendent of Rab-GEFs [19]. We therefore reasoned that in

the RAB3GAP1(c.649-2A.G) cells, efficient retargeting of

RAB18 from the cytosol to the membrane could account for

the lack of a ‘bulk-shift’ into the cytosol. Nevertheless, the

loss of a RAB18GEF should be reflected by a more transient

association of RAB18 with cellular membranes in these cells.

http://rsob.royalsocietypublishing.org/
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GAP1(c.649-2A.G) fibroblasts. (c) GFP-RAB18 dynamics at the ER in control and
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bleached with high-intensity laser. Fluorescence recovery in the ROI was recorded
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To investigate RAB18 dynamics in the RAB3GAP1(c.649-

2A.G) cells, we employed fluorescence recovery after

photobleaching (FRAP; figure 2c–d). Cells were transfected
to express GFP-RAB18, and comparable fluorescent regions

of interest (ROIs) within them were subjected to photo-

bleaching with high-intensity laser light. The recovery of

fluorescence in these regions was then recorded over time.

Fluorescence recovery profiles following bleaching of tagged

Rab proteins are complex functions reflecting fluorescence

recovery from multiple sources [20]. A fast component of fluor-

escence recovery is the result of the simple diffusion of cytosolic

fluorescent protein into the ROI following bleaching. Further

components of recovery result from the lateral diffusion of

membrane-associated fluorescent protein and the movement

of the membranes themselves. In addition, fluorescence recov-

ery is influenced by the rate of exchange of fluorescent protein

between the cytosol and membrane, as discussed above.

Fluorescence recovery profiles from bleaching of GFP-

RAB18 within ‘ER’ ROIs were not significantly different in con-

trol and RAB3GAP1(c.649-2A.G) cells (figure 2c). This

suggests that in these cells at least, RAB3GAP does not affect

RAB18 dynamics at the ER. However, bleaching of perinuclear,

cis-Golgi, regions resulted in significantly and reproducibly

different fluorescence recovery profiles between control and

RAB3GAP1(c.649-2A.G) cells (figure 2d). As in bleaching at

the ER, the extent of GFP-RAB18 fluorescence recovery recorded

at the first post-bleaching timepoint (a scan begun approx. 0.5 s

following completion of the bleaching scan) was comparable

between the cell lines, suggesting that a similar fraction of

GFP-RAB18 is cytosolic in these cells. However, fluorescence

recovery in the RAB3GAP1(c.649-2A.G) cells then procee-

ded more rapidly and was more complete than in control

cells. This suggests that in control cells, RAB3GAP serves to

stabilize the association between RAB18 and the cis-Golgi, a con-

clusion supported by the enrichment of RAB3GAP1 at this

location. In the RAB3GAP1(c.649-2A.G) cells, more rapid

fluorescence recovery reflects a more transient, less stable,

cis-Golgi association in the absence of RAB3GAP.

2.3. RAB18 dynamics at the endoplasmic reticulum are
altered in TBC1D20-deficient human fibroblasts,
mouse fibroblasts and HeLa cells

Having established that RAB3GAP influences RAB18

dynamics, we next investigated the relationship between

TBC1D20 and RAB18. In TBC1D20(p.Gln98*) cells, the reti-

cular ‘ER’ RAB18 staining pattern was present, but the

perinuclear, cis-Golgi, enrichment of RAB18 fluorescence

was completely absent (figure 3a). To confirm that RAB18

enrichment at the cis-Golgi was lost in TBC1D20(p.Gln98*)

cells, we stained them for GM130. As shown in figure 3a, the

clear colocalization of RAB18 and GM130 in controls was not

seen in TBC1D20(p.Gln98*) cells. Together with the increase

in RAB18 levels in the TBC1D20-deficient cells (figure 1b
and electronic supplementary material, figure S1a), this find-

ing strongly suggests a functional link between TBC1D20

and RAB18.

TBC1D20 is an integral ER protein with known GAP

activity towards RAB18 in vitro [14]. Therefore, the loss of

Golgi RAB18 enrichment in TBC1D20(p.Gln98*) cells suggests

that TBC1D20-stimulated RAB18 GTP-hydrolysis promotes its

retargeting to the Golgi. Without TBC1D20-stimulated RAB18

GTP-hydrolysis at the ER, the fraction of the protein that

is GDP-bound, and therefore the fraction that is subject to

GDI-mediated membrane extraction, is reduced. In turn, a
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are comparably altered in two TBC1D20-deficient HeLa cell lines when compared with controls. In the bleaching experiments, indicated ROIs in each cell were bleached
with high-intensity laser. Fluorescence recovery in the ROI was recorded over time and normalized with respect to overall cell fluorescence. Data were combined from at
least 22, 21 and 31 cells per condition in (b), (d ) and ( f ), respectively, and are representative of at least three independent experiments. Error bars represent s.e.m. Scale
bars, 10 mm. #p , 0.05 and *p , 0.01, unpaired Student’s t-test.
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smaller fraction of RAB18 in the cytosolic compartment limits

its targeting to, and association with, the Golgi membrane.

The fluorescence recovery profile of RAB18 was signifi-

cantly different in control and TBC1D20(p.Gln98*) cells

(figure 3b). Fluorescence recovery at the first recorded post-

bleaching timepoint was lower in the TBC1D20(p.Gln98*)

cells, suggesting that in these cells a reduced fraction of
GFP-RAB18 is cytosolic. Further, recovery proceeded at a

slower rate and was less complete than in controls. This

suggests that RAB18 is more stably ER-associated in these

cells, as predicted if TBC1D20 functions as a RAB18GAP.

Because TBC1D20 has previously been characterized as a

GAP for Rab1 isoforms [14,21], we carried out FRAP exper-

iments with GFP-RAB1A to test whether altered dynamics
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could be observed. However, we found that GFP-RAB1A

fluorescence recovery was very rapid in both control and

TBC1D20(p.Gln98*) fibroblasts and we were therefore unable

to distinguish recovery profiles (electronic supplementary

material, figure S3).

To determine whether the altered localization and

dynamics of RAB18 seen in patient fibroblasts represent a

consistent feature of cells lacking TBC1D20, we examined

RAB18 in the bs mEFs (figure 3c). Interestingly, we found

that the perinuclear enrichment of RAB18 was less pro-

nounced in both bs/þ and bs/bs cells than in the human

fibroblasts. Further, the colocalization between RAB18 and

GM130 was less complete and did not differ between bs/þ
and bs/bs cells. FRAP experiments, however, revealed that

as in the human fibroblasts, RAB18 was less cytosolic and

more stably ER-associated in the TBC1D20-deficient cells

(figure 3d ). Thus, TBC1D20 promotes dissociation of

RAB18 from the ER membrane in both cell types.

It was possible that redistribution of RAB18 was not seen

in the bs/bs mEFs because of some residual activity of the

mutant TBC1D20 protein. To explore this possibility and

also to examine RAB18 dynamics in an otherwise isogenic

background, we used CRISPR technology [22] to target

TBC1D20 in HeLa cells. In order to guard against potential

off-target effects, we used Cas9 nickase to induce paired

single-strand breaks in the gene. Further, we used two pairs

of guide RNAs to produce one cell line in which TBC1D20
was mutated in exon 5, and one cell line in which it was

mutated in exon 7. For both cell lines, cloning of the targeted

exons showed that the gene was mutated and western blot-

ting indicated that TBC1D20 protein was absent (electronic

supplementary material, figure S4). As with the bs/bs
mEFs, we found that loss of TBC1D20 in the HeLa cell lines

did not lead to an appreciable change in RAB18 localization

(figure 3e). Once again, however, RAB18 dynamics were

altered indicating its more stable ER-association in mutant

compared with control cells (figure 3f ). The reproducibility

of the FRAP approach is illustrated by the fact that fluor-

escence recovery profiles from the two CRISPR mutant cell

lines are almost identical (figure 3f ).

2.4. A reduced fraction of cellular RAB18 is cytosolic in
TBC1D20-deficient human fibroblasts, mouse
fibroblasts and HeLa cells

Transient knockdown of TBC1D20 in Cos7 cells has been

shown to cause redistribution of RAB18 within the ER and

an ‘ER sheet spreading’ phenotype [11]. This is a potential

confounding factor in interpretation of our FRAP exper-

iments, because a change in ER structure in the absence of

TBC1D20 might underlie the apparent change in RAB18

dynamics. We view this as unlikely, because similarly altered

ER structure in RAB3GAP1(c.649-2A.G) cells [11] had

no significant effect on RAB18 dynamics (figure 2c).

However, we nevertheless carried out additional experi-

ments to determine more directly whether the loss of

RAB3GAP or TBC1D20 affects the proportion of RAB18

that is cytosolic.

Cells were cotransfected to express GFP-RAB18 and the

cytosolic red fluorescent protein mKATE2. Live cells were then

permeabilized with 10 mM digitonin and the drop in fluor-

escence resulting from diffusion of these proteins out of cells
was recorded. mKATE2 fluorescence diminished rapidly follow-

ing permeabilization and was reduced to a level comparable to

background fluorescence. In contrast, RAB18 fluorescence was

only partially reduced, reflecting the loss of the cytosolic com-

ponent, but the retention of the membrane-associated

component of fluorescence (figure 4).

In the patient fibroblasts, the RAB18 loss following digitonin

permeabilization was comparable in control and RAB3GAP1

(c.649-2A.G) cells, whereas that in TBC1D20(p.Gln98*) cells

was significantly less pronounced (figure 4a). RAB18

fluorescence loss was also significantly less pronounced in

TBC1D20-deficient mouse fibroblasts (figure 4b) and HeLa

cells (figure 4c) compared with their respective controls. These

data confirm that RAB18 is less cytosolic in the absence of

TBC1D20, indicating that TBC1D20 promotes dissociation of

RAB18 from the ER membrane and therefore supporting the

suggestion that TBC1D20 functions as a RAB18GAP.

2.5. A model for RAB18 regulation
In this study, we examined the influence of the RAB3GAP

complex and TBC1D20 on RAB18 levels, localization and

dynamics. The data suggest a regulatory cycle whereby

TBC1D20 RAB18GAP activity can act to promote RAB18

membrane extraction from the ER and retargeting to the

cis-Golgi, where RAB3GAP/RAB18GEF can act to recruit

and stabilize it (figure 5). RAB18 has recently been shown

to interact with components of the ‘NRZ complex’, an

ER tethering complex, and so this scheme is consistent

with suggestions that it functions in Golgi-to-ER trafficking

[23]. Interestingly, we also show that RAB18 accumulates

in cells lacking RAB3GAP or TBC1D20, suggesting that

normal RAB18 function, its cycles of GTP-binding and

hydrolysis and/or its effector interactions are coupled to

its degradation.

The clinically indistinguishable effects of loss-of-function

mutations in RAB3GAP1, RAB3GAP2, TBC1D20 or RAB18
imply that correctly regulated GTP-binding and hydrolysis

are equally essential for RAB18 function. In the broader con-

text, this example may serve to distinguish Rab protein

regulation from that of other small GTPases such as Ras.

Mutations in the RasGAP NF1, for example, cause disease as

a result of sustained Ras activation suggesting that Ras GTP-

binding is sufficient for activation of downstream signalling

[24]. In contrast, it appears that the downstream function of

RAB18 is equally dependent on RAB3GAP/RAB18GEF and

TBC1D20/RAB18GAP activity.

Primarily, our data suggest that Warburg Micro syndrome,

whether caused by mutations in RAB3GAP1, RAB3GAP2,

TBC1D20 or RAB18, results from RAB18 dysfunction. It

remains to be determined how RAB18 dysfunction contributes

to disease pathology at a molecular level, but it is hoped that

research in this area will continue.
3. Methods
3.1. Antibodies and reagents
Polyclonal rabbit antibodies to RAB3GAP1, used for

western blotting and immunofluorescence, respectively, were

obtained from Bethyl laboratories and Proteintech. A rabbit

polyclonal antibody to TBC1D20 was obtained from Prestige

http://rsob.royalsocietypublishing.org/
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Figure 4. The proportion of cytosolic RAB18 in TBC1D20( p.Gln98*) patient fibroblasts, bs mEFs and TBC1D20-deficient HeLa cells is reduced compared to controls.
(a) Loss of cytosolic GFP-RAB18 and mKATE2 fluorescence following permeabilization of human fibroblasts with 10 mM digitonin. Partial loss of GFP-RAB18 flu-
orescence is comparable in control and RAB3GAP1(c.649-2A.G) cells but reduced in TBC1D20( p.Gln98*) cells. mKATE2 fluorescence is reduced close to background
levels in each cell line. (b) Partial loss of GFP-RAB18 fluorescence following digitonin permeabilization is reduced in bs/bs mEFs when compared with bs/þ mEFs (c)
Partial loss of GFP-RAB18 fluorescence following digitonin permeabilization is reduced in TBC1D20-deficient HeLa cells when compared with controls. Data were
combined from at least 10, 22 and 14 cells per condition in (a), (b) and (c), respectively, and are representative of at least three independent experiments. Error bars
represent s.e.m. Scale bars, 10 mm. #p , 0.05 and *p , 0.01, unpaired Student’s t-test.
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Antibodies (Sigma). A custom rabbit polyclonal antibody to

RAB18 was generated by Eurogentec to the peptide sequence

N-CESENQNKGVKLSHRE-C. This antibody is specific in

western blotting as it recognizes a protein of the appropriate

size in samples from wild-type and Rab18þ/2 mice, but not

in samples from Rab182/2 mice [12]. A rabbit polyclonal anti-

body to RAB1A and a goat polyclonal antibody to b-tubulin

were obtained from Abcam, and monoclonal mouse anti-

GM130 was obtained from BD Biosciences. Plasmids used for

expression of GFP-RAB18 and GFP-RAB1A have been pre-

viously described [11,13]. The plasmid used for expression of

mKATE2 was obtained from Evrogen. Cycloheximide was

obtained from Abcam.
3.2. Quantitative PCR
For each qPCR experiment, RNAs were purified from each

cell line using the Qiagen RNAeasy kit according to manufac-

turer’s instructions. cDNAs were then produced immediately

using a first strand cDNA synthesis kit (Roche). qPCR analy-

sis was carried out on a LightCycler 480 instrument (Roche).

PCR amplification was quantified through binding of specific

mono colour hydrolysis probes (Roche) and analysed using

LIGHTCYCLER 480 software v. 1.5.0 (SP4; Roche). Primers

amplifying across exon boundaries were designed using the

coding sequences of RAB3GAP1, TBC1D20, RAB18 and

Rab18 (NCBI reference sequence accessions NM_012233.2,

http://rsob.royalsocietypublishing.org/
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NM_144628.3, NM_021252.4 and NM_181070.6) using the

Universal ProbeLibrary Assay Design Center (Roche). Primers

are listed in the electronic supplementary material, table S1.

3.3. Western blotting
Human fibroblasts, bs mEFs and HeLa cells were seeded on

6-well plates and allowed to grow for 48 h. They were then

trypsinized, washed and lysed on ice in a lysis buffer contain-

ing 0.5% (v/v) Nonidet P-40 in a solution of 150 mM NaCl,

10 mM EDTA and 50 mM Tris–HCl (pH ¼ 7.5) to which a pro-

tease inhibitor cocktail (Roche) was added. Following protein

quantification, samples were combined with a reducing load-

ing buffer and subjected to SDS–PAGE and western blotting

carried out according to standard methods. Each lane on the

blots shown corresponds to an individual lysate sample.

3.4. Cell culture and transfections
Human fibroblasts were cultured in DMEM (Gibco) supple-

mented with 20% fetal calf serum (FCS) and 1% penicillin/
streptomycin. bs mEFs and HeLa cells were cultured in a simi-

lar medium containing 10% FCS. Human fibroblasts and bs
mEFs were maintained under hypoxic conditions (3% O2, 5%

CO2) at 378C. HeLa cells were maintained under normoxic

conditions (5% CO2) at 378C.

Transfection of human fibroblasts and HeLa cells was

carried out using Lipofectamine 2000 (Life Technologies)

according to manufacturer’s instructions. Briefly, up to 0.5 mg

plasmid DNA was combined with 1.5 ml Lipofectamine 2000

per transfection and added to cells in a total volume of 500 ml

opti-MEM serum-free media (Gibco) for 4 h. Transfection

mixes were then replaced with full media, and cells were

allowed to recover for 18–24 h prior to fixation or imaging.

Transduction of bs mEFs was carried out using the Neon

system (Life Technologies) according to manufacturer’s

instructions. Briefly, 0.5 mg plasmid DNA was combined

with cells in suspension in a total of 10 ml buffer ‘R’ per electro-

poration and loaded into a 10 ml electroporation tip. Cells were

electroporated with a single pulse at 1350 V with a width of

30 ms and allowed to adhere and recover for 18–24 h in full

media prior to fixation or imaging.

http://rsob.royalsocietypublishing.org/
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3.5. Immunofluorescence
Cells were seeded on glass coverslips in 24-well plates, at a

density of 1 � 105 cells per well, then allowed to adhere over-

night and transfected as appropriate. They were then fixed

for 30 min with 4% (w/v) paraformaldehyde in PBS on ice.

Prior to the addition of antibody, coverslips were blocked

in PBS containing 10% (v/v) donkey serum (Sigma-Aldrich)

and 0.1% (v/v) Triton-X-100 (Sigma-Aldrich) for 1 h at

room temperature. Coverslips were probed with primary

antibodies (see above) in blocking buffer, overnight at 48C.

They were then washed with PBS, and probed with Alexa

Fluor 488 or Alexa Fluor 594-conjugated donkey anti-mouse

or anti-rabbit secondary antibody as appropriate (Life Tech-

nologies) for 1 h at room temperature in blocking buffer.

Following an additional round of washing, they were

mounted and stained with DAPI prior to imaging.
47
3.6. Confocal microscopy
Imaging was carried out on a Nikon A1R confocal microscope

equipped with the Nikon Perfect Focus System using a 60� oil

immersion objective with a 1.4 numerical aperture. In immuno-

fluorescence experiments, the pinhole was set to airy1. DAPI

was excited using a 403.5 nm laser, and emitted light was col-

lected at 425–475 nm. Alexa Fluor 488 or GFP was excited

using a 488 nm laser, and emitted light was collected at 500–

550 nm. Alexa Fluor 594 was excited using a 561.3 nm laser,

and emitted light was collected at 570–620 nm.

In FRAP and digitonin-permeabilization experiments,

cells were seeded onto glass-bottomed dishes (Mattek) and

imaged 18–24 h post-transfection. Dishes of control and

mutant cells were alternated over the course of imaging. The

pinhole was set to airy2 and digital zoom parameters were

kept constant for each cell type. In bleaching experiments,

cells were maintained in HBSS, and bleaching was carried

out using 90% laser power. In permeabilization experiments,

cells were maintained in a ‘cytosol-like’ buffer containing

20 mM HEPES (pH ¼ 7.05), 140 mM KCl, 10 mM KH2PO4,

5 mM MgCl2, 5.5 mM glucose and 100 mM ATP. Cells were

permeabilized with 10 mM digitonin, and fluorescence loss
recorded from ROIs drawn to exclude nuclei and ‘perinuclear’

GFP-RAB18.

3.7. Generation of cell lines
Primary mouse embryonic fibroblasts from blind-sterile (bs)

mice were generated and maintained as previously described

[6]. bs/þ and bs/bs lines were transfected with the Simian

virus-40 large-T antigen (SV40) vector pBSSVD2005 (Addgene)

using Lipofectamine 3000 (Life Technologies) according to

manufacturer’s instructions. Primers used to determine geno-

type at the bs locus and incorporation of SV40 are listed in

the electronic supplementary material, table S1.

In order to specifically target TBC1D20 in HeLa cells with

Cas9 nickase, pairs of guide RNAs were selected using the

online CRISPR design tool (http://crispr.mit.edu/). Oligonu-

cleotide pairs incorporating these guide RNA sequences (see

the electronic supplementary material, table S1) were then

annealed and ligated into pX461 and pX462 plasmids

(Addgene). Sequences were verified by direct sequencing.

HeLa cells were then cotransfected with the recombinant

plasmids. Each recombinant plasmid drives expression

of Cas9 nickase, one guide RNA, and GFP or a puromycin-

resistance gene, respectively. Twelve hours following

transfection, cells were treated with 1 mg ml21 puromycin

for 24 h and then allowed to recover for a further 12 h.

They were then trypsinized and single, cotransfected, GFP-

expressing cells were sorted into 96-well plates using a FACS-

Aria2 SORP instrument (BD). After sufficient growth, clones

were analysed by PCR and western blotting.

Authors’ contributions. Conceived and designed experiments: M.T.H.,
I.A.A., I.J.J. and D.R.F. Performed experiments: M.T.H. Analysed the
data: M.T.H. Contributed reagents: DJS, SMC and GRM. Contributed
to writing of the manuscript: M.T.H., D.R.F., D.J.S., S.M.C. and G.R.M.

Competing interests. We declare we have no competing interests.

Funding. This study was supported by the Medical Research Council
(UK) and a research grant from the Newlife Foundation for Disabled
Children (M.T.H. and D.R.F.; R43152; 13–14/02). D.J.S. is supported
by the National Eye Institute at the US National Institutes of Health
(EY018872).

Acknowledgements. We thank the WARBM children and their families;
http://warburgmicrosyndrome.org.
References
1. Martsolf JT, Hunter AG, Haworth JC. 1978 Severe
mental retardation, cataracts, short stature, and
primary hypogonadism in two brothers.
Am. J. Med. Genet. 1, 291 – 299. (doi:10.1002/ajmg.
1320010305)

2. Warburg M, Sjo O, Fledelius HC, Pedersen SA. 1993
Autosomal recessive microcephaly, microcornea,
congenital cataract, mental retardation, optic
atrophy, and hypogenitalism. Micro syndrome.
Am. J. Dis. Child. 147, 1309 – 1312. (doi:10.1001/
archpedi.1993.02160360051017)

3. Aligianis IA et al. 2005 Mutations of the catalytic
subunit of RAB3GAP cause Warburg Micro syndrome.
Nat. Genet. 37, 221 – 223. (doi:10.1038/ng1517)

4. Bem D et al. 2011 Loss-of-function mutations in RAB18
cause Warburg Micro syndrome. Am. J. Hum. Genet. 88,
499 – 507. (doi:10.1016/j.ajhg.2011.03.012)
5. Borck G et al. 2011 A homozygous RAB3GAP2
mutation causes Warburg Micro syndrome.
Hum. Genet. 129, 45 – 50. (doi:10.1007/s00439-
010-0896-2)

6. Liegel RP et al. 2013 Loss-of-function mutations in
TBC1D20 cause cataracts and male infertility in blind
sterile mice and Warburg Micro syndrome in
humans. Am. J. Hum. Genet. 93, 1001 – 1014.
(doi:10.1016/j.ajhg.2013.10.011)

7. Handley MT et al. 2013 Mutation spectrum in
RAB3GAP1, RAB3GAP2, and RAB18 and genotype-
phenotype correlations in Warburg Micro syndrome
and Martsolf syndrome. Hum. Mutat. 34, 686 – 696.
(doi:10.1002/humu.22296)

8. Cherfils J, Zeghouf M. 2013 Regulation of small
GTPases by GEFs, GAPs, and GDIs. Physiol. Rev. 93,
269 – 309. (doi:10.1152/physrev.00003.2012)
9. Fukui K, Sasaki T, Imazumi K, Matsuura Y, Nakanishi
H, Takai Y. 1997 Isolation and characterization of a
GTPase activating protein specific for the Rab3
subfamily of small G proteins. J. Biol. Chem. 272,
4655 – 4658. (doi:10.1074/jbc.272.8.4655)

10. Nagano F, Sasaki T, Fukui K, Asakura T, Imazumi K,
Takai Y. 1998 Molecular cloning and characterization
of the noncatalytic subunit of the Rab3 subfamily-
specific GTPase-activating protein. J. Biol. Chem. 273,
24 781 – 24 785. (doi:10.1074/jbc.273.38.24781)

11. Gerondopoulos A, Bastos RN, Yoshimura S,
Anderson R, Carpanini S, Aligianis I, Handley MT,
Barr FA. 2014 Rab18 and a Rab18 GEF complex are
required for normal ER structure. J. Cell Biol. 205,
707 – 720. (doi:10.1083/jcb.201403026)

12. Carpanini SM et al. 2014 A novel mouse model of
Warburg Micro syndrome reveals roles for RAB18 in

http://crispr.mit.edu/
http://crispr.mit.edu/
http://warburgmicrosyndrome.org
http://dx.doi.org/10.1002/ajmg.1320010305
http://dx.doi.org/10.1002/ajmg.1320010305
http://dx.doi.org/10.1001/archpedi.1993.02160360051017
http://dx.doi.org/10.1001/archpedi.1993.02160360051017
http://dx.doi.org/10.1038/ng1517
http://dx.doi.org/10.1016/j.ajhg.2011.03.012
http://dx.doi.org/10.1007/s00439-010-0896-2
http://dx.doi.org/10.1007/s00439-010-0896-2
http://dx.doi.org/10.1016/j.ajhg.2013.10.011
http://dx.doi.org/10.1002/humu.22296
http://dx.doi.org/10.1152/physrev.00003.2012
http://dx.doi.org/10.1074/jbc.272.8.4655
http://dx.doi.org/10.1074/jbc.273.38.24781
http://dx.doi.org/10.1083/jcb.201403026
http://rsob.royalsocietypublishing.org/


rsob.royalsocietypublishing.org
Open

Biol.5:150047

10

 on July 2, 2015http://rsob.royalsocietypublishing.org/Downloaded from 
eye development and organisation of the neuronal
cytoskeleton. Dis. Model. Mech. 7, 711 – 722.
(doi:10.1242/dmm.015222)

13. Park A, Liegel RP, Ronchetti A, Ebert AD, Geurts A,
Sidjanin DJ. 2014 Targeted disruption of Tbc1d20
with zinc-finger nucleases causes cataracts and
testicular abnormalities in mice. BMC Genet. 15,
135. (doi:10.1186/s12863-014-0135-2)

14. Haas AK, Yoshimura S, Stephens DJ, Preisinger C,
Fuchs E, Barr FA. 2007 Analysis of GTPase-activating
proteins: Rab1 and Rab43 are key Rabs required
to maintain a functional Golgi complex in human
cells. J. Cell Sci. 120, 2997 – 3010. (doi:10.1242/
jcs.014225)

15. Sakane A et al. 2006 Rab3 GTPase-activating protein
regulates synaptic transmission and plasticity
through the inactivation of Rab3. Proc. Natl Acad.
Sci. USA 103, 10 029 – 10 034. (doi:10.1073/pnas.
0600304103)
16. Spang N et al. 2014 RAB3GAP1 and RAB3GAP2
modulate basal and rapamycin-induced autophagy.
Autophagy 10, 2297 – 2309. (doi:10.4161/
15548627.2014.994359)

17. Dejgaard SY et al. 2008 Rab18 and Rab43 have
key roles in ER – Golgi trafficking. J. Cell Sci. 121,
2768 – 2781. (doi:10.1242/jcs.021808)

18. Martin S, Driessen K, Nixon SJ, Zerial M,
Parton RG. 2005 Regulated localization of
Rab18 to lipid droplets: effects of lipolytic
stimulation and inhibition of lipid droplet catabolism.
J. Biol. Chem. 280, 42 325 – 42 335. (doi:10.1074/
jbc.M506651200)

19. Barr FA. 2013 Review series: Rab GTPases and
membrane identity: causal or inconsequential?
J. Cell Biol. 202, 191 – 199. (doi:10.1083/jcb.
201306010)

20. Handley MT, Haynes LP, Burgoyne RD. 2007
Differential dynamics of Rab3A and Rab27A on
secretory granules. J. Cell Sci. 120, 973 – 984.
(doi:10.1242/jcs.03406)

21. Sklan EH, Serrano RL, Einav S, Pfeffer SR, Lambright
DG, Glenn JS. 2007 TBC1D20 is a Rab1 GTPase-
activating protein that mediates hepatitis C virus
replication. J. Biol. Chem. 282, 36 354 – 36 361.
(doi:10.1074/jbc.M705221200)

22. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA,
Zhang F. 2013 Genome engineering using the
CRISPR-Cas9 system. Nat. Protoc. 8, 2281 – 2308.
(doi:10.1038/nprot.2013.143)

23. Gillingham AK, Sinka R, Torres IL, Lilley KS, Munro S.
2014 Toward a comprehensive map of the effectors of
Rab GTPases. Dev. Cell 31, 358 – 373. (doi:10.1016/j.
devcel.2014.10.007)

24. Klose A et al. 1998 Selective disactivation of
neurofibromin GAP activity in neurofibromatosis
type 1. Hum. Mol. Genet. 7, 1261 – 1268. (doi:10.
1093/hmg/7.8.1261)

http://dx.doi.org/10.1242/dmm.015222
http://dx.doi.org/10.1186/s12863-014-0135-2
http://dx.doi.org/10.1242/jcs.014225
http://dx.doi.org/10.1242/jcs.014225
http://dx.doi.org/10.1073/pnas.0600304103
http://dx.doi.org/10.1073/pnas.0600304103
http://dx.doi.org/10.4161/15548627.2014.994359
http://dx.doi.org/10.4161/15548627.2014.994359
http://dx.doi.org/10.1242/jcs.021808
http://dx.doi.org/10.1074/jbc.M506651200
http://dx.doi.org/10.1074/jbc.M506651200
http://dx.doi.org/10.1083/jcb.201306010
http://dx.doi.org/10.1083/jcb.201306010
http://dx.doi.org/10.1242/jcs.03406
http://dx.doi.org/10.1074/jbc.M705221200
http://dx.doi.org/10.1038/nprot.2013.143
http://dx.doi.org/10.1016/j.devcel.2014.10.007
http://dx.doi.org/10.1016/j.devcel.2014.10.007
http://dx.doi.org/10.1093/hmg/7.8.1261
http://dx.doi.org/10.1093/hmg/7.8.1261
http://rsob.royalsocietypublishing.org/

	Warburg Micro syndrome is caused by RAB18 deficiency or dysregulation
	Background
	Results and discussion
	Loss of the RAB3GAP complex or TBC1D20 leads to an increase in cellular levels of RAB18
	The RAB3GAP complex stabilizes RAB18 at the cis-Golgi in human fibroblasts
	RAB18 dynamics at the endoplasmic reticulum are altered in TBC1D20-deficient human fibroblasts, mouse fibroblasts and HeLa cells
	A reduced fraction of cellular RAB18 is cytosolic in TBC1D20-deficient human fibroblasts, mouse fibroblasts and HeLa cells
	A model for RAB18 regulation

	Methods
	Antibodies and reagents
	Quantitative PCR
	Western blotting
	Cell culture and transfections
	Immunofluorescence
	Confocal microscopy
	Generation of cell lines
	Authors’ contributions
	Competing interests
	Funding

	Acknowledgements
	References


