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Abstract

We propose an unsupervised approach for discovering
characteristic motion patterns in videos of highly artic-
ulated objects performing natural, unscripted behaviors,
such as tigers in the wild. We discover consistent patterns
in a bottom-up manner by analyzing the relative displace-
ments of large numbers of ordered trajectory pairs through
time, such that each trajectory is attached to a different
moving part on the object. The pairs of trajectories de-
scriptor relies entirely on motion and is more discriminative
than state-of-the-art features that employ single trajecto-
ries. Our method generates temporal video intervals, each
automatically trimmed to one instance of the discovered
behavior, and clusters them by type (e.g., running, turn-
ing head, drinking water). We present experiments on two
datasets: dogs from YouTube-Objects and a new dataset of
National Geographic tiger videos. Results confirm that our
proposed descriptor outperforms existing appearance- and
trajectory-based descriptors (e.g., HOG and DTFs) on both
datasets and enables us to segment unconstrained animal
video into intervals containing single behaviors.

1. Introduction
Internet videos provide a wealth of data that could be

used to learn the appearance or expected behaviors of many
object classes. However, traditional supervised learning
techniques used on still images [1,2,4] do not easily transfer
due to the prohibitive cost of generating ground-truth anno-
tations in videos. In order to realize the full potential of this
vast resource, we must instead rely on methods that require
as little human supervision as possible.

We propose a bottom-up method for discovering the
characteristic motion patterns of an articulated object class
in the wild. Unlike the majority of action recognition
datasets, in which human actors perform scripted actions [6,
31, 33, 44], and/or clips are trimmed to contain a single ac-
tion [16, 34], our videos are unstructured, such as animals
performing unscripted behaviors. The only assumption we
make is that each video contain at least one instance of the
object class. We leverage that the object is engaged in some

Figure 1. Examples of articulated motion pattern clusters discov-
ered using pairs of trajectories (PoTs). These clusters capture
tigers running, walking, and turning their heads, respectively. In-
set shows detail of one PoT within the walking cluster. Yellow
lines connect the first trajectories (on the tigers’ body); red lines
connect the second (on moving extremities).

(unknown) behaviors, and that such behaviors exhibit ob-
servable consistency, which we term characteristic motion
patterns.

Our method does not require knowledge of the number
or types of behaviors, nor that instances of different behav-
iors be temporally segmented within a video. The output of
our method is a set of video intervals, clustered according
to the observed characteristic motion patterns. Each interval
contains one temporally segmented instance of the pattern.
Fig. 1 shows some behaviors automatically discovered in
tiger videos, such as walking, turning head, and running.

We identify consistency between observed motion pat-
terns by analyzing the relative displacement of large num-
bers of ordered trajectory pairs (PoTs). The first trajectory
in the pair defines a reference frame in which the motion of
the second trajectory is measured. We preferentially sam-
ple trajectory pairs across joints, resulting in features par-
ticularly well-suited to representing fine-grained behaviors



of complex, articulated objects. This has greater discrimina-
tive power than state-of-the-art features defined using single
trajectories in isolation [37, 38].

Although we often refer to PoTs using semantic labels
for the location of their component trajectories (eye, shoul-
der, hip, etc.), these are used only for convenience. PoTs
do not require semantic understanding or any part-based or
skeletal model of the object, nor are they specific to an ob-
ject class. Furthermore, the collection of PoTs is more ex-
pressive than a simple star-like model in which the motion
of point trajectories are measured relative to the center of
mass of the object. For example, we find the “walking”
cluster (Fig. 5) based on PoTs formed by various combi-
nations of head-paw (Fig. 2 III, a), hip-knee (c), knee-paw
(b,d), or even paw-paw (e) trajectories.

In contrast to other popular descriptors [10,37,38], PoTs
are appearance-free. They are defined solely by motion
and so are robust to appearance variations within the ob-
ject class. In cases where appearance proves beneficial for
discriminating between behaviors of interest, it is easy to
combine PoTs with standard appearance features.

In summary, our main contributions are: (1) a new fea-
ture based on ordered pairs of trajectories that captures the
intricate motion of articulated objects (Sec. 3); (2) a method
for unsupervised discovery of behaviors from unconstrained
videos of an object class (Sec. 4); (3) a method for identi-
fying periodic motion in video, which we use to segment
videos into intervals containing single behaviors (Sec. 4.1);
and (4) annotations for 80,000 frames from nature docu-
mentaries about tigers and 20,000 frames from YouTube
videos of dogs (Sec. 5), available on our website [3].

2. Related work
Motion is a fundamental cue for many applications in

video analysis and so has been widely studied, particularly
within the context of action recognition [36, 41]. However,
action recognition is traditionally formulated as a super-
vised classification problem [17,34]. Work on unsupervised
motion analysis has largely been restricted to the problem
of dynamic scene analysis [7,8,18,20,40,45]. These works
typically consider a fixed scene observed at a distance from
a static camera; the goal is to model the behavior of agents
(typically pedestrians and vehicles) and to detect anoma-
lous events. Features typically consist of optical flow at
each pixel [7, 18, 40] or single trajectories corresponding to
tracked objects [8, 45].

To our knowledge, only Yang et al. [43] considered the
task of unsupervised motion pattern discovery, although
from manually trimmed videos. Their method models hu-
man actions in terms of motion primitives discovered by
clustering localized optical flow vectors, normalized with
respect to the dominant translation of the object. In con-
trast, our pairwise features capture complex relationships

between the motion of two different object parts. Further-
more, we describe motion at a more informative temporal
scale by using multiframe trajectories instead of two-frame
optical flow. We compare experimentally to [43] on the
KTH dataset [33] in Sec. 5.2.

Although many approaches do not easily transfer from
the supervised to the unsupervised domain, one major
breakthrough from the action recognition literature that
does is the concept of dense trajectories. The idea of gener-
ating trajectories for each object from large numbers of KLT
interest points in order to model its articulation was simulta-
neously proposed by Matikainen et al. [21] and Messing et
al. [23] for action recognition. These ideas were extended
and refined in the work on tracklets [30] and dense trajec-
tory features (DTFs) [37,38]. DTFs currently provide state-
of-the-art performance on video action recognition [12].

In contrast to our work, most trajectory-based methods
treat each trajectory in isolation [21,23,30,37,38], with two
notable exceptions [11, 24]. Jiang et al. [11] assign indi-
vidual trajectories to a single codeword from a predefined
codebook (as in DTF works [37, 38]). However, the code-
words from a pair of trajectories are combined into a ‘code-
word pair’ augmented by coarse information about the rel-
ative motion and average location of the two trajectories.
Yet, this pairwise analysis is cursory: the selection of code-
words is unchanged from the single-trajectory case, and the
descriptor thus lacks the fine-grained information about the
relative motion of the trajectories that our proposed PoTs
provide. Narayan et al. [24] model Granger causality be-
tween trajectory codewords. Their global descriptor only
captures pairwise statistics of codewords over a fixed-length
temporal interval. In contrast, a PoT groups two trajectories
into a single local feature, with a descriptor encoding their
spatiotemporal arrangement. Hence, PoTs can be used to
find point correspondences between videos (Fig. 5).

The few remaining methods that propose pairwise rep-
resentations employ them in a very different context.
Leordeanu et al. [19] learned object classes from still im-
ages by matching pairs of contour points from one image to
pairs in another. Yang et al. [42] computed statistics be-
tween local feature pairs for food recognition in images.
Matikainen et al. [22] used spatial and temporal features
computed over pairs of sparse KLT trajectories to construct
a two-level codebook for action classification. Dynamic-
poselets [39] requires detailed manual annotations of hu-
man skeletal structure on training data to define a descriptor
for pairs of connected joints. Raptis et al. [29] consider
pairwise interactions between clusters of trajectories, but
their method also requires detailed manual annotation for
each action. None of these approaches is suitable for unsu-
pervised articulated motion discovery.

A few recent works exploit video as a source of training
data for object class detectors [26,35]. They separate object



Figure 2. Modeling articulated motion with PoTs. Two trajectories in a PoT are ordered based on their deviation from the median velocity
of the object: the anchor (yellow) deviates less than the swing (red). In I, the displacement of the swing relative to the anchor follows
the swinging motion of the paw with respect to the shoulder. While both move forward as the tiger walks, the paw is actually moving
backwards in a coordinate system centered at the shoulder. This back-and-forth motion is captured by the relative displacement vectors of
the pair (in black) but missed when individual trajectories are used alone. The PoT descriptor is constructed from the angle θ and the black
vectors dk, shown in II. The two trajectories in a PoT are selected such that they track object parts that move differently. A few selected
PoTs are shown in III and IV. Legs move differently than the head (a), hip (c), knees (b,d), or other legs (e). In IV, the head rotates relative
to the neck, resulting in different PoTs (f,g). Our method selects these PoTs without requiring prior knowledge of the object topology.

instances from their background based on motion, thus re-
ducing the need for manual bounding-box annotation. How-
ever, their use of video stops at segmentation. They make
no attempt at modeling articulated motion or finding com-
mon motion patterns across videos. Ramanan et al. [27]
build a 2D part-based model of an animal from one video.
The model is a pictorial structure based on a 2D kinematic
chain of coarse rectangular segments. Their method oper-
ates strictly on individual videos and therefore cannot find
motion patterns characteristic for a class. It is tested on just
three simple videos containing only the animal from a sin-
gle, unchanging viewpoint.

3. Pairs of Trajectories (PoTs)
We represent articulated object motion using a collec-

tion of automatically selected ordered pairs of trajectories
(PoTs), tracked over n frames. Only two trajectories fol-
lowing parts of the object moving relatively to each other
are selected as a PoT, as these are the pairs that move in a
consistent and distinctive manner across different instances
of a specific motion pattern. For example, the motion of a
pair connecting a tiger’s knee to its paw consistently recurs
across videos of walking tigers (Figs. 1 and 5). By con-
trast, a pair connecting two points on the chest (a rather rigid
structure) may be insufficiently distinctive, while one con-
necting the tip of the tail to the nose may lack consistency.
Note also that a trajectory may simultaneously contribute to
multiple PoTs (e.g., a trajectory on the front paw may form
pairs with trajectories from the shoulder, hip, and nose).

Fig. 2 (III-IV) shows a few examples of PoTs selected
from two tiger videos. We define PoTs in Sec. 3.1, while
we explain how to select PoTs from real videos in Sec. 3.2.

3.1. PoT definition

Anchors and swings. The first trajectory in each PoT (the
anchor) defines a local coordinate frame, in which the mo-
tion of the second (swing) is measured. We select as anchor
the trajectory whose velocity is closer to the median veloc-
ity of pixels detected to be part of the foreground (Sec. 3.2),
aggregated over the length of the PoT (this approximates the
median velocity of the whole object). This criterion gener-
ates a stable ordering, repeatable across the broad range of
videos we examine. For example, the trajectories on the legs
in Fig. 2 (I-II-III) are consistently chosen as swings while
those on the torso are selected as anchors.

Displacement vectors. In each frame fk, we compute the
vector rk from anchor to swing (green lines in Fig. 2). Start-
ing from the second frame, a displacement vector dk is
computed by subtracting the vector rk−1 of the previous
frame (dashed green) from the current rk (solid green). dk

captures the motion of the swing relative to the anchor by
canceling out the motion of the latter. Naively employing
the green vectors rk as raw features does not capture relative
motion as effectively because the variation in rk through
time is dominated by the spatial arrangement of anchor and
swing rather than by the change in relative position between
frames. This can be intuitively appreciated by comparing
the magnitudes of the green and black vectors in Fig. 2.

PoT descriptor. The PoT descriptor P consists of two
parts: 1) the initial position of the swing relative to the an-
chor and 2) the sequence of normalized displacement vec-



input foreground deviation from extracted PoTs anchors and swings extracted PoTs anchors and swings
trajectories median velocity (θP = 0.01) (θP = 0.01) (θP = 0.15) (θP = 0.15)

(a) (b) (c) (d) (e) (f)

Figure 3. PoT selection on two different examples: a tiger walking (top) and one turning its head (bottom). We construct PoT candidates
from the trajectories on the foreground mask (a), using all possible pairs. We prefer candidates where the anchor is closer to the median
foreground velocity, denoted by dark areas in (b), while the swing follows a different motion (bright areas). We keep the highest θP%
ranking candidates according to this criterion. We show the selected PoTs for two different values of θP (c,e). Too strict a θP ignores many
interesting PoTs, like those involving trajectories on the neck in the top row (c). We also show the trajectories used as anchors (yellow)
and swings (red) without the lines connecting them (d,f). Imagine connecting any anchor with any swing: in most cases, the two follow
different, independently moving parts of the object, which is the key requirement of a PoT. We use θP = 0.15 in our experiments (e,f).

tors through time:

P =

(
θ,

d2

D
, . . . ,

dn

D

)
, (1)

where θ is the angle from anchor to swing in the first frame
and the normalization factor is the total displacement D =∑n
k=2 ||dk||. The DTF descriptor [37] employs a similar

normalization. Note also that the first term in P records
only the angle (and not the magnitude) between anchor and
swing; this retains scale invariance and enables matching
PoTs from objects of different size. The dimensionality of
P is 2 ·(n−1)+1; in all of our experiments, we set n = 10.

3.2. PoT selection

We explain here how to select PoTs from a set of input
trajectories output by a dense point tracker [38]. We start
with a summary of the process and give more details later.

First, we use a recent method for foreground segmenta-
tion [25] to remove trajectories on the background. Then,
for each frame f we build the set Pf of PoTs starting at that
frame. For computational efficiency, we directly set Pf = ∅
for any frame unlikely to contain articulated motion. Other-
wise, we form candidate PoTs from all pairs of foreground
trajectories {ti, tj} extending for at least n frames after f .
Finally, we retain in Pf the candidates that are most likely
to be on object parts moving relative to each other.

Foreground segmentation. State-of-the-art point trajec-
tories already attempt to limit trajectories to foreground ob-
jects [38], but often fail on the wide range of videos we use.
We instead use a recent method [25] for foreground seg-
mentation in unconstrained video. The resulting foreground
mask permits reliable detection of articulated objects even
under significant motion and against unconstrained back-
grounds. Our method is robust to errors in the foreground

mask because they only affect a small fraction of the PoT
collection (Sec. 5.3).

In addition to removing trajectories on the background,
we also use this foreground mask to estimate the median
velocity of the object, computed as the median optical flow
displacement over all pixels in the mask.

Pruning frames without articulated motion. A frame is
unlikely to contain articulated motion (hence PoTs) if the
optical flow displacement of foreground pixels is uniform.
This happens when the entire scene is static, or the object
moves with respect to the camera but the motion is not ar-
ticulated. We define s(f) = 1

n

∑f+n−1
i=f σi, where σi is

the standard deviation in the optical flow displacement over
the foreground pixels at frame i normalized by the mean,
and n the length of the PoT. We set Pf = ∅ for all frames
where s(f) < θF , pruning frames without promising can-
didate pairs. We set θF = 0.1 using 16 cat videos in
which we manually labeled frames without articulated mo-
tion. θF = 0.1 achieves a precision of 0.95 and a recall of
0.75.

PoT candidates and selection. The candidate PoTs for
an unpruned frame f are all ordered pairs of trajectories
{ti, tj} that exist in f and in the following n−1 frames and
lie on the foreground mask. These trajectories are shown in
Fig. 3(a). We score a candidate pair {ti, tj} using

S({ti = a, tj = s}) =
f+n−1∑
k=f

||vks − vkm|| − ||vka − vkm|| ,

(2)
where vkm is the median velocity at frame k, and vks and vka
the velocities of the swing and anchor, respectively. The
first term favors pairs with a large deviation between swing
and median velocity, while the second term favors pairs



where the velocity of the anchor is close to the median. As
seen in Fig. 3, this generates a stable PoT ordering where
anchors and swings fall on the core and extremities of the
animal, respectively. However, note that the velocity of the
anchors can vary; anchors along the tiger’s back in the top
row deviate significantly from the median velocity.

We rank all candidates using (2) and retain the top θP%
candidates as PoTs Pf for this frame. We found this ap-
proach to work quite well in practice. A few examples of
the top ranking candidates are shown in Fig. 3. In practice,
we use the PoTs shown in Fig. 3(e,f).

4. Motion pattern discovery
The input to our motion discovery system is a set of

videos V containing objects of the same class, such as
tigers. The desired output is a set of clusters C = (c1, ..., ck)
corresponding to motion patterns. Each cluster should con-
tain temporal intervals showing the same motion pattern (an
interval is any subsequence of frames). For the “tiger” class,
we would like a cluster with tigers walking, one with tigers
turning their head, and so on. The videos we use (Sec 5.1)
typically contain several instances of different motion pat-
terns each. For our purposes, it is easier to cluster intervals
that correspond to just one instance of a motion pattern, and
ideally cover the whole duration of that instance. Hence, we
first temporally partition videos into intervals correspond-
ing to a single motion pattern (Sec. 4.1). Then we cluster
these intervals to discover motion patterns (Sec. 4.2).

4.1. Temporal partitioning

We first partition videos into shots by thresholding color
histogram differences in consecutive frames [15]. A shot
will typically contain several different motion patterns. For
example, a cat may walk for a while, then sit down and fi-
nally stretch. Here, we want to partition the shot into single-
pattern intervals, i.e., a “walking”, a “sitting down” and
a “stretching” interval. Unlike shots, boundaries between
such intervals cannot be detected using simple color his-
togram differences. Instead we partition using two different
motion cues: pauses and periodicity, which we discuss next.

Motion-based partitioning. We first note that the object
often stays still for a brief moment between two differ-
ent motion patterns. We detect such pauses as sequences
of three or more frames without articulated object motion.
However, some sequences lack pauses between different re-
lated behaviors (e.g., a tiger walking begins to run). Thus,
we also partition based on detected periodic motion.

Periodic motion detector. We use time-frequency analy-
sis to detect periodic motion. We assume periodic motion
patterns like walking, running, or licking generate peaks in
the frequency domain (examples are available on our web-
site [3]). Specifically, we model an input interval as a time

sequence s(t) = bPft , where bPft is the bag-of-words (BoW)
of PoTs at frame f t. We convert s(t) to C one-dimensional
sequences (one per codeword) and sum the FFTs of the in-
dividual sequences in the frequency domain. If the height
of the highest peak is ≥ θH , we consider the interval as
periodic. We ensure that the total energy in the frequency
domain integrates to 1. Using the sum of the FFTs makes
the approach more robust, since peaks arise only if several
codewords recur with the same frequency.

Naively doing time-frequency analysis on an entire in-
terval typically fails because it might contain both periodic
and non-periodic motion (e.g., a tiger walks for a while
and then sits down). Hence, we consider all possible sub-
intervals using a temporal sliding window and label the one
with the highest peak as periodic, provided its height≥ θH .
The remaining segments are reprocessed to extract motion
patterns with different periods (e.g., walking versus run-
ning) until no significant peaks remain. For robustness, we
only consider sub-intervals where the period is at least five
frames and the frequency at least three (i.e., the period re-
peats at least three times). We empirically set θH = 0.1,
which produces very few false positives.

4.2. Clustering intervals

Interval representation. We use k-means to form a code-
book from a million PoT descriptors randomly sampled
from all intervals. We run k-means eight times and choose
the clustering with lowest energy to reduce the effects of
random initialization [38]. We then represent an interval as
a BoW histogram of the PoTs it contains (L1-normalized).

Hierarchical clustering. We cluster the intervals using
hierarchical clustering with complete-linkage [13]. We
found this to perform better than other clustering methods
(e.g., single-linkage, k-means) for all the descriptors tested.
As an additional advantage, hierarchical clustering enables
one to experiment with different numbers of clusters with-
out re-running the algorithm.

Distance function. Hierarchical clustering requires com-
puting the distance between pairs of input items. Given
BoWs of PoTs bu and bv for intervals Iu and Iv , we use

d(Iu, Iv) = −exp ( − (1−HI(bu, bv) ) ) , (3)

where HI denotes histogram intersection. We found this
to perform slightly better than the χ2 distance for all de-
scriptors tested. Note that this function can be also used on
BoWs of descriptors other than PoTs. Additionally, it can
be extended to handle different descriptors that use multi-
ple feature channels, such as Improved DTFs [38], which
we compare against in the experiments. In this case, the in-
terval representation is a set of BoWs (b1u, ..., b

C
u ), one for

each of the C channels. Following [38], we combine all



channels into a single distance function

d(Iu, Iv) = −exp

(
−

C∑
i=1

1−HI(biu, b
i
v)

Ai

)
, (4)

where Ai is the average value of (1−HI) for channel i.

5. Experiments
In this section, we present our experimental results.

5.1. Evaluation protocol

Datasets. We experiment on two different datasets. First,
we use a dataset of tiger videos collected from National Ge-
ographic documentaries. This dataset contains roughly two
hours of high-resolution, professional footage divided into
500 shots, for a total of 80,000 frames. Throughout the ex-
periments, we use various portions of this dataset:
• Tiger fg: A set of 100 shots with accurate foreground

masks [25], selected manually.
• Tiger val: Another set of 100 shots where the seg-

mentation algorithm works well with no overlap with
Tiger fg. We use Tiger val to set the parameters of all
the methods we test.
• Tiger all: All the shots in the dataset.

Second, we use 100 shots of the dog class of the YouTube-
Objects dataset [26], which mostly contains low-resolution
footage filmed by amateurs.

Behavior labels. We annotated each frame in the dataset
independently, choosing from the behavior labels listed in
Table 1. When a frame shows multiple behaviors, we chose
the one that happens at the larger scale (e.g., we choose
“walk” over “turn head” and “turn head” over “blink”). As
animals move over time, a shot often contains more than
one label. All the labels will be released on our website.

Evaluation criteria. We use two criteria commonly used
for evaluating clustering methods: purity and Adjusted
Rand Index (ARI) [28]. Purity is the number of items cor-
rectly clustered divided by the total number of items. An
item is correctly clustered if its label coincides with the
most frequent label in its cluster. While purity is easy to in-
terpret, it only penalizes assigning two items with different
labels to the same cluster. The ARI instead also penalizes
putting two items with the same label in different clusters.
Further, it is adjusted such that a random clustering will
score close to 0. It is considered a better way to evaluate
clustering methods by the statistics community [9, 32].

Baseline. We compare PoTs to the state-of-the-art Im-
proved Dense Trajectory Features (IDTFs) [38]. IDTFs
combine four different feature channels aligned with dense
trajectories: Trajectory shape (TS), Histogram of Oriented
Gradients (HOG), Histogram of Optical Flow (HOF), and

Figure 4. Results of clustering intervals using different descrip-
tors, evaluated on Adjusted Rand Index (ARI) and purity (see text).
PoTs result in better clusters than the full IDTFs [38] on tigers
(top two rows). Restricting IDTFs to the foreground segmenta-
tion decreases the performance on tiger fg, where we ensured the
segmentation is accurate (top row). Adding appearance features
(PoTs+HOG) is detrimental for tigers (second row), but improves
performance on dogs (third row). IDTFs perform well for dogs,
primarily due to the contribution of the HOG channel alone (com-
pare the full descriptor, blue, with the HOG channel only, black,
and trajectory shape (TS) channel only, magenta). For both tigers
and dogs, PoTs+HOG performs better than IDTFs. PoTs also gen-
erate higher-quality clusters than the other methods when we clus-
ter automatically partitioned intervals (bottom row).

Motion Boundary Histogram (MBH). TS is the channel
most related to PoTs, as it encodes the displacement of an
individual trajectory across consecutive frames. HOG is the
only component based on appearance and not on motion.
We also compare against a version of IDTFs where only tra-
jectories on the foreground segmentation are used. We call
this method fg-IDTFs. We use the same point tracker [38]
to extract both IDTFs and PoTs. For PoTs, we do not re-
move trajectories that are static or are caused by the motion
of the camera. Removing these trajectories improves the
performances of IDTFs [38], but in our case they are useful
as potential anchors.



walk turn sit tilt stand drag wag walk run turn jump raise open close blink slide drink chew lick climb roll scratch swim
Partitions head down head up tail back paw mouth mouth leg

whole shots 259 24 5 17 5 4 1 5 16 3 9 0 4 0 0 1 7 4 6 1 3 1 3
pause 272 76 11 30 9 4 2 6 16 2 11 2 11 3 10 2 7 5 7 1 5 1 3
pause+periods 273 80 13 33 9 4 2 6 16 3 11 2 12 3 11 3 8 5 7 1 5 1 3
ground truth 289 148 27 77 24 4 4 10 23 18 20 6 40 28 39 13 12 7 19 1 5 2 3

walk turn sit tilt stand walk run turn jump open close blink slide lick push
Partitions head down head up back mouth mouth leg skateboard

whole shots 25 4 0 1 0 0 10 0 4 0 0 0 0 0 13
pause 29 5 0 1 0 0 12 2 5 0 0 0 0 0 16
pause+periods 29 9 0 3 0 1 13 5 5 0 0 0 0 0 16
ground truth 39 25 1 12 1 2 20 14 8 2 1 2 1 1 19

Table 1. Number of intervals recovered per behavior on tigers (top) and dogs (bottom). Pause+periods consistently dominates others.

Calibration. We use Tiger val to set the PoT selection
threshold θP (Sec. 3.2) and the PoT codebook size K
(sec. 4.2) using coarse grid search. As objective function,
we used the ARI achieved by our method with the number
of clusters equal to the true number of behaviors. The cho-
sen parameters are θP = 0.15 and K = 800. We tuned
the IDTF codebook size similarly; the best size was 4000.
Interestingly, this is the same value as chosen by Wang et
al. [38] on completely different data.

5.2. Evaluating PoTs

We first evaluate PoTs in a simplified scenario where the
correct single-pattern partitioning is given, i.e., we partition
shots using frames where the ground-truth label changes as
boundaries. This allows us to evaluate the PoT representa-
tion separately from our method for automatic interval dis-
covery (Sec. 4.1). We compare clustering using BoWs of
PoTs to clustering using BoWs of IDTFs in Fig. 4. As the
true number of clusters is usually not known a priori, each
plot shows performance as a function of the number of clus-
ters. The mid value on the horizontal axis corresponds to the
true number of clusters (23 for tigers, 15 for dogs).

Evaluation on tigers. The clusters found using PoTs are
better in both purity and ARI (Fig. 4). The gain over IDTFs
is larger on Tiger fg (top row), where PoTs benefit from the
accurate estimate of the foreground. Here, PoTs also out-
perform fg-IDTFs. This shows that the power of our rep-
resentation resides in the principled use of pairs, not just
in exploiting the foreground segmentation to remove back-
ground trajectories. Results on Tiger all (second row) show
that PoTs can also cope with imperfect segmentation.

Consider now the individual IDTFs channels. HOG per-
forms poorly and causes the complete IDTFs to perform
worse than their TS channel alone, although both are in-
ferior to PoTs. Similarly, adding the HOG channel to PoTs
performs worse than pure motion PoTs but is still better than
IDTFs. Appearance is in general not suitable for discov-
ering fine-grained motion patterns. It is particularly mis-
leading in a class like “tiger” where different instances have
similar color and texture. The HOF and MBH channels of
IDTF perform poorly on their own and are not shown here.

whole shots pauses pauses+periods ground truth

tiger # intervals 480 719 885 1026
tiger uniformity 0.78 0.85 0.87 1

dog # intervals 80 115 219 260
dog uniformity 0.72 0.80 0.88 1

Table 2. Interval uniformity for different partitioning methods.
Pauses+periods consistently outperforms alternatives.

Evaluation on dogs. The complete IDTF descriptors per-
form better than PoTs on the dog dataset (Fig. 4, third row).
However, the HOG channel is doing most of the work in
this case. The dog shots come from only eight different
videos, each showing one particular dog performing 1–2 be-
haviors in the same scene. Hence, HOG performs well by
trivially clustering together intervals from the same video.
If we equip PoTs with the HOG channel, they outperform
the complete IDTFs. Similarly, when considering trajec-
tory motion alone, PoTs outperform the IDTF TS channel.
These experiments confirm that PoTs are a better represen-
tation for articulated objects than IDTF also on the dog data.

Comparison to motion primitives [43]. Last, we com-
pare to the method of [43], which is based on motion primi-
tives. We compare on the KTH dataset [33] in their setting.
It contains 100 shots for each of six different human ac-
tions (e.g. walking, hand clapping). As before, we cluster
all shots using the PoT representation: for the true number
of clusters (6), we achieve 59% purity, compared to their
38% (Fig. 9 in [43]). For this experiment, we incorporated
an R-CNN person detector [5] into the foreground segmen-
tation algorithm [25] to better segment the actors.

5.3. Evaluating motion discovery

We now evaluate our method for partitioning into single-
pattern intervals. Let the interval uniformity be the number
of frames with the most frequent label in the interval, di-
vided by the total number of frames. Our baseline is the
average interval uniformity of the original shots without
any partitioning. The combination of pauses and period-
icity partitioning improves the average interval uniformity
(Table 2). This is very promising, since the average inter-



Figure 5. Behaviors discovered by clustering consistent motion patterns. Each red rectangle displays a few pairs of intervals from one
cluster, on which we connect the anchors (yellow) and swings (red) of two individual PoTs that are close in descriptor space. The enlarged
version show how the connected PoTs evolve through time and give a snapshot of the captured motion pattern in each cluster. The behaviors
shown are: two different ways of walking (left, top and middle), sitting (bottom left), running (top right), and turning head (bottom right).

val uniformity is close to 90%, and the number of intervals
found approaches the ground-truth number. In Table 1 we
report the number of single-pattern intervals found by each
method, grouped by motion pattern. Here, we only increase
the count for intervals from distinct shots. Otherwise, we
could approach ground truth by simply chopping one con-
tinuous behavior into smaller and smaller pieces. We chose
this counting method because finding instances of the same
pattern performed by different tigers is our goal. If we were
to cluster whole shots, many patterns would be lost, and
only a few dominant classes would emerge from the data.
Instead, our method finds intervals for each label.

We report purity and ARI for the clusters of partitioned
intervals. As the ground-truth label for a partitioned inter-
val, which may not coincide exactly with a ground-truth in-
terval, we use the label of the majority of the frames in the
interval. To make this comparison fair, we evaluated the
IDTF descriptors on the same single-pattern intervals. As
before, PoTs outperform IDTFs (Fig. 4, bottom row). Fi-
nally, we show a few qualitative examples of the clusters
found by our method in Fig. 5.

6. Discussion
We emphasize that the only supervision in the entire pro-

cess is the initial video label (i.e., we know the video con-
tains a tiger or dog, respectively) and that the only cue used
is motion, encoded by the PoT descriptor.

Appearance features have proved useful for traditional
action recognition tasks [14, 34], since many activities are
strongly characterized by the background and the apparel
involved (e.g., diving can be recognized from the appear-
ance of swimsuits, or a diving board with a pool below).
The dog dataset fits this paradigm: the appearance of the

individual dog and the background was tightly correlated
with the dog’s behavior (e.g., only one dog knew how to
skateboard) and so adding appearance should be beneficial.
Because PoTs and appearance features are complementary,
we see the expected performance boost by adding the addi-
tional information. However, the tigers dataset shows that
adding appearance features can be detrimental. Tigers var-
ied in appearance (orange and white tigers, cubs and adults,
etc.) but all tigers performed a variety of behaviors. On
this dataset, the motion-only PoT descriptor outperforms all
tested alternatives that included appearance information.

An essential feature of our method is that a collection
of PoTs can encode detailed information about the relative
motion between many different parts of an object. PoT an-
chors are scattered across the object; each may move with
its own unique trajectory. Simplifying PoTs to a star-like
model where all anchors coincide with the center of mass
of the object (i.e., normalizing by the dominant object mo-
tion) would result in a loss of expressive power and would
be less robust for highly deformable objects.

PoTs are selected bottom-up and need not relate to the
kinematic structure of an object class. This allows the ex-
traction process to apply to any object and to leverage those
PoTs that are discriminative for the particular class rather
than being limited to pre-defined relationships We have
shown that clustering built on top of PoTs finds motion pat-
terns that are consistent across many shots. While many
common behaviors (e.g., walking) are cyclic, our method
focuses instead on consistency across occurrences rather
than periodicity within an occurrence. Periodic motion is
exploited during partitioning, but the clustering procedure
itself makes no such assumption, enabling us to discover
behaviors such as a tiger turning its head.
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