

Edinburgh Research Explorer

Ridesharing on Timetabled Transport Services: A Multiagent
Planning Approach

Citation for published version:
Hrní, J, Rovatsos, M & Jakob, M 2015, 'Ridesharing on Timetabled Transport Services: A Multiagent
Planning Approach' Journal of Intelligent Transportation Systems, vol. 19, no. 1, pp. 89-105. DOI:
10.1080/15472450.2014.941759

Digital Object Identifier (DOI):
10.1080/15472450.2014.941759

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of Intelligent Transportation Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43714568?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1080/15472450.2014.941759
https://www.research.ed.ac.uk/portal/en/publications/ridesharing-on-timetabled-transport-services-a-multiagent-planning-approach(49f791e7-15c9-43ca-bd7a-52bd0db1bfb4).html

Unspecified Journal
Volume 00, Number 0, Pages 000–000
S ????-????(XX)0000-0

RIDESHARING ON TIMETABLED TRANSPORT SERVICES:

A MULTIAGENT PLANNING APPROACH

JAN HRNČÍŘ, MICHAEL ROVATSOS, AND MICHAL JAKOB

Abstract. Ridesharing, i.e., the problem of finding parts of routes that can

be shared by several travellers with different points of departure and desti-
nations, is a complex, multiagent decision-making problem. The problem has

been widely studied but only for the case of ridesharing using freely moving ve-

hicles not bound to fixed routes and/or schedules – ridesharing on timetabled
public transport services has not been previously considered. In this paper, we

address this problem and propose a solution employing strategic multiagent

planning that guarantees that for any shared journey plan found, each indi-
vidual is better off taking the shared ride rather than travelling alone, thus

providing a clear incentive to participate in it. We evaluate the proposed so-

lution on real-world scenarios in terms of the algorithm’s scalability and the
ability to address the inherent trade-off between cost savings and the pro-

longation of journey duration. The results show that under a wide range of

circumstances our algorithm finds attractive shared journey plans. In addition
to serving as a basis for traveller-oriented ridesharing service, our system al-

lows stakeholders to determine appropriate pricing policies to incentivise group
travel and to predict the effects of potential service changes.

1. Introduction

Travelling is an important and frequent activity, yet people willing to travel have
to face problems with rising fuel prices, carbon footprint and traffic jams. One
way to tackle these problems is through ridesharing, i.e., purposeful and explicit
planning to create groups of people travel together in a single vehicle for parts of
the journey. Participants in such schemes can benefit from ridesharing in several
ways: sharing parts of a journey may reduce cost (e.g., through group tickets),
carbon footprint (e.g., when sharing a private car), and travellers can enjoy the
company of others on a long journey.

In general, ridesharing is a widely studied problem – existing work, however,
focuses exclusively on ridesharing using vehicles that can move freely on a road
transport network. This overlooks the potential for innovative future transport
schemes that might exploit ridesharing using timetabled public transport. Here,
customised group discount schemes could be devised to balance the load across
different times of the day, or to make more efficient use of the capacity of public
means of transport. Also, joint travel can be used to increase the comfort and
safety of individuals, e.g., for female travellers using night buses, or groups of
schoolchildren. In more advanced scenarios, one could even imagine ridesharing on
public means of transport being combined with working together while travelling,

2010 Mathematics Subject Classification. Primary.

c©0000 (copyright holder)

1

2 JAN HRNČÍŘ, MICHAEL ROVATSOS, AND MICHAL JAKOB

holding meetings on the road, meeting people with common interests, etc. We
would argue that, in fact, any future intelligent transport scheme for citizens that
attempts to address the social dimension of travel will be incomplete if it does not
take into account timetabled public transport.

Except for our own earlier work [27], no existing work seems to attempt to
compute joint travel plans based on public transport timetables and geographical
stop locations, let alone in a way that takes into account the strategic nature of
the problem, which comes about through the different (and potentially conflicting)
preferences of individual travellers. From the point of view of (multiagent) plan-
ning [13], i.e., the problem of synthesising sequences of actions to reach a certain
goal – in this case, arrival at a destination from a given point of departure – for
several travellers in parallel, ridesharing on timetabled services presents itself as
a very complex application scenario: To begin with, even if one restricted oneself
to centralised planning, the domain is huge – public transport data for the UK
alone currently involves 240,590 timetable connections for trains and coaches (even
excluding local city buses), which would have to be translated to a quarter of a mil-
lion planning actions, at least in a naive formalisation of the domain. This is the
case even if we assume a non-strategic setting, where individuals’ preferences are
not taken into account, and we are simply looking for a set of itinerary that gets
everybody to their destination, without any regard for how costly this might be
for the individual, or how the joint plan might favour some agents while putting
others at a disadvantage. Moreover, considering a strategic setting where we are
looking for a plan for multiple self-interested agents that are willing to cooperate
only if it is beneficial for them is known to be exponentially harder than planning
for each agent individually [5]. Yet any automated service that proposes joint jour-
neys would have to guarantee such strategic properties in order to be acceptable
for human users (who could then even leave it to the service to negotiate trips on
their behalf).

In our previous paper [27], we discussed the possibility of using a pre-processing
step to group users together in such a way that would permit applying our algo-
rithm to thousands or even millions of users in a larger geographical area (e.g.,
an entire country). In this paper, we present an improved version of our algorithm
which includes a pre-processing step that clusters likely co-travellers together based
on the overall direction of their individual trips and the distance between the origin
and destination points of these individual trips. We show that this pre-processing
step enables us to reduce plan computation times from over an hour to a few min-
utes in the worst case, while still resulting in substantial benefits from ridesharing
for those participating in shared journeys. The core of our algorithm is based on
a domain-independent best-response planning [29] approach which is the only avail-
able planner that can solve strategic multiagent planning problems of the scale
required, and whose properties and assumptions combine particularly well with the
ridesharing problem in hand.

The contribution of our work is threefold: Firstly, we show that current mul-
tiagent planning technology can be used in important planning domains such as
ridesharing by presenting its application to a practical problem that cannot be
solved with other existing techniques. In the process, we describe the engineering
steps that are necessary to deal with the challenges of real-world large-scale data
and propose suitable solutions. Secondly, we present an algorithm that combines

RIDESHARING ON TIMETABLED TRANSPORT SERVICES 3

different techniques in a practically-oriented way and works with real-world public
transport timetables and realistic travel demand even though it is largely based on
extensible, domain-independent, off-the-shelf heuristic problem solvers. Thirdly,
we evaluate the proposed algorithm on such real-world data, taking public trans-
port services of the Yorkshire region of the UK as an example. The evaluation not
only analyses the performance of the proposed approach but also provides insights
into general relationships between journey duration and cost in realistic ridesharing
scenarios.

We start off with an overview of the related work in section 2. This is followed by
a formal specification of the timetabled transport ridesharing problem in section 3
based on the model used in [29]. Section 4 introduces our four-phase algorithm for
strategic planning in ridesharing domains. An extensive experimental evaluation
of the algorithm is presented in section 5. Section 6 presents a discussion of our
results and section 7 concludes.

2. Related Work

Ridesharing is a long known and widely studied problem – existing work, how-
ever, focuses exclusively on ridesharing using vehicles that can move freely on a road
transport network, without schedule or route restrictions. The work on such non-
timetabled ridesharing covers the whole spectrum from formal problem models,
through solution algorithms up to practical consumer-oriented services and appli-
cations.

On the theoretical side, the vehicle-based ridesharing problem is typically for-
malised as a Dial-a-Ride Problem (DARP). Different variants of DARPs exist, dif-
fering, for example, in the nature of traveller’s constraints, the distribution of pickup
and delivery locations, the criteria optimised, or the level of dynamism supported.
A comprehensive review of different variants of DARPs, along with a list of algo-
rithmic solution approaches, is given by Cordeau et al. [10]. Most of the existing
approaches rely on a centralised coordination entity responsible for collecting re-
quests and producing vehicle assignment and schedules, though more decentralised
approaches have also been presented more recently [43]. Bergbelia et al. [1] sum-
marise recent advances in real-time ridesharing, which has been gaining prominence
with the growing penetration of internet-connected smartphones and GPS-enabled
vehicle localisation technologies. Existing work almost exclusively considers a sin-
gle mode of transport only. One of few exceptions is the work of Horn et al. [25]
which considers demand-responsive ridesharing in the context of flexible, multi-
modal transport systems; the actual ridesharing is, however, only supported for
demand-responsive non-timetabled journey legs. On the practical side, there exist
various online services for car (e.g., liftshare.com or citycarclub.co.uk), bike, and
walk sharing as well as services which assist users in negotiating shared journeys
(e.g., companions2travel.co.uk, travbuddy.com).

Journey planning for timetabled public transport services has been extensively
studied in the single-agent case. The problem is typically formalised as the earliest
arrival problem with two major ways to represent public transport timetables for
the planning algorithm as a search graph. A time-expanded approach [36] where
each event at a stop, e.g., the departure of a train, is modelled as a node in the
graph; and a time-dependent approach [7] where the graph contains only one node
for each station. To speed up the search process, many speed-up techniques for

https://www.liftshare.com/uk/
http://www.citycarclub.co.uk/
http://www.companions2travel.co.uk/
http://www.travbuddy.com/

4 JAN HRNČÍŘ, MICHAEL ROVATSOS, AND MICHAL JAKOB

a basic shortest-path algorithm, e.g., Dijkstra’s algorithm, have been proposed,
including the multi-level graph approach [38], access-node routing [14], and core-
ALT [35]. These algorithms are the basis of public travel planning services (e.g., in
the UK, nationalrail.co.uk for trains, traveline.info and maps.google.com for multi-
modal transport) that automate individual travel planning for one or several means
of transport.

So although both ridesharing using freely moving vehicle and single-agent jour-
ney planning for timetabled services have been extensively studied, the combination
of both, i.e., ridesharing on timetabled services, has not been – to the best of our
knowledge – studied before (with the exception of our previous paper).

Automated planning technology [24] has developed a variety of scalable heuris-
tic algorithms for tackling hard planning problems, where plans, i.e., sequences
of actions that achieve a given goal from a given initial state, are calculated by
domain-independent problem solvers. Unlike other approaches to route planning
and ridesharing, automated planning techniques permit a fairly straightforward
formalisation of travel domains, and allow us to capture the joint action space
and complex cost landscape resulting from travellers’ concurrent activities. In
terms of algorithmic complexity, the kind of multiagent planning needed to com-
pute ridesharing plans for several agents is significantly harder than single-agent
planning for two reasons: Firstly, the ability of each agent to execute actions con-
currently [2] may result result in exponentially large sets of actions available in
each step in the worst case. Secondly, whenever individual agents have different
(and potentially conflicting) goals [4], a joint solution must satisfy additional re-
quirements, e.g., being compatible with everyone’s individual preferences, or not
providing any incentive for any individual to deviate from the joint plan. Solving
the general multiagent planning for problem sizes of the scale we are interested in in
real-world ridesharing is therefore not currently possible using existing techniques.

Because of the desire to integrate different travellers’ individual plans, rideshar-
ing is quite similar to plan merging (e.g. [23, 41], where individual agents’ plans are
incrementally integrated into a joint solution. Compared to these approaches, how-
ever, in our domain every agent can always achieve their plan regardless of what
others do, and agents do not require others’ “help” to achieve their goals. This
makes the problem simpler than those of plan merging though, in return, we place
much higher scalability demands on the problem than those authors, who typically
evaluate their algorithms only on toy domains.

This explains also why, as will be shown below, we are able to achieve much
higher scalability than state-of-the-art multiagent plan synthesis algorithms, e.g.,
[33, 17, 34]. These algorithms exploit “locality” in different ways in order to be
able to plan for parts of a multiagent planning problem while temporarily ignoring
others, e.g., by considering non-interacting subplans in isolation from each other.In
a sense, our problem involves even more loosely coupled sub-tasks, as these can
be essentially solved in a completely independent way, except in terms of cost
optimisation.

The relationship between our work and approaches that focus more on decen-
tralised planning, plan co-ordination, and conflict resolution among independent
planning agents (e.g., [11, 12]) is similar – as no hard conflicts can arise among
individual plans in ridesharing, it is not essential to co-ordinate individual plans
with each other, other than for cost optimisation purposes.

http://www.nationalrail.co.uk/
http://www.traveline.info/
http://maps.google.com/

RIDESHARING ON TIMETABLED TRANSPORT SERVICES 5

As far as the strategic aspect is concerned, this is obviously also relevant to
ridesharing as ultimately each co-traveller wants to achieve an optimal solution for
themselves. Various approaches have studied this problem in the past (e.g. [18, 30,
4], yet none of them has been shown to scale to the type of domain we are interested
in, with the exception of [29], which makes certain simplifying assumptions to
achieve scalability: it does not consider joint deviation from equilibrium solutions
(i.e. it only safeguards against individual agents opting out of a joint plan, not
whole sub-groups of agents), and it assumes that agents will honour their promises
when they have agreed on a joint plan. We believe that both these assumptions are
reasonable in ridesharing, as we are envisioning a platform on which users would be
automatically grouped together whenever a rideshare would be beneficial to each
one of them. On such a platform, it is reasonable to assume that agreements could
be enforced through a trusted third party, and that collusion among travellers could
be avoided by not disclosing their identities to each other until the purchase of all
tickets has been completed. Below, we describe how this algorithm serves as the
basic planning method used in our ridesharing system.

3. Problem Formulation

Informally, the problem we are trying to solve is the following: Assume a (po-
tentially very large) set of agents who represent individual travellers, with their
individual trips specified in terms of source and target location. Assume also that
agents want to optimise the individual utility accrued from a trip, and this util-
ity may depend on travel cost and number of people travelling along each leg of
the journey (generally, we will assume that group travel has a positive effect on
utility, as we want to study the impact of this very aspect on travel behaviour).
Based on this information, we are looking for an algorithm that can identify ap-
propriate groups of travellers who could share parts of their journeys using the full
timetabling information of public transport systems, and determine their precise
joint travel plan. Also, we want to be sure that if we propose this plan to a group,
none of the individual agents will have an incentive to improve on the proposed
solution by deviating from it, i.e., we only want to suggest rideshares from which
all travellers involved will benefit.

This section provides the formalisation of the timetabled transport ridesharing
problem, which is then used by the ridesharing planning algorithm described in the
next section. This formalisation builds on a representation of timetabled transport
services captured at two different levels of granularity, which we call the relaxed and
full transport services domain. From a planning perspective, problem formulation-
builds on the definition of a multiagent planning problem, which is essentially the
combination of several individual planning problems involving an initial and goal
state, as well as a set of actions that can be performed by the agent, i.e. the public
transport services she can use.

3.1. Timetabled Transport Services Representation. Since the full travel
planning domain with a full granularity of timetabled connections is too large for
any current state-of-the-art planner to deal with, we distinguish the full transport
services domain from what we call the relaxed transport services domain, which we
will use to come up with an initial plan before mapping it to the full timetable
information in our algorithm below. Roughly speaking, the relaxed domain con-
tains information about all travel connections in the transport network with their

6 JAN HRNČÍŘ, MICHAEL ROVATSOS, AND MICHAL JAKOB

respective shortest travel times, and ignores any concrete service timetables and in-
formation about which passengers are using which sevices, which are only included
in the full domain (the relaxed domain also ignores direct connections among lo-
cations with intermediate stops, for reasons that will be explained below). Since
only trips that are possible in the relaxed domain are possible in the full domain,
this gives us a sound relaxation of the problem we can work with. This relaxation
is of course incomplete in the general case, as many trips that are possible in the-
ory cannot be performed in practice due to timetabling constraints, both regarding
transport services and participating travellers’ requirements.

The relaxed domain is a single-agent planning domain represented as a weighted
directed graph T = (V,E,w) where the set of nodes V represents the stops and the
set of edges E represents the connections provided by a service. The graph must
be directed because there exist stops that can only be used in one direction . There
is an edge e = (A,B) ∈ E from stop A to B in this graph if there is at least one
connection from A to B in the timetable. The weight w(e) of this edge is given
by the weight function w : E → R+

0 which returns the minimal time needed for
travelling from A to B. A plan Pi = 〈A1 → A2, A2 → A3, . . . , Ak−1 → Ak〉 found
in the relaxed domain for the agent i is a sequence of k − 1 connections to travel
from its origin A1 to its destination Ak.

A small example of the relaxed domain is shown in Figure 1. An example plan
for an agent travelling from C to F is P1 = 〈C → D,D → E,E → F 〉. To give an
idea of the difference between the relaxed domain and the full timetable in terms of
domain complexity, there are 497 connections in the relaxed domain for trains and
coaches in the Yorkshire area compared to 10,295 timetabled, actual connections.

A

B

C

D E

F

G

50 min 30 min

20 min30 min

120 min

80 min

60 min

Figure 1. An example of the relaxed domain showing basic con-
nection times (e.g., it takes 50 minutes to travel from A to B)

Direct trains that do not stop at every stop are filtered out from the relaxed
domain for the following reason: Assume that in Figure 1, there is only one agent
travelling from C to F and that its plan in the relaxed domain is to use a direct
train from C to F . In this case, it is only possible to match its plan to direct
train connections from C to F , and not to trains that stop at C, D, E, and F .
Therefore, the agent’s plan cannot be matched against all possible trains between
C and F which is problematic especially in the case where the majority of trains
stop at every stop and only a few trains are direct. On the other hand, it is possible
to match a plan with a train stopping in every stop to a direct train, as explained
later in section 4.4.

Assume a set S = {1, . . . , n} of agents in the full domain, where each agent i has
plan Pi from the relaxed domain. Then the full domain is a multiagent planning

RIDESHARING ON TIMETABLED TRANSPORT SERVICES 7

C

D E

F

S1

S2

S1

S3
S2

S4

S5

Figure 2. An example of the full domain with stops C, D, E

and F for the merged plan of two single-agent plans P = {C {1}−−→
D
{1,2}−−−→ E

{1}−−→ F}

domain constructed using a merged plan P of single-agent plans P1, . . . , Pn defined
by formula

P =

n⋃
i=1

Pi = (V ′, E′, l′)

where we interpret
⋃

as the union of graphs that would result from interpreting
each plan as a set of edges connecting stops. More specifically, given a set of single-
agent plans, the plan merging operator

⋃
computes its result in three steps: First,

it transforms every single-agent plan Pi to a directed graph Ti = (Vi, Ei) where the
nodes Vi are the stops from the single-agent plan Pi and the edges Ei represent the
atomic travel actions of Pi (for instance, a plan P1 = 〈C → D,D → E,E → F 〉
is transformed to a directed graph T1 = {C → D → E → F}). Second, the
merging operator performs a graph union operation

⋃n
i=1 Ti = (V ′, E′, l′) over

the directed graphs and sets V ′ =
⋃n

i=1 Vi, E
′ =

⋃n
i=1Ei, and labels every edge

e = (A,B) ∈ E′ with the numbers of agents that are using the edge by a labelling
function l′ : V ′ × V ′ → 2S . As an example , following Figure 1, the merged plan of
plans of agent 1 travelling from C to F and sharing a journey from D to E with
agent 2 would be computed as

〈C → D,D → E,E → F 〉 ∪ 〈D → E〉 = {C {1}−−→ D
{1,2}−−−→ E

{1}−−→ F}

With this, the full domain is represented as a labelled directed multigraph T ′ =
(V ′, Et, l, l

′) where the set of nodes V ′ represents the stops that are present in the
merged plan P of plans from the relaxed domain. A set of edges Et represents
the journey services from the timetable. The labelling function l : Et → 〈s, tA, τ〉
returns a triple of a unique service name s, a departure time tA from stop A,
and a duration τ of the service journey between stops A and B for each edge
e = (A,B) ∈ Et. The labelling function l′ : V ′ × V ′ → 2S labels every edge e ∈ E′
with the number of agents using it.

A joint plan π with a timetable is a sequence π = 〈a1 . . . ak〉 of joint actions.
Each joint action aj ∈ π represents a subset Sj ⊆ S agents travelling together using
a specific service sj .

In the example of the full domain in Figure 2, the agents can travel using some
subset of five different services S1 to S5. The full domain example is based on the
group of agent 1 (travelling from C to F) and agent 2 (travelling from D to E)
where initial single-agent plans have been found in the relaxed domain shown in
Figure 1. In order to travel from C to D using service S1, an agent must be present
at stop C before the departure of service S1 to D.

8 JAN HRNČÍŘ, MICHAEL ROVATSOS, AND MICHAL JAKOB

3.2. Multiagent Planning Problem. To model the ridesharing problem, we use
a multiagent planning formalism which is based on MA-STRIPS [5] and coalition-
planning games [6]. States are represented by sets of ground fluents, actions are
tuples a = 〈pre(a), eff (a)〉. These fluents are logical propositions describing aspects
of the current state that may change over time, e.g., at(a1 , l1) to express that agent
a1 is at location l1. After the execution of action a, positive fluents p from eff (a)
are added to the state and negative fluents ¬p are deleted from the state. For
example, an action travel(A,X ,Y), when applied to the case of A = a1 travelling
from X = l1 to Y = l2 would make at(a1 , l1) false and at(a1 , l2) true. Each agent
has individual goals and actions with associated costs. There is no extra reward for
achieving the goal, the total utility received by an agent is simply the inverse of the
cost incurred by the plan executed to achieve the goal. In the ridesharing domain,
the agents are the travellers, located in their origin locations in the initial state,
and attempting to achieve goal states where they are at their destination locations.
Agents contains the representation of the initial and goal state, whereas journey
planning for the agents is performed centrally.

More formally, following the notation of [29], a multiagent planning problem is
a tuple

Π = 〈N,F, I, {Gi}ni=1, {Ai}ni=1,Ψ, {ci}ni=1〉
where

• N = {1, . . . , n} is the set of agents,
• F is the set of fluents,
• I ⊆ F is the initial state,
• Gi ⊆ F is agent i’s goal,
• Ai is agent i’s action set,
• Ψ : A→ {0, 1} is an admissibility function,
• ci : ×n

i=1Ai → R is the cost function of agent i.

A = A1 × . . .×An is the joint action set assuming a concurrent, synchronous exe-
cution model, and G = ∧iGi is the conjunction of all agents’ individual goals. The
assumption of synchronous action among agents here is an important simplification
to make the problem more tractable. We will see below how it is possible to de-
termine specific synchronisation points for jointly travelling agents when mapping
the problem to the full timetabling information. A multiagent planning problem
typically imposes concurrency constraints regarding actions that cannot or have to
be performed concurrently by different agents to succeed which the authors of [29]
encode using an admissibility function Ψ, with Ψ(a) = 1 if the joint action a is
executable, and Ψ(a) = 0 otherwise.

A plan π = 〈a1, . . . , ak〉 is a sequence of joint actions aj ∈ A such that a1 is
applicable in the initial state I (i.e., pre(a1) ⊆ I), and aj is applicable following
the application of a1, . . . , aj−1. We say that π solves the multiagent planning
problem Π if the goal state G is satisfied following the application of all actions in

π in sequence. The cost of a plan π to agent i is given by Ci(π) =
∑k

j=1 ci(a
j).

Each agent’s contribution to a plan π is denoted by πi (a sequence of ai ∈ Ai).

3.3. Timetabled Transport Ridesharing Problem. The real-world rideshar-
ing domain used in this paper is based on the large and complex public transport
network in the UK. An agent representing a passenger is able to use different means
of transport during its journey: walking, trains, and coaches. The aim of each agent

RIDESHARING ON TIMETABLED TRANSPORT SERVICES 9

is to get from its starting location to its final destination at the lowest possible cost.
The cost of an agent’s journey can be based on the weighted sum of several criteria
such as journey duration, ticket price, mode of transport, and number of agents
travelling together.

For the purposes of this paper, we will make the assumption that sharing a part
of a journey with other agents is cheaper than travelling alone. While this may
not currently hold in many public transport systems, defining hypothetical cost
functions that reflect this would help assess the potential benefit of introducing
such pricing schemes. This means that our cost functions reflect synergies occurring
from the joint use of a resource, and this can be easily accommodated within the
framework of best-response planning, where these positive effects on cost are simply
treated as “negative contention”, i.e., the cost to each agent when sharing a resource
simply decreases instead of increasing. Note that this does not imply that every
time an agent decreases her local cost this will benefit everybody else. For example,
agent A might abandon the plan to share with B in order to reduce her overall
cost, and join agent C instead, thus increasing B’s cost, who will now travel alone.
Thereupon B will try to improve on this result (and so on), the important property
of BRP being that this process is guaranteed to terminate, and will result in a joint
plan no individual agent can improve further on. Also, it is worth pointing out that
joint plan will not necessarily be globally optimal – its quality will depend on the
initial plan computed before the best-response process.

The ridesharing problem is then, for a given travel demand expressed as a set
of origin-destination pairs, one for each agent, finding groups of agents and corre-
sponding shared journey plans. We define the ridesharing problem more formally
by presenting definitions for problem instances and our formal solution concept:
A timetabled transport ridesharing problem is a triple P = 〈T, T ′, G〉, where

• T = (V,E,w) is the relaxed domain containing a set V of public transport
stops,
• T ′ = (V ′, Et, l, l

′) is the full domain over the subset V ′ ⊆ V of public
transport stops, and
• G = {(o1, d1), . . . , (oc, dc)} is a set of agent trips (an agent’s goal is to

travel from an origin to a destination), where each agent’s trip g ∈ G is
represented by a tuple g = (o, d) denoting the agent’s origin o ∈ V and
destination d ∈ V .

A solution to this problem is a joint plan π = 〈a1, . . . , ak〉 specifying fully the
shared journeys of agents in terms of connections from the timetable and fulfilling
all agent trips g ∈ G. From the many joint plans possible, we are looking for such
a joint plan that correspond to a Nash equilibrium, i.e., where no agent/traveller
can unilaterally improve its individual journey cost.

4. Ridesharing Planning Algorithm

Once we have formalised the problem, we can proceed to a detailed description of
the ridesharing planning algorithm. The algorithm takes as an input the timetabled
transport ridesharing problem P = 〈T, T ′, G〉, a maximum travel group size nmax,
and a maximum bearing difference ∆ϕ. A bearing ϕ(t) for a trip t = (o, d) is
defined as an angle in degrees, measured in the clockwise direction, between the
north reference ray and the origin-destination ray. Bearing of a trip is used to
identify trips with a similar direction as these are more suitable for ridesharing

10 JAN HRNČÍŘ, MICHAEL ROVATSOS, AND MICHAL JAKOB

than trips with opposite bearing. The output of the algorithm is a joint plan
π = 〈a1, . . . , ak〉 that fulfils all agent trips g ∈ G.

The main problem when planning for an identified group of agents with a cen-
tralised multiagent planner is the exponential blowup in the action space which is
caused by using concurrent, independent actions [29]. Using a naive PDDL trans-
lation has proven that a direct application of a centralised multiagent planner to
this problem does not scale well. As mentioned above, we tackle the complexity
of the domain by breaking the planning process down into different phases that
avoid dealing with the full fine-grained timetable data from the outset. The overall
algorithm, which is shown in Figure 3, is designed to work in four phases, which
we will now describe in detail.

4.1. The Trip Grouping Phase. The algorithm starts with the trip grouping
phase where the trips G = {(o1, d1), . . . , (oc, dc)} are grouped into groups of at
most nmax agents. Groups are created incrementally from G, until G becomes
empty, in the following way: First, pick a trip g′ ∈ G at random. Then, create
a set of candidate trips G′ = {g ∈ G|bd(g, g′) ≤ ∆ϕ} that have a similar bearing
as g′ (function bd(g, g′) calculates the bearing difference between trips g and g′).
Next, create a group Gj ⊆ G′ by selecting at most nmax trips with minimum spatial
difference sd(·, g′) to g′. Here, the spatial difference sd(g, g′) of two trips g and g′

is defined as

sd(g, g′) = |o, o′|+ |d, d′|,
where |o, o′| denotes the direct distance between the origins of the two trips, and
|d, d′| the direct distance between their destinations. Once a group Gj is created,
the trips g ∈ Gj are deleted from the set of all trips G.

For each group Gj , a joint journey plan π with a timetable is found by applying
the next three phases of the algorithm.

4.2. The Trip Planning Phase. In the trip planning phase, an initial journey
is found for each agent i from the set of agents Gj using the relaxed domain T =
(V,E,w) where the action set is identical for every agent and contains all transport
services available in the transport network. A journey for each agent is calculated
independently of other agents in the scenario using a single-agent planner. As
a result, each agent is assigned a single-agent plan Pi which will be further optimised
in the next phase. This approach makes sense in our domain because the agents do
not need each other to achieve their goals and they cannot invalidate each other’s
plans. A PDDL specification for the relaxed domain is shown in section 4.5.2.

4.3. The Best-response Phase. In the best-response phase, which is also based
on the relaxed domain. Again, the action set is identical for every agent and
contains all transport services available in the transport network. The algorithm
uses the best-response planning algorithm as described below. It iteratively creates
and solves simpler best-response planning problems from the point of view of each
individual agent. In the case of the relaxed domain, the best-response planning
problem looks almost the same as a problem of finding a single-agent journey. The
difference is that, as we have explained in section 3.3, we make the assumption that
the cost of travelling is smaller when an agent uses a connection which is used by
one or more other agents. A specific cost function used for the evaluation of the
algorithm is defined in section 5.2.

RIDESHARING ON TIMETABLED TRANSPORT SERVICES 11

Input

• Timetabled transport ridesharing problem P = 〈T, T ′, G〉
• Maximum travel group size nmax

• Maximum bearing difference ∆ϕ

1. The trip grouping phase
Set j = 0
While G 6= ∅ do

(1) Pick a trip g′ ∈ G at random
(2) Create a set of candidate trips G′ = {g ∈ G|bd(g, g′) ≤ ∆ϕ}
(3) Create a group Gj ⊆ G′ by selecting at most nmax trips with

minimum spatial difference sd(·, g′) to g′

(4) Delete trips t ∈ Gj from G
(5) Set j = j + 1

For each created group Gj = {1, . . . , n} do the next three phases

2. The trip planning phase

For i = 1, . . . , n do
Find an initial journey for agent i using a single-agent planner

3. The best-response phase

Do until no change in the cost of the joint plan
For i = 1, . . . , n do

(1) Create a simpler best-response planning problem from the
point of view of agent i

(2) Minimise the cost of i’s plan without changing the plans of
others

4. The timetabling phase

Identify independent groups of agents I = {1, . . . ,m}
For i = 1, . . . ,m do

(1) Find the relevant timetable for group i
(2) Match the joint plan of i to timetable using a temporal

single-agent planner in the full domain with the relevant timetable

Output

• Joint plan π = 〈a1, . . . , ak〉 that fulfils all agent trips g ∈ G

Figure 3. Four-phase algorithm for finding shared journeys for agents

Iterations over agents continue until there is no change in the cost of the joint
plan between two successive iterations. This means that the joint plan cannot
be further improved using the best-response approach. The purpose of this is
not only to exploit local, “greedy” optimisations for single agents in an overall
schedule of plans. It also ensures that the proposed joint solution is compatible

12 JAN HRNČÍŘ, MICHAEL ROVATSOS, AND MICHAL JAKOB

with the incentives of individual agents, i.e., they could do no better on their
own by deviating from it. The fact that the first iteration of the best-response
optimisation starts from initial plans that agents can perform on their own ensures
this (any subsequent plan generated will be cheaper to them). The output of the
best-response phase is a merged plan P of the single-agent plans in the relaxed
domain (defined in section 3.1) that specifies which connections the agents use for
their journeys and which segments of their journeys are shared. The merged plan P
will be matched to the timetable in the final phase of the algorithm.

4.3.1. Best-response Planning. The best-response planning algorithm proposed in
[29] is an algorithm which, given a solution πk to a multiagent planning problem Π,
finds a solution πk+1 to a transformed planning problem Πi with minimum cost
Ci(π

k+1) for agent i among all possible solutions, while considering all other agents’
plans to be fixed:

πk+1 = arg min{Ci(π)|π identical to πk for all j 6= i}

The transformed planning problem Πi is obtained by rewriting the original prob-
lem Π so that all other agents’ actions are fixed, and agent i can only choose its own
actions in such a way that all other agents still can perform their original actions.
Since Πi is a single-agent planning problem, any cost-optimal planner can be used
as a best-response planner.

In [29], the authors show how for a class of congestion planning problems, where
all fluents are private, the transformation they propose allows the algorithm to con-
verge to a Nash equilibrium if agents iteratively perform best-response steps using
an optimal planner. This requires that every agent can perform its actions without
requiring another agent, and hence can achieve its goal in principle on its own,
and conversely, that no agent can invalidate other agents’ plans. Assuming infinite
capacity of vehicles (or, more realistically, large enough capacities to accommodate
at least the number of agents for whom we are trying to find a plan), the relaxed
domain is an instance of a congestion planning problem: following the definition of
a congestion planning problem in [29], all actions are private, as every agent can
use a means of transport on their own and the other agents’ concurrently taken
actions only affect action cost. The convergence of the best-response phase derives
from the theorem presented in [29] which states that for any congestion planning
problem, best-response planning converges to a pure-strategy Nash equilibrium.

The best-response planner works in two phases: In the first phase, an initial plan
for each agent is computed (e.g., each agent plans independently or a centralised
multiagent planner is used). In the second phase, the planner solves simpler best-
response planning problems from the point of view of each individual agent. The
goal of the planner in a best-response planning problem is to minimise the cost of
an agent’s plan without changing the plans of others (though the cost of their plans
might change as explained in section 3.3). Consequently, it optimises a plan of each
agent with respect to the current joint plan.

This approach has several advantages. It supports full concurrency of actions
and the best-response phase avoids the exponential blowup in the action space
resulting in much improved scalability. For the class of potential games [32], it
guarantees convergence to a Nash equilibrium. On the other hand, it does not
guarantee the optimality of a solution, i.e., the quality of the equilibrium in terms
of overall efficiency is not guaranteed (it depends on which initial plan the agents

RIDESHARING ON TIMETABLED TRANSPORT SERVICES 13

start off with). However, experiments have proven that it can be successfully used
for improving general multiagent plans [29].

4.4. The Timetabling Phase. In the final timetabling phase, the optimised shared
journeys are matched against timetables using a temporal single-agent planner
which assumes the full domain. For this, in a first step, independent groups of
agents with respect to journey sharing are identified. An independent group of
agents is defined as an edge disjoint subgraph of the merged plan P . This means
that actions of independent groups do not affect each other so it is possible to find
a timetable for each independent group separately.

A

C D E F

G

B H

part 1

part 2

part 4

part 5

part 3

{1} {1}

{2} {2}

{1, 2} {1, 2} {1, 2}

Figure 4. Parts of the group journey of two agents

Then, for every independent group, parts of the group journey are identified.
A part of the group journey is defined as a maximal continuous segment of the
group journey which is performed by the same set of agents. As an example, there
is a group of two agents that share a segment of their journeys in Figure 4: Agent 1
travels from A to G while agent 2 travels from B to H. Their group journey has
five parts, with the shared part (part 3) of their journey occurring between stops
C and F .

In order to use both direct and stopping trains when the group journey is matched
to the timetable, the relevant timetable for a group journey is composed in the
following way: for every part of the group journey, return all timetable services in
the direction of agents’ journeys which connect the stops in that part. An example
of the relevant timetable for a group of agents from the previous example is shown
in Figure 5. Now, the agents can travel using the direct train T1 or using train T2

with intermediate stops.

A

C D E F

G

B H

T1

T2 T2 T2

T1

T2

T3 T4

T5

T2

T1

Figure 5. The full domain with services from the relevant
timetable. There are five different trains T1 to T5, and train T1 is
a direct train.

14 JAN HRNČÍŘ, MICHAEL ROVATSOS, AND MICHAL JAKOB

The relevant timetable for the group journey is used with the aim to cut down
the amount of data that will be given to a temporal single-agent planner. For
instance, there are 9,881 timetabled connections for trains in the Yorkshire area.
For an example journey of 4 agents, there are only 634 services in the relevant
timetable which is approximately 6% of the data. As a result, the temporal single-
agent planner gets only the necessary amount of data as input, to prevent the
time-consuming exploration of irrelevant regions of the state space.

In the timetabling phase, every agent in a group of agents tries to spend the
shortest possible time on its journey. When matching the plan to the timetable,
the temporal planner tries to minimise the sum of durations of agents’ journeys
including waiting times between services. A PDDL specification for the full domain
is shown in section 4.5.2.

Once the timetabling phase finishes, the algorithm adds a joint plan πj =
〈a1, . . . , ak〉 for the identified group of agents Gj ∈ G to the final joint plan
π = π

⋃
πj . The algorithm then proceeds to the next group Gj ∈ G.

4.5. Implementation. This section describes two important aspects of the algo-
rithm implementation. It deals with the conversion of public transport timetables
data to the Planning Domain Definition Language and with the choice of planners
for implementing the individual phases of the algorithm.

4.5.1. Importing Timetables. To be able to use timetables data of public transport
services (cf. section 5.1) with modern AI planning systems, it has to be converted
to the Planning Domain Definition Language (PDDL). We transformed the data
in three subsequent stages. First, we transformed the NPTDR and NaPTAN XML
data to a spatially-enabled PostgreSQL database. Second, we automatically pro-
cessed and optimised the data in the database. The data processing by SQL func-
tions in the procedural PL/pgSQL language included the following steps: merging
bus bays at bus stations and parts of train stations, introducing walking connections
to enable multi-modal journeys, and eliminating duplicates from the timetable. Fi-
nally, we created a script for generating PDDL specifications based on the data in
the database. More details about the data processing and PDDL specifications can
be found in [26].

4.5.2. PDDL definitions. In the relaxed domain used in the trip planning and best-
response phase, a single agent aims to travel from its origin to its destination.
The domain file contains two predicates, two functions and only one action, cf.
Figure 7. The predicate connection is true when there is an edge from ?origin

to ?destination (there are separate edges for walking, travel by bus or train), the
predicate at denotes the current location of the agent. The function time returns
the cost of travelling from the location ?origin to ?destination. The action go

moves the agent from the location ?o to ?d and it increases the total cost of the
plan which is stored by the total-cost function. The problem file then contains
origin and destination of the agent, a list of stops, and a list of connections between
the stops and their costs.

In the full domain used in the timetabling phase, multiple agents aim to travel
from their origins to their destinations. The domain is based on the result of
merging individual plans P from the relaxed domain. Therefore, it contains only
the stops that are present in the union of these plans, with the shared parts of
the journeys and “who shares which part of the journey” already specified. In the

RIDESHARING ON TIMETABLED TRANSPORT SERVICES 15

process of finding a plan for the full domain, a joint plan of the group of agents is
instantiated with concrete timetabled services.

(define (domain travelplanner)

(:requirements :typing :action-costs)

(:types location)

(:predicates

(connection ?origin - location ?destination - location)

(at ?loc - location)

)

(:functions

(time ?origin - location ?destination - location)

(total-cost)

)

(:action go

:parameters (?o ?d - location)

:precondition (and (at ?o) (connection ?o ?d))

:effect (and

(at ?d) (not (at ?o))

(increase (total-cost) (time ?o ?d)))

)

)

Figure 6. The domain file for the relaxed domain

(:durative-action go-agent-1-2_A-B

:parameters (?s - service)

:duration (= ?duration (+

(- (+ (departure A B ?s) (runtime A B ?s)) (agent-time agent1))

(- (+ (departure A B ?s) (runtime A B ?s)) (agent-time agent2))

))

:condition (and

(at start (connection A B ?s))

(at start (at agent1 A))

(at start (<= (agent-time agent1) (departure A B ?s)))

(at start (at agent2 A))

(at start (<= (agent-time agent2) (departure A B ?s)))

)

:effect (and

(at end (at agent1 B))

(at start (not (at agent1 A)))

(at end (assign (agent-time agent1)

(+ (departure A B ?s) (runtime A B ?s))))

(at end (at agent2 B))

(at start (not (at agent2 A)))

(at end (assign (agent-time agent2)

(+ (departure A B ?s) (runtime A B ?s))))

))

Figure 7. A durative action go-agent-1-2 A-B in the domain file
for the full domain

The domain file contains a list of partially instantiated durative actions for trav-
elling from one stop to another, where origin, destination, and agents using this
action are instantiated, and the only free variable is the name of the service the
agents are going to use. The function (agent-time ?a - agent) is used to store

16 JAN HRNČÍŘ, MICHAEL ROVATSOS, AND MICHAL JAKOB

the current time of the agent ?a. An example of a durative action is shown in
Figure 6. The durative action go-agent-1-2 A-B enables agent 1 and 2 to travel to-
gether from stop A to stop B. If the travel from A to B is shared by three agents,
the domain file would contain an action go-agent-1-2-3 A-B.

Let N be the number of agents travelling together, ati the current time of agent
i, dAB(s) the departure time of service s from the stop A to B and rAB(s) its
duration. Then, the duration DAB of the action to travel from the stop A to B is

computed as DAB =
∑N

i=1 (dAB(s) + rAB(s)− ati). The temporal planner tries to
minimise the sum of the durations of agents’ journeys. In other words, it tries to
find a journey with minimal waiting times between services.

The conditions of the action are the following: there must be a connection by
the service s between the stops A, B and the agents must be present at the stop A
before the departure of service s. Once the action is executed, the agents are located
at stop B and their current time is set to the arrival of the service s at stop B. The
problem file contains origins and destinations of the agents and a list of services
and their departures and durations.

4.5.3. Planners. All three single-agent planners used for the implementation were
taken from recent International Planning Competitions from 2008 and 2011. We
use LAMA [37] in the trip planning and the best-response phase, a sequential
satisficing (as opposed to cost-optimal) planner which searches for any plan that
solves a given problem and does not guarantee optimality of the plans computed.
LAMA is a propositional planning system based on heuristic state-space search. Its
core feature is the usage of landmarks, i.e., propositions that must be true in every
solution of a planning problem.

SGPlan6 [28] and POPF2 [9] are the two temporal satisficing planners used in
the timetabling phase. Such temporal planners take the duration of actions into
account and try to minimise makespan (i.e., total duration) of a plan but do not
guarantee optimality. The two planners use different search strategies and usually
produce different results. This allows us to run them in sequence on every problem
and to pick the plan with the shortest duration. It is not strictly necessary to run
both planners, one could save computation effort by trusting one of them.

In many of the experiments, the SGPlan6 and POPF2 used in the timetabling
phase returned some plans in the first minute but then they continued exploration
of the search space without returning any better plan. To account for this, we
imposed a time limit for each planner in the temporal planning stage to 2 minutes
for a group of up to 4 agents and 4 minutes otherwise.

5. Evaluation

We have evaluated the proposed ridesharing algorithm on realistic scenarios
based on real-world public transport timetables and travel demand data for the
Yorkshire area of the United Kingdom. The size of the area was dictated solely
by our need to evaluate the algorithm on the whole travel demand (approximately
100,000 train trips per day). The ridesharing planning algorithm itself scales up
well up to the area of the whole UK, as was shown in our previous work [27]. How-
ever, there the algorithm was evaluated on travel demand that was very sparsely
and randomly sampled, not necessarily showing any correlation to actual travel
demand profiles.

RIDESHARING ON TIMETABLED TRANSPORT SERVICES 17

Table 1. Numbers of trips per day in the Yorkshire area [21, 22]

Transport mode Modal split 100% trips 50% trips 5% trips
Trains 5.3% 106,035 53,017 5,302
Coaches 0.3% 6,002 3,001 300
Local buses 6.0% 120,039 60,020 6,002
Passenger cars 88.3% 1,766,576 883,288 88,329
Total 100.0% 1,998,651 999,326 99,933

5.1. Domain Data. The timetables of public transport services were taken from
the National Public Transport Data Repository (NPTDR, data.gov.uk/dataset/
nptdr) which is publicly available from the Department for Transport of the British
Government. For the evaluation of the algorithm, we used data from 2010, which
is provided in TransXChange XML, in an XML-based UK standard for interchange
of route and timetable data.

National Public Transport Access Nodes (NaPTAN, data.gov.uk/dataset/nap-
tan) is a UK national system for uniquely identifying all the points of access to
public transport. Every point of access (bus stop, railway station, etc.) is identified
by an ATCO code (a unique identifier for all points of access to public transport in
the UK), e.g., 9100YORK for York Rail Station. Each stop in the NaPTAN XML
data is also supplemented by common name, latitude, longitude, address and other
pieces of information. This data also contains information about how the stops are
grouped together (e.g., several bus bays that are located at the same bus station).

The experiments are situated in the Yorkshire area (East and West Yorkshire,
East Riding of Yorkshire, York, and Selby administrative areas) which covers an
area of approximately 130 by 70 km, i.e., around 9,100 km2. According to the UK
origin-destination census data from 2001 [22], there are 2 million passenger trips
a day in the Yorkshire area. In order to focus on the timetabled public transport
trips, the modal split in the UK across different modes of transport in 2001 [21]
was used to estimate the number of trips for each mode, cf. Table 1.

Since we assume that all agents are travelling on the same day and that all
journeys must be completed within 24 hours, in what follows below we consider
only public transport timetables data for Tuesdays (this is an arbitrary choice that
could be changed without any problem).

5.2. Cost Model. The timetable data used in this paper (cf. previous section)
contains neither information about ticket prices nor distances between adjacent
stops, only durations of journeys from one stop to another. This significantly
restricts the design of a cost functions used for the planning problems. Therefore,
the cost functions used in this paper are based solely on the duration of journeys.
The cost ci,n for agent i travelling from A to B in a group of n agents is then
defined by equation (5.1):

(5.1) ci,n =
(

1
n 0.8 + 0.2

)
ci

where ci is the individual cost of the single action to i when travelling alone. In
this paper, we take this to be equal to the duration of the journey from A to B.

This is designed to approximately model the discount for the passengers if they
buy a group ticket: The more agents travel together, the cheaper the shared (leg
of a) journey becomes for each agent. Also, an agent cannot travel any cheaper

http://data.gov.uk/dataset/nptdr
http://data.gov.uk/dataset/nptdr
http://data.gov.uk/dataset/naptan
http://data.gov.uk/dataset/naptan

18 JAN HRNČÍŘ, MICHAEL ROVATSOS, AND MICHAL JAKOB

Table 2. Experiment scenarios parameters overview

Scenario parameter Parameter values
Travel demand generation {realistic, random}
Ridesharing demand proportion {100%, 50%, 5%}
Modes of transport {trains only, trains and coaches}
Maximum travel group size {2, 4, 6, 8}

than 20% of the single-agent cost. In reality, pricing for group tickets could vary,
and while our experimental results assume this specific setup, the actual price
calculation could be easily replaced by any alternative model.

5.3. Experiment Scenarios. We used the following parameters as factors in ex-
periment scenarios: (1) travel demand generation; (2) ridesharing demand pro-
portion; (3) modes of transport considered; (4) maximum travel group size. The
values of the parameters are summarised in Table 2. We set the maximum bearing
difference parameter of the algorithm to ∆ϕ = 25 degrees for all scenarios.

Travel Demand Generation. We use two types of travel demand. The real-
istic travel demand generation is based on the UK census 2001 origin-destination
data [22] that contains numbers of trips carried out from every origin district to
every other destination district. District-to-district trip counts are mapped to stop-
to-stop trip counts in the following way: For each origin-destination district pair,
the desired number of trips is generated randomly from the Cartesian product of
stops in the origin and destination district. Since the UK census origin-destination
data is not provided at the level of granularity required to select concrete stops
in the travel network, we have sampled these within each district with probability
proportional to the density of services passing through a stop. This is based on the
assumption that service density roughly follows numbers of travellers using a stop.
In addition to the realistic demand, we also experimented using random travel de-
mand generated randomly from the Cartesian product of stops in the Yorkshire
area, assuming a uniform distribution over stops.

From the travel demand distribution generated, only trips with a straight-line
distance between the origin and the destination in the interval 25–100 km are
used for the evaluation (when using roads or rail tracks, this interval stretches
approximately to a real distance of 40–160 km). This interval was chosen to filter
out trips that are too short to be planned in advance and therefore not very suitable
for sharing. This led to the removal of 86% of all trips in the realistic travel demand
generation process and to the removal of 30% of all trips in the random travel
demand generation process.

Ridesharing Demand Proportion. In order to observe the behaviour of the
system with different densities of trips we set the portion of travel demand to
100%, 50%, and 5% of the total number of trips.

Modes of Transport. In order to evaluate the behaviour of the algorithm on
both a unimodal and a multi-modal public transport network, trains only and
a combination of trains and coaches were used in the experiments. In the Yorkshire
area, there are 150 (201) stops, 330 (495) connections in the relaxed domain, and
9,881 (10,289) connections in the timetable for trains (and coaches).

RIDESHARING ON TIMETABLED TRANSPORT SERVICES 19

Maximum Travel Group Size. The maximum travel group size nmax is one of
the algorithm’s inputs that restricts the size of groups created in the trip grouping
phase. We set this parameter to 2, 4, 6, and 8 as after initial testing, it became
clear that groups of a larger size are almost never practicable.

5.4. Metrics. We evaluate the performance of the algorithm in terms of three
different metrics: improvement in the cost of agents’ journeys, their prolongation,
and the computation time of the algorithm.

Cost Improvement. To evaluate the net benefit of using our method for rideshar-
ing, we calculate the cost improvement for the agents’ journeys. To calculate this,
recalling that Ci(π) =

∑
j ci(a

j) for a plan is the cost of a plan π = 〈a1, . . . , ak〉 to

agent i, assume n(aj) returns the number of agents with whom the jth step of the

plan is shared. We can define the cost of a shared travel plan C
′

i(π) =
∑

j ci,n(aj)(a
j)

using equation (5.1). With this, we can calculate the cost improvement ∆C as fol-
lows:

(5.2) ∆C =

∑
i∈N Ci(πi)−

∑
i∈N C

′

i(πN)∑
i∈N Ci(πi)

where N is the set of all agents, πi is the single-agent plan initially computed for
agent i, and πN is the final joint plan of all agents after completion of the algorithm
(which, though it is in reality a set of several plans for different subgroups of N , is
interpreted as a single plan for the “grand coalition” N and reflects how subgroups
within N share parts of their individual journeys).

Prolongation. On the one hand, ridesharing is beneficial in terms of cost. On the
other hand, a shared journey has a longer duration than a single-agent journey in
most cases, because agents have to take later services than they could use on their
own if they are waiting for co-travellers to arrive. In order to evaluate this trade-off,
we measure journey prolongation. Assume that Ti(π) is the total duration of a plan
to agent i in plan π, and, as above, πi/πN denote the initial single-agent plans and
the shared joint plan at the end of the timetabling phase, respectively. Then, the
prolongation ∆T of a journey is defined as follows:

(5.3) ∆T =

∑
i∈N Ti(πN)−

∑
i∈N Ti(πi)∑

i∈N Ti(πi)

Computation Time. To assess the scalability of the algorithm, we measure the
amount of time needed to create groups of agents in the first phase of the algorithm
and then to plan shared journeys for all agents in each group.

5.5. Results. In this section, we present the results of the evaluation in terms of
journey cost improvement, journey prolongation, and computation time of the al-
gorithm. Exhaustive experiment design was used; all metrics were evaluated for all
combinations of all values of all scenario parameters. Specifically, for each type of
travel demand generation, we tested all combinations of modes of transport, and
for each ridesharing demand proportion, we generated the travel demand. Then for
each maximum group size, the whole travel demand is an input for the algorithm
which in its trip grouping phase creates the groups of agents for ridesharing. From
the set of all groups created, a detailed journey plan with a timetable is found in the
last three phases of the algorithm for a sample of 80 randomly chosen groups (sam-
pling was performed to reduce experiment computational time while maintaining

20 JAN HRNČÍŘ, MICHAEL ROVATSOS, AND MICHAL JAKOB

 0

 10

 20

 30

 40

 50

 60

 70

 2 4 6 8

co
st

 im
pr

ov
em

en
t

[%
]

maximum group size

5% trips
50% trips

100% trips
 0

 5

 10

 15

 20

 25

 30

 2 4 6 8

pr
ol

on
ga

ti
on

 [%
]

maximum group size

5% trips
50% trips

100% trips

Figure 8. Average cost improvement and prolongation against
maximum group size (realistic travel demand, trains and coaches)

significance of the results). Each possible experiment configuration is averaged over
8 stochastic travel demand generation instances. This leads to an overall number
of 30,720 groups of agents over which the algorithm was evaluated. The results
obtained are based on running the algorithm on one core of a 3.2 GHz Intel Core i7
processor of a Linux desktop computer with a PostgreSQL 9.1 database (spatially
enabled with PostGIS 2.0.1).

Cost Improvement. The average cost improvement obtained in our experiments
is shown in Figure 8. It shows that the more agents are grouped together in the
trip grouping phase of the algorithm, the higher the improvement. These results
were obtained based on the specific cost function (5.1) we have introduced to favour
ridesharing, and which would have to be adapted to the specific cost structure that
is present in a given transport system. Also, the extent to which longer journey
times are acceptable for the traveller depends on their preferences, but these could
be easily adapted by using different cost functions.

Prolongation. The average prolongation of journeys is shown in Figure 8 where
8% of groups with prolongation greater than 100% is filtered out from the aver-
age calculation (these are the journeys which, though feasible, are unlikely to be
accepted by travellers). The graph shows that the more agents are grouped to-
gether in the trip grouping phase of the algorithm, the higher the prolongation.
Furthermore, the prolongation with the 5% ridesharing proportion is much higher
then when considering 50% or 100% ridesharing proportion. As the density of
trips drops, the agents in groups are more spatially dispersed, which causes higher
relative prolongation ratios.

Figure 9 shows a scatter plot of cost improvement versus prolongation for indi-
vidual trips for 5% and 50% ridesharing proportion. It can be observed that with
a higher ridesharing proportion, the majority of the groups has either prolongation
very close to 0% (identical trips are shared) or has a very high cost improvement
(between 50% and 60%). With a lower ridesharing proportion, there are many more
groups with lower cost improvement or higher prolongation. What is encouraging
is that even for small populations of potential ridesharers, there are many shared

RIDESHARING ON TIMETABLED TRANSPORT SERVICES 21

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100

co
st

 im
pr

ov
em

en
t

[%
]

prolongation [%]

(a) 5% trips

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100

co
st

 im
pr

ov
em

en
t

[%
]

prolongation [%]

(b) 50% trips

Figure 9. Cost improvement against prolongation (realistic travel
demand, trains and coaches, maximum group size nmax = 4)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2 4 6 8

ru
nt

im
e

[s
]

maximum group size

5% trips
50% trips

100% trips

(a) Realistic travel demand

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2 4 6 8

ru
nt

im
e

[s
]

maximum group size

5% trips
50% trips

100% trips

(b) Random travel demand

Figure 10. Computation time against maximum group size
(trains and coaches)

journeys with a good cost improvement and a reasonable prolongation. In our al-
gorithm, the balance between the two criteria could be calibrated by changing the
weights in the cost function.

Computation Time. The first graph in Figure 10 shows the overall computation
times of the algorithm for one created group of agents from the realistic demand and
a combination of trains and coaches. The trip grouping phase of the algorithm is
very fast (200 ms per group on average). The algorithm spends the majority of the
computation time solving the problem of finding a joint plan for the group of agents.
The graph indicates that the overall computation time grows roughly linearly with
increasing numbers of agents in a group, which confirms that the algorithm avoids
the exponential blowup in the action space characteristic for centralised multiagent

22 JAN HRNČÍŘ, MICHAEL ROVATSOS, AND MICHAL JAKOB

planning. This is mainly a consequence of the best-response planning algorithm,
and an expected result.

The second graph in Figure 10 shows the overall computation times of the algo-
rithm for one created group of agents from the random demand and for a combi-
nation of trains and coaches. It can be observed that the algorithm is faster at the
realistic 5% ridesharing proportion than for random trips. At the 50% and 100%
ridesharing proportion, there is not a very big difference between the computation
times. This suggests that the trips from the realistic 5% ridesharing proportion
reflects the public transport network making the journey planning easier whereas
it is harder to plan for trips distributed randomly.

Regarding the modes of transport in the scenario, it is harder to find joint plans
when a combination of trains and coaches is considered (on average, runtimes are
25% higher for scenarios with trains and coaches). Considering a combination of
trains and coaches does not significantly affect neither the cost improvement, nor
the prolongation.

While the overall computation times are considerable (up to 2 minutes for a group
of 8 agents from the realistic 5% ridesharing proportion), we should emphasise that
the algorithm is effectively computing equilibrium solutions in multi-player games
with hundreds of thousands of states. Considering this, the linear growth hints at
having achieved a level of scalability based on the structure of the domain that is
far above naive approaches to plan jointly in such state spaces.

Finally, we have evaluated the overall computation time for all trips from the
travel demand. We were able to compute shared journey plans for approximately
13,500 trips from realistic 100% ridesharing proportion when considering a com-
bination of trains and coaches. It took less than 75 minutes for each setting of
maximum group size while using 8 cores of 3.2 GHz Intel Core i7 processor on
three computers in parallel.

The ridesharing algorithm can be further parallelised down to a level of individual
groups, bringing the computation time to few minutes for the whole demand. This
follows from the structure of the algorithm: In the trip planning phase, the identi-
fication of initial single-agent plans for the travellers consists of a set of completely
independent problems. In the best-response and timetabling phase, the planning
problem of each group of agents is also completely independent from those of other
groups or individual travellers.

6. Discussion

Our proposed algorithm clearly improves the cost of agents’ journeys by shar-
ing parts of the journeys, even though there is an inherent trade-off between cost
improvement and the prolongation of journeys. On the one hand, the bigger the
group, the better the improvement. On the other hand, the more agents share
a journey, the higher the prolongation is likely to be. This will most likely lead to
results that are not acceptable for users in larger groups. Whether prolongation or
cost savings are more important in a given scenario will depend on the real pref-
erences of travellers, and our system would allow them to customise these settings
per individual on, for example, a Web-based ridesharing planner that would use
our algorithm. It is also important to point out that our framework can be used
without any significant modifications for any other cost function as appropriate

RIDESHARING ON TIMETABLED TRANSPORT SERVICES 23

for the transport system in question, and, subject to availability of the required
real-world timetabled transport data, for any other geographical region.

Next, note that trip planning and best-response phases of the algorithm are
completely domain-independent and can therefore easily be used for other types of
transport problems, e.g., to plan routes that avoid traffic jams or to schedule parcel
deliveries. What is more, additional constraints such as staying at a location for
some time or travelling together with a specific person can be easily accommodated
within standard planning languages, and the use of standard planning technology
also implies that our method will directly benefit from future improvements in plan-
ning algorithms. On the other hand, the trip grouping and the timetabling phase
of the algorithm are domain-specific, providing an example of the specific design
choices that have to be made from an engineering point of view when applying
standard AI methods to problems of decentralised decision-making in transport.

From an algorithm and systems engineering perspective, using off-the-shelf prob-
lem solvers such as AI planning systems for a complex real-world domain like trip
sharing brings an additional benefit, which is that we do not need to engineer novel
optimisation algorithms for the combinatorial problems arising in this family of
problems from scratch. While it is certainly possible that faster algorithms that
produce better solutions may exist for specific problems, our approach enables us
to formalise different types of similar problems with comparatively little effort and
to make use of the best available search heuristics in a lightweight fashion. We be-
lieve that this is an effective way of developing decentralised resource allocation and
process optimisation systems in domains like transport, where it can be expensive
to develop a custom solution for every different class of problems although many
of them share many common characteristics.

The presented experiments work with a demand for a whole day and therefore
the generated joint plans are not restricted to any particular part of a day. In
reality, however, travellers may not be so flexible in terms of timing their journeys.
This problem can be easily solved by considering time constraints in the clustering
performed in the trip grouping phase of the algorithm. Trips might e.g. be put into
one group only if their preferred departure and/or arrival times do not differ by
more than a given time difference. The performance achieved for lower trip den-
sities corresponding to 5% ridesharing proportion suggests that attractive shared
journeys would be found even for the maximum time difference of one hour (one
hour constitutes approximately 4% of a day), or even less during peek hours when
demand is more concentrated.

There are many potential uses of the proposed approach to real-world rideshar-
ing: From a traveller’s perspective, it can be used to exploit current ticket discounts
for group travel while enjoying the company of friends, fellow workers, and other
co-travellers. A web- or smartphone-based application can be built which would
collect user preferences and constraints and propose shared journey plans. Further,
in future applications our approach could be combined with the use of private cars
to mix public and private modes of transport. This can be achieved with fairly
small modifications. It would work in a similar way as walking is combined with
public transport in our evaluation, except that car travel enables non-timetabled
transport for more than one individual. This is an important extension, as in most
realistic settings, successful ridesharing would certainly include private cars. In
fact, without this, we are only considering a very hard problem, were travellers

24 JAN HRNČÍŘ, MICHAEL ROVATSOS, AND MICHAL JAKOB

have very limited flexibility. Naturally, if at least one person in each group has
a car, this opens up (orders of magnitude) more options for joint trips. Also, for
car sharing the cost benefit is arguably much higher, and can be much more ob-
jectively calculated than what we have assumed in our hypothetical cost function
(e.g., cost/km divided by number of car passengers).

From a public policy and transport planning perspective, stakeholders in the
public transport domain could use our method to predict customer behaviour when
considering modifications to timetables, the introduction of new services, and mod-
ifications to pricing schemes to optimise usage, environmental footprint, and busi-
ness revenue. Such scenario analysis could easily accommodate taking further fac-
tors into account, such as waiting times, travel interruptions for business and leisure
activities, preferences of individuals to share trips with particular co-travellers, etc.
In particular, it could give rise to new incentive schemes for ridesharing, such as
discounts for group travel that depend on the cumulative amount of sharing or
occupancy ratios along different legs of joint journeys involving various means of
transport and changing groups of jointly travelling individuals.

7. Conclusion

We have presented a multiagent planning algorithm which is able to plan mean-
ingful shared journeys using timetabled public transport services. The algorithm
has been implemented and evaluated on realistic scenarios based on real-world UK
transport data. Experiments with realistic travel demand show that, for a wide
range of scenarios, the algorithm is capable of finding shared journeys with very
attractive trade-offs between cost saving and journey time prolongation.

The algorithm exhibits very good scalability, scaling linearly with the number of
trips processed, regardless of the size of travel groups considered. The algorithm
is also amenable to massive parallelisation which can bring the time required for
planning shared journeys for real-world travel demand down to minutes.

Finally, the cost of travel and flexibility of ridesharing can be significantly im-
proved by sharing private cars. In the future, we plan to extend the algorithm
towards multi-modal ridesharing in which groups of travellers can seamlessly trans-
fer between timetabled and non-timetabled transport modes.

8. Acknowledgments

This work was supported by the EC within the framework of the SUPERHUB
Project (grant agreement No. 289067) and by the Ministry of Education, Youth
and Sports of Czech Republic (grant No. LD12044).

References

1. Gerardo Berbeglia, Jean-Franois Cordeau, and Gilbert Laporte, Dynamic pickup and delivery

problems., European Journal of Operational Research 202 (2010), no. 1, 8–15.
2. C. Boutilier and R. Brafman, Partial-order planning with concurrent interacting actions,

Journal of Artificial Intelligence Research 14 (2001), 105–136.
3. M. Bowling, R. Jensen, and M. Veloso, A formalization of equilibria for multiagent planning,

AAAI Workshop on Planning with and for Multiagent Systems, July 2002.
4. R. Brafman, C. Domshlak, Y. Engel, and M. Tennenholtz, Planning Games, Proceedings of

the International Joint Conference on Artificial Intelligence, vol. 21, 2009, pp. 73–78.

5. Ronen I. Brafman and Carmel Domshlak, From One to Many: Planning for Loosely Coupled
Multi-Agent Systems, Procs. ICAPS 2008, AAAI Press, 2008, pp. 28–35.

RIDESHARING ON TIMETABLED TRANSPORT SERVICES 25

6. Ronen I. Brafman, Carmel Domshlak, Yagil Engel, and Moshe Tennenholtz, Planning Games,

Procs. IJCAI 2009, July 2009, pp. 73–78.

7. Gerth S. Brodal and Riko Jacob, Time-dependent Networks as Models to Achieve Fast Exact
Time-table Queries, Electronic Notes in Theoretical Computer Science 92 (2004), no. 0, 3–15.

8. P. C. Buzing, A. W. ter Mors, J. M. Valk, and C. Witteveen, Coordinating self-interested

planning agents, Autonomous Agents and Multi-Agent Systems 12 (2006), no. 2, 199–218.
9. A. J. Coles, A. I. Coles, M. Fox, and D. Long, POPF2: a Forward-Chaining Partial Order

Planner, Procs. IPC-7, 2011.

10. Jean-Francois Cordeau and Gilbert Laporte, The dial-a-ride problem: models and algorithms.,
Annals OR 153 (2007), no. 1, 29–46.

11. J. Cox and E. Durfee, An efficient algorithm for multiagent plan coordination, Proceedings

of the 4th International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2005) (Utrecht, The Netherlands), 2005, pp. 828–835.

12. Jeffrey S. Cox and Edmund H. Durfee, Efficient and distributable methods for solving the
multiagent plan coordination problem, Multiagent and Grid Systems 5 (2009), no. 4, 373–408.

13. Mathijs M. de Weerdt and Brad J. Clement, Introduction to planning in multiagent systems,

Multiagent and Grid Systems 5 (2009), no. 4, 345–355.
14. Daniel Delling, Thomas Pajor, and Dorothea Wagner, Accelerating Multi-modal Route Plan-

ning by Access-Nodes, ESA (Amos Fiat and Peter Sanders, eds.), Lecture Notes in Computer

Science, vol. 5757, Springer, 2009, pp. 587–598.
15. M. desJardins, E. H. Durfee, C. L. Ortiz, and M. Wolverton, A survey of research in dis-

tributed, continual planning, AI Magazine 20 (1999), no. 4, 13–22.

16. M. DesJardins and M. Wolverton, Coordinating a distributed planning system, AI Magazine
20 (1999), no. 4, 45.

17. Y. Dimopoulos, M. A. Hashmi, and P. Moraitis, µ-satplan: Multi-agent planning as satisfia-

bility, Knowledge-Based Systems 29 (2012), no. 0, 54 – 62.
18. E. Ephrati, M. E. Pollack, and J. S. Rosenschein, A Tractable Heuristic that Maximizes Global

Utility through Local Plan Combination, In Proceedings of the First International Conference
on MultiAgent Systems (ICMAS-95), 1995, pp. 94–101.

19. E. Ephrati and J. S. Rosenschein, Multi-agent planning as a dynamic search for social con-

sensus, Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence
(IJCAI-93), 1993, pp. 423–431.

20. E. Ephrati and J.S̃. Rosenschein, Multi-agent planning as the process of merging distributed

sub-plans, In Proceedings of the Twelfth International Workshop on Distributed Artificial
Intelligence (DAI 1993), 1993, pp. 115—129.

21. Eurostat, Modal split of passenger transport, [Online], available at tinyurl.com/eurostat-
modal-split, [Accessed: Oct 26, 2012].

22. Office for National Statistics, Special Travel Statistics (Level 1), [computer file], ESRC/JISC

Census Programme, Census Interaction Data Service, University of Leeds and University of
St. Andrews, 2001 Census.

23. D.E. Foulser, M. Li, and Q. Yang, Theory and algorithms for plan merging, Artificial Intelli-

gence 57 (1992), no. 2-3, 143–181.
24. M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory and Practice, Morgan

Kaufmann, 2004.

25. M. Horn, Multi-modal and demand-responsive passenger transport systems: a modelling
framework with embedded control systems, Transportation Research Part A: Policy and Prac-

tice 36 (2002), no. 2, 167–188.
26. Jan Hrnč́ı̌r, Improving a Collaborative Travel Planning Application, Master’s thesis, The

University of Edinburgh, August 2011.

27. Jan Hrnč́ı̌r and Michael Rovatsos, Applying Strategic Multiagent Planning to Real-World
Travel Sharing Problems, 7th Workshop on Agents in Traffic and Transportation, AAMAS,

June 2012.

28. Chih-Wei Hsu and Benjamin W. Wah, The SGPlan Planning System in IPC-6, Procs. IPC-6,
2008.

29. A. Jonsson and M. Rovatsos, Scaling Up Multiagent Planning: A Best-Response Approach,

Procs. ICAPS 2011, AAAI Press, June 2011, pp. 114–121.

http://tinyurl.com/eurostat-modal-split
http://tinyurl.com/eurostat-modal-split

26 JAN HRNČÍŘ, MICHAEL ROVATSOS, AND MICHAL JAKOB

30. R. Van Der Krogt, M. De Weerdt, and Y. Zhang, Of Mechanism Design and Multiagent

Planning, Proceedings of the 18th European Conference on Artificial Intelligence (ECAI 2008),

IOS Press, 2008, pp. 423–427.
31. R. Larbi, S. Konieczny, and P. Marquis, Extending Classical Planning to the Multi-agent

Case: A Game-Theoretic Approach, Proceedings of the European Conference on Symbolic

and Quantitative Approaches to Reasoning with Uncertainty, Lecture Notes in Artificial In-
telligence, vol. 4724, 2007, pp. 731–742.

32. Dov Monderer and Lloyd S. Shapley, Potential Games, Games and Economic Behavior 14

(1996), no. 1, 124–143.
33. R. Nissim, R. Brafman, and C. Domshlak, A general, fully distributed multi-agent planning

algorithm, Proceedings of the International Joint Conference on Autonomous Agents and
Multiagent Systems, vol. 9, 2010, pp. 1323–1330.

34. Alejandro Torre no, Eva Onaindia, and Oscar Sapena, An approach to multi-agent planning

with incomplete information, Proceedings of the European Conference on Artificial Intelli-
gence (ECAI’12), 2012.

35. Thomas Pajor, Multi-Modal Route Planning, Master’s thesis, 2009.

36. E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis, Efficient models for timetable information
in public transportation systems, Journal of Experimental Algorithmics (JEA) 12 (2008).

37. Silvia Richter and Matthias Westphal, The LAMA planner. Using landmark counting in

heuristic search, Procs. IPC-6, 2008.
38. Frank Schulz, Timetable information and shortest paths, Ph.D. thesis, 2005.

39. C. Stuart, An implementation of a multi-agent plan synchronizer, Proceedings of the 9th

International Joint Conference on Artificial Intelligence (IJCAI-85) (Los Angeles, CA), 1985,
pp. 1031–1033.

40. H. Tonino, A. Bos, M. de Weerdt, and C. Witteveen, Plan coordination by revision in collective

agent based systems, Artificial Intelligence 142 (2002), no. 2, 121–145.
41. I. Tsamardinos, M.E. Pollack, and J.F. Horty, Merging plans with quantitative temporal con-

straints, temporally extended actions, and conditional branches, Proceedings of the Fifth In-
ternational Conference on Artificial Intelligence Planning Systems (AIPS 2000) (Steve Chien,

Subbarao Kambhampati, and Craig A. Knoblock, eds.), 2000, pp. 264–272.

42. Roman van der Krogt and Mathijs de Weerdt, Self-interested planning agents using plan
repair, Proceedings of the ICAPS 2005 Workshop on Multiagent Planning and Scheduling,

2005, pp. 36–44.

43. Y. Wu, L. Guan, and S. Winter, Peer-to-peer shared ride systems, GeoSensor Networks (2008),
252–270.

44. Q. Yang, D.S. Nau, and J. Hendler, Merging separately generated plans with restricted inter-

actions, Computational Intelligence 8 (1992), no. 4, 648–676.

Agent Technology Center, Faculty of Electrical Engineering, Czech Technical Uni-

versity, 121 35 Prague, Czech Republic

E-mail address: hrncir@agents.fel.cvut.cz

School of Informatics, The University of Edinburgh, Edinburgh EH8 9AB, United
Kingdom

E-mail address: mrovatso@inf.ed.ac.uk

Agent Technology Center, Faculty of Electrical Engineering, Czech Technical Uni-

versity, 121 35 Prague, Czech Republic
E-mail address: jakob@agents.fel.cvut.cz

	1. Introduction
	2. Related Work
	3. Problem Formulation
	3.1. Timetabled Transport Services Representation
	3.2. Multiagent Planning Problem
	3.3. Timetabled Transport Ridesharing Problem

	4. Ridesharing Planning Algorithm
	4.1. The Trip Grouping Phase
	4.2. The Trip Planning Phase
	4.3. The Best-response Phase
	4.4. The Timetabling Phase
	4.5. Implementation

	5. Evaluation
	5.1. Domain Data
	5.2. Cost Model
	5.3. Experiment Scenarios
	5.4. Metrics
	5.5. Results

	6. Discussion
	7. Conclusion
	8. Acknowledgments
	References

